JPS62286311A - Pulse processing circuit - Google Patents

Pulse processing circuit

Info

Publication number
JPS62286311A
JPS62286311A JP13098986A JP13098986A JPS62286311A JP S62286311 A JPS62286311 A JP S62286311A JP 13098986 A JP13098986 A JP 13098986A JP 13098986 A JP13098986 A JP 13098986A JP S62286311 A JPS62286311 A JP S62286311A
Authority
JP
Japan
Prior art keywords
amplifier
input
output
point
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13098986A
Other languages
Japanese (ja)
Inventor
Shinichi Kobayashi
真一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIRIOSU KK
Original Assignee
HIRIOSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIRIOSU KK filed Critical HIRIOSU KK
Priority to JP13098986A priority Critical patent/JPS62286311A/en
Publication of JPS62286311A publication Critical patent/JPS62286311A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To operate the titled circuit without deteriorating the accuracy of reproduction from a DC to a high frequency in the order of MHz from a low to a high level by differentiating an input wave, amplifying the result, giving the result to a slice circuit while giving a proper time constant so as to form a correction pulse for the leading, or trailing or the both. CONSTITUTION:A bias of a differentiation amplifier 5 is set so as to slice only the leading waveform among differentiation waveforms produced by the differentiation amplifier 5, and the output of the slicer and the output of a DC amplifier 2 are ORed to correct the wave. The pulse width of the correction pulse depends on a capacitor 12, a resistor 11 and an input resistance including a resistance Rf of an amplifier element 14 used for the differentiation amplifier. Further, an unbuffer type CMOS inverter is used for the DC amplifier element and if an input bias is not easily applied, a midpoint bias is applied by providing a negative feedback resistor.

Description

【発明の詳細な説明】 2、発明の詳細な説明 (産業上の利用分野) 本発明は微弱なパルス信号を増幅し波形成形を行うパル
ス処理回路jこ関し、特tこ扱うパルス信号レベルの範
囲を広く必要とするパルスアンプに関するものである。
Detailed Description of the Invention 2. Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a pulse processing circuit that amplifies weak pulse signals and shapes waveforms, and particularly relates to pulse processing circuits that handle pulse signal levels. This relates to a pulse amplifier that requires a wide range.

(従来の技術) この発明に最も近い従来技術はオペアンプにより増幅し
、一定レベルに信号を増幅した後、コンパレーターに加
えて、パルス波形を整形するものが殆どで、1チツプに
工C化されたものも原理的には同じである。又−歩進ん
だものとして、コンパレーターの比較基準を入力の大小
で自動的に上下させるATC回路付のものがある。
(Prior art) Most of the prior art that is closest to this invention uses an operational amplifier to amplify the signal to a certain level, and then uses a comparator to shape the pulse waveform. The principle is the same. Furthermore, as a more advanced type, there is a type with an ATC circuit that automatically changes the comparison standard of the comparator up and down depending on the magnitude of the input.

又一方では入力の大小で、パルスアンプのゲインを変化
させ出力を一定に保つAGC付のものもある。この外、
DCアンプのドリフトを軽減するためのDC帰還式のも
のもある。
On the other hand, some are equipped with AGC, which changes the gain of the pulse amplifier depending on the magnitude of the input and keeps the output constant. Outside of this,
There is also a DC feedback type to reduce the drift of DC amplifiers.

(従来技術の問題点) 以上の様にパルスアンプは多くの方式のものが開発され
ているが、共通した問題点はDCからMHzオーダーの
高周波迄を、低レベルから高レベル迄パルス幅の再生精
度を落さずに動作させることが困難なことである。これ
らの条件を同時に実現するには現状では殆どが両電源を
必要とするアンプ素子(DCアンプ回路)を用い、しか
も回路規模も大幅に増大する。最近、電子装置の小型化
実現のため単電源、低電圧、低消費電力の要請に答える
には、部分的に必要な条件を満すにすぎない。例えば周
波数を低い範囲に限定してレベル変動に強くするとか、
その逆の条件選定をするか、又はパルス幅精度を妥協す
るかとの問題になる。例えば、現在量も進んでいると思
われるAGO付やATC付のものでもパルスの休止時か
ら、信号開始時に入る時は一時的に不安定な期間を経過
する。これはパルスが入力され、そのレベルを見て、コ
ントロールが始まる動作原理(こ基づいているので当然
である。
(Problems with the prior art) As mentioned above, many types of pulse amplifiers have been developed, but a common problem is the reproduction of pulse widths from DC to high frequencies on the order of MHz, from low levels to high levels. It is difficult to operate without reducing accuracy. In order to simultaneously achieve these conditions, at present most amplifier elements (DC amplifier circuits) that require dual power supplies are used, and the circuit size also increases significantly. Recently, in order to meet the demand for a single power supply, low voltage, and low power consumption in order to realize the miniaturization of electronic devices, it has only partially satisfied the necessary conditions. For example, limiting the frequency to a low range to make it more resistant to level fluctuations.
The question becomes whether to select the opposite conditions or compromise the pulse width accuracy. For example, even with AGO and ATC devices that are thought to be advancing in the current amount, there is a temporary unstable period from when the pulse stops to when the signal starts. This is natural because it is based on the operating principle that a pulse is input, its level is checked, and control begins.

この期間でもbit誤りは許されないのてこの対策のた
め回路を複雑にしたり微妙な調整を要したりする。又、
これらのコントロール機能のないものでは低レベルの信
号を十分増幅し、パルス可成する様に調整すると、高レ
ベルの信号が入るとアンプが飽和して波形が狂い、パル
ス幅精度が低下し、極端な場合にはパルス再生が不可能
になる。
Even during this period, bit errors cannot be tolerated, and as a countermeasure, the circuit must be complicated or delicate adjustments must be made. or,
If a device without these control functions sufficiently amplifies the low-level signal and adjusts it to create a pulse, when a high-level signal enters the amplifier, the amplifier will become saturated, the waveform will be distorted, the pulse width accuracy will decrease, and the In such cases, pulse regeneration becomes impossible.

(本発明の問題点解決手段) 本発明のパルス処理回路は、以上の問題点を総合的に解
決しようとするものである。
(Means for Solving the Problems of the Present Invention) The pulse processing circuit of the present invention is intended to comprehensively solve the above problems.

本発明の構成、動作原理は次の様になる。高周波迄動作
するDCアンプを基本素子とし、先ずそのアンプのS/
Nの許す限りの増幅をし、そのアンプの飽和領域に到達
させる。従ってアンプ素子はFKTアンプが望ましく、
バイポーラの様に電流モードで動作するものは適さない
。この様にハイゲインの増幅をすると波形が劣化する。
The configuration and operating principle of the present invention are as follows. The basic element is a DC amplifier that operates up to high frequencies.
Amplify as much as N allows to reach the saturation region of the amplifier. Therefore, the amplifier element is preferably an FKT amplifier.
Those that operate in current mode, such as bipolar, are not suitable. When high gain amplification is performed in this way, the waveform deteriorates.

即ち立上り部分か立下り部分かあるいは両方がなまるの
で、この部分を含めてスライスするとパルス幅が不正確
になる。従って、このパルス幅を何らかの方法で補正す
る必要がある。
That is, since either the rising portion, the falling portion, or both are blunted, if this portion is included in the slice, the pulse width will be inaccurate. Therefore, it is necessary to correct this pulse width by some method.

これを実現するのが、入力波を微分して増幅し、適当な
時定数を持たせてスライス回路に入れ、立上り又は立下
り又はその両方用の補正用パルスを作る。これをORや
ANDのゲートで上述の主パルス(DCアンプで増幅、
続いてスライスされて作られたパルス)に結合させるこ
とにより補正する。この時、立上りを補正するか立下り
を補正するか、又両方を行うかは、入力信号の0レベル
がDCアンプの動作範囲の内のどこにあるかによって定
まる。第2図の構成の場合、入力信号の0レベル(無信
号時レベル)が動作範囲の中心より少しVDD側にあり
、パルスは下向(グランド側向き)に生ずる場合はパル
スの立上り即ちグランド側からVDD側に向ける変化点
が波形劣化を起し易く、その逆の所はDCアンプのゲイ
ンが大きい程波形劣化は減少する方向にある。従って、
立上り補正のみを行えば良く、微分アンプで生ずる微分
波形のうち、立上り部のもののみをスライスする様微分
アンプのバイアスを設定し、このスライサの出力と、D
Cアンプの出力とをORをとることにより補正する。又
波形精度(パルス幅精度)が更に強く要求される場合又
は入力パルス波形のだれの程度が大きい場合は、第6図
の構成の様にパルスの立上り、立下り、両方の波形補正
を行う。これは、第2図の構成で立上り補正済みのパル
スに第6の微分アンプを加え、立下り対波の波形のみを
スライスされる様微分アンプのバイアス点を選ぶ。即ち
、第3図に示す様、バイアス点設定抵抗をVDDと入力
間に結線し、適切な抵抗値tこ選べば良い。そして、こ
の第3のブロックの出力と図2に示す最終出力をAND
回路に入れ、その出力を最終出力にすることでパルスの
両側の補正が達成され完全なパルス波形が再現される。
This is accomplished by differentiating and amplifying the input wave, giving it an appropriate time constant, and inputting it into a slice circuit to create correction pulses for rising or falling, or both. This is converted into the above-mentioned main pulse (amplified by a DC amplifier,
Then, it is corrected by combining it with the sliced pulse). At this time, whether to correct the rising edge, the falling edge, or both depends on where the 0 level of the input signal is within the operating range of the DC amplifier. In the case of the configuration shown in Figure 2, the 0 level of the input signal (no signal level) is slightly on the VDD side from the center of the operating range, and if the pulse is generated downward (toward the ground side), the rising edge of the pulse, that is, the ground side. Waveform deterioration tends to occur at points of change from VDD to VDD, and vice versa, as the gain of the DC amplifier increases, waveform deterioration tends to decrease. Therefore,
Only the rising edge correction needs to be performed, and the bias of the differential amplifier is set to slice only the rising edge of the differential waveform generated by the differential amplifier, and the output of this slicer and D
It is corrected by ORing the output of the C amplifier. When waveform accuracy (pulse width accuracy) is more strongly required or when the input pulse waveform has a large degree of droop, waveform correction for both the rise and fall of the pulse is performed as in the configuration shown in FIG. In this case, a sixth differential amplifier is added to the pulse whose rising edge has been corrected using the configuration shown in FIG. 2, and the bias point of the differential amplifier is selected so that only the falling waveform is sliced. That is, as shown in FIG. 3, a bias point setting resistor is connected between VDD and the input, and an appropriate resistance value t is selected. Then, AND the output of this third block and the final output shown in FIG.
By putting it into a circuit and making its output the final output, correction of both sides of the pulse is achieved and the complete pulse waveform is reproduced.

又、これらの補正用パルスの幅は、信号パルスのDCア
ンプでのだれの幅より大きいことが必要となる。又時定
数の大きい方の限度は使用する微分コンデンサやアンプ
の周波数特性が劣化しない範囲で選定する。
Further, the width of these correction pulses needs to be larger than the width of the signal pulse at the DC amplifier. Also, the larger limit of the time constant is selected within a range that does not deteriorate the frequency characteristics of the differential capacitor or amplifier used.

この補正用パルスのパルス幅は、第2図に於て、C1と
R1及び微分アンプに用いるアンプエレメントのRfを
含めた入力抵抗により決まる。R1が十分大のときはR
fをアンプ素子の増幅度で割った値とC1の積からなる
時定数から、補正用パルス幅を見つけ得る。逆に、この
関係でC1のあらかじめの値を決める。
The pulse width of this correction pulse is determined by the input resistance including C1, R1, and Rf of the amplifier element used in the differential amplifier in FIG. When R1 is sufficiently large, R
The correction pulse width can be found from the time constant formed by the product of C1 and the value obtained by dividing f by the amplification degree of the amplifier element. Conversely, the predetermined value of C1 is determined based on this relationship.

(実施例) 第2図及び第6図は本発明の一実施例である。(Example) FIGS. 2 and 6 show an embodiment of the present invention.

第2図及び第3図の信号源は任意の信号源にインピーダ
ンス低減回路を介して信号源の出力とし、これを分岐す
る場合が多い。又DCアンプ素子はC−MO8のアンバ
ッファ形インバータを使い入力バイアスをかけ難い場合
には負帰還抵抗を入れて中点びイアスをかける。第2図
及び第3図では、信号源の出力点で中点バイアスされて
いる場合を仮定してDCアンプは帰還なしの場合を示し
た。又DCアンプ、微分アンプ共、ゲインが不足する場
合は段を重ねる。スライサ以後はORゲートを使わずイ
ンバータとNANDゲートで構成する場合もある。又、
ORゲートをダイオードカップラで構成し、最後にイン
バータで波形整形と出力バッファを構成することもある
。第2図、第3図共、バイアス点の調整はR,、R2,
R3で行う。
The signal sources shown in FIGS. 2 and 3 are often connected to an arbitrary signal source via an impedance reduction circuit, output from the signal source, and then branched. Further, the DC amplifier element uses a C-MO8 unbuffered inverter, and if it is difficult to apply an input bias, a negative feedback resistor is inserted to apply a midpoint bias. In FIGS. 2 and 3, it is assumed that the output point of the signal source is biased at a midpoint, and the DC amplifier has no feedback. Also, if the gain is insufficient for both the DC amplifier and the differential amplifier, stack the stages. After the slicer, an inverter and a NAND gate may be used instead of an OR gate. or,
The OR gate may be configured with a diode coupler, and finally an inverter may be used to configure the waveform shaping and output buffer. In both Figures 2 and 3, the bias point adjustment is R, , R2,
Perform with R3.

(発明の効果) 以上の様な構成、動作原理に基づく本発明は次の様な点
で従来実現し得なかった大きな効果を発揮する。
(Effects of the Invention) The present invention based on the above-described configuration and operating principle exhibits great effects that could not be achieved conventionally in the following respects.

第1に5V以下の単電源で動作して、しかもDC〜数M
H2迄の帯域を有し、しかも20dB以上のパワー変動
にも±10チ以下のパルス幅変動に納められるものを実
現し、しかも各パルス毎に波形処理を行うため、休止か
らの立上りや、レベルの急変6ども関係なく動作する。
First, it operates with a single power supply of 5V or less, and is DC to several M
It has a bandwidth up to H2, and can suppress power fluctuations of 20 dB or more to pulse width fluctuations of ±10 cm or less. Moreover, since waveform processing is performed for each pulse, the rise from rest and level It works regardless of sudden changes.

又本発明の構成をとれば、先ず普及型のC−MO8FE
T素子が使え、電源電圧は5v〜2v迄動作し、しかも
単電源で良い、又C−MO8FETを使えば当然消費電
力も少なく、ロジック素子も1チツプ上で構成出来る。
Moreover, if the configuration of the present invention is adopted, first of all, the popular C-MO8FE
A T element can be used, the power supply voltage can operate from 5V to 2V, and a single power supply is required. Also, if a C-MO8FET is used, the power consumption is naturally low, and the logic element can also be configured on one chip.

又、波形くづれによる時間遅れを微分波形で補うため、
システムディレーが非常に小さくなり、ループを組み易
くなる。レベル変動によるDCアンプでの波形のだれは
微分波形で補い、最小信号パルス幅までは全くレベルの
影響を受けない。周波数特性も、C!−MOSFETの
性能一杯まで発揮出来、従来形のC−MOSロジックの
アンバッファ型インバータで50 ns高速C−MOS
で1Qns程度のスピードまで動作する。ボーレート換
算では、パルス幅精度±10%で考え、前者で2Mボー
後者で10M0Mポー能となる。使用可能レベル変動幅
は試作品でパワーで2 Q dBが実現している。
In addition, in order to compensate for the time delay due to waveform distortion with the differential waveform,
The system delay becomes extremely small, making it easier to create loops. Drops in the waveform in the DC amplifier due to level fluctuations are compensated for by the differential waveform, and up to the minimum signal pulse width are not affected by the level at all. The frequency characteristics are also C! - It can demonstrate the full performance of MOSFET, and can be used as a 50 ns high-speed C-MOS with an unbuffered inverter of conventional C-MOS logic.
It operates up to a speed of about 1 Qns. In terms of baud rate conversion, assuming a pulse width accuracy of ±10%, the former is 2M baud and the latter is 10M0M baud. The usable level fluctuation range is 2 Q dB in power in the prototype.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本システムブロック図、第1図(a
)はパルスの片方のエッヂを補正する場合の基本システ
ムブロック図、第1図(b)はパルスの両エッヂを補正
する場合の基本システムブロック図、第2図は本発明の
実施例であり、この場合立上りエッヂ補正の場合を示す
図、第3図も本発明の実施例でこの場合は両エッヂ共補
正する場合を示している。 1・・パルス波形の信号源、2・・DCアンプ、3・・
スライサ、4・・論理回路(OR機能)、5・・微分ア
ンプ、6・・DCアンプ素子、7・・微分アンプ(5と
は別の動作点を持つ)、8・・スライサ(3又は6とは
別の)、9・・4とは別の論理回路、10・・DCアン
プ素子、11・・バイアス点設定抵抗R+、12・・微
分コンデンサC1,13・・バイアス設定抵抗R2,1
4・・負帰還抵抗Rf、 15・・電源供給点(VDD
) 、16 ・ ・グランド点、17・ ・バイアス点
設定抵抗R3,18・・論理回路(AND機能)、19
・・信号出力点、20・・微分コンデンサC2,21・
・スライサ(DCアンプ用6とは別の・)。 特許出願人  ヒリオス株式会社 第 10
FIG. 1 is a basic system block diagram of the present invention.
) is a basic system block diagram when correcting one edge of the pulse, FIG. 1(b) is a basic system block diagram when correcting both edges of the pulse, and FIG. 2 is an embodiment of the present invention. In this case, the diagram showing the case of correcting the rising edge, FIG. 3, is also an embodiment of the present invention, and in this case, it shows the case where both edges are corrected. 1... Pulse waveform signal source, 2... DC amplifier, 3...
Slicer, 4...Logic circuit (OR function), 5...Differential amplifier, 6...DC amplifier element, 7...Differential amplifier (with different operating point from 5), 8...Slicer (3 or 6 ), 9... Logic circuit different from 4, 10... DC amplifier element, 11... Bias point setting resistor R+, 12... Differential capacitor C1, 13... Bias setting resistor R2, 1
4... Negative feedback resistor Rf, 15... Power supply point (VDD
), 16... Ground point, 17... Bias point setting resistor R3, 18... Logic circuit (AND function), 19
・・Signal output point, 20・・Differential capacitor C2, 21・
・Slicer (separate from 6 for DC amplifier). Patent applicant Hirios Co., Ltd. No. 10

Claims (1)

【特許請求の範囲】 1、パルス状波形の信号を出力する信号源(1)の出力
を2又は3分岐し、その内の1つをDCアンプ(2)に
、又その他を微分アンプ(入波波形を微した波形に近い
出力を生ずるアンプ)(5)又は(5)及び(7)に接
続し、各々の後段にスライサ(入力信号があるレベルよ
り高い時は常に最高レベルの出力を生じ、低い時は最低
レベルの出力を生ずる回路)を接続し、その各々の出力
を論理回路(4)又は(a)を通して1つ又は複数の出
力を持つ構成のパルス処理回路。 2、特許請求範囲第1項に於てDCアンプ(2)を、D
Cアンプ素子(10)とその入力点と電源供給点(15
)の間をバイアス設定抵抗R_1で結線し、又スライサ
(3)にインバータを用い論理回路(4)にORゲート
又はそれに相当する機能の論理回路群を用い又、微分ア
ンプには、信号入力点に直列に微分用コンデンサC_1
(12)を設けDCアンプ素子の入力点へ結線し、この
点とグランド(16)の間を別のバイアス設定抵抗R_
2(13)で結線し、又この入力点とDCアンプ素子(
6)の出力点に負帰還抵抗R_f(14)を入れて構成
した特許請求範囲第1項のパルス処理回路。 3、特許請求範囲第2項のパルス処理回路の入力に並列
に、電源供給点(15)とR_3(17)でDCアンプ
素子(6)の入力を結線することにより別の動作点に設
定された微分アンプ7と、その後段にスライサ(3)を
有する回路ブロックを結線し、その各々の出力をAND
回路又はそれに相当する機能を有するロジック回路ブロ
ックに入れ、その出力を最終出力とする特許請求範囲第
1項のパルス処理回路。
[Claims] 1. The output of the signal source (1) that outputs a signal with a pulsed waveform is branched into two or three branches, one of which is connected to a DC amplifier (2), and the other is connected to a differential amplifier (input). An amplifier that produces an output close to a waveform with a slight waveform) (5) or (5) and (7), and a slicer (that always produces the highest level output when the input signal is higher than a certain level) at the subsequent stage of each. , a circuit that produces the lowest level output when it is low) is connected, and each output is passed through a logic circuit (4) or (a) to have one or more outputs. 2. In claim 1, the DC amplifier (2) is defined as D
C amplifier element (10) and its input point and power supply point (15)
) is connected with a bias setting resistor R_1, an inverter is used for the slicer (3), an OR gate or a group of logic circuits with an equivalent function is used for the logic circuit (4), and the signal input point is connected to the differential amplifier. Differential capacitor C_1 is connected in series with
(12) is provided and connected to the input point of the DC amplifier element, and another bias setting resistor R_ is connected between this point and the ground (16).
2 (13), and also connect this input point to the DC amplifier element (
6) A pulse processing circuit according to claim 1, which includes a negative feedback resistor R_f (14) at the output point of the pulse processing circuit. 3. A different operating point is set by connecting the input of the DC amplifier element (6) through the power supply point (15) and R_3 (17) in parallel to the input of the pulse processing circuit according to claim 2. The differential amplifier 7 and the circuit block having the slicer (3) at the subsequent stage are connected, and their respective outputs are ANDed.
The pulse processing circuit according to claim 1, which is inserted into a circuit or a logic circuit block having a function equivalent to the circuit, and whose output is the final output.
JP13098986A 1986-06-05 1986-06-05 Pulse processing circuit Pending JPS62286311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13098986A JPS62286311A (en) 1986-06-05 1986-06-05 Pulse processing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13098986A JPS62286311A (en) 1986-06-05 1986-06-05 Pulse processing circuit

Publications (1)

Publication Number Publication Date
JPS62286311A true JPS62286311A (en) 1987-12-12

Family

ID=15047321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13098986A Pending JPS62286311A (en) 1986-06-05 1986-06-05 Pulse processing circuit

Country Status (1)

Country Link
JP (1) JPS62286311A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015082810A (en) * 2013-10-24 2015-04-27 三菱電機株式会社 Semiconductor device and semiconductor module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015082810A (en) * 2013-10-24 2015-04-27 三菱電機株式会社 Semiconductor device and semiconductor module

Similar Documents

Publication Publication Date Title
EP0455472B1 (en) Low noise amplifier with short circuit protection for signals from magnetoresistive element
JP2007082257A (en) Amplifying stage having decibel-linear output voltage
JPH0448285B2 (en)
JP2000228623A (en) Signal amplifier circuit
US20040080350A1 (en) Adjustment of a clock duty cycle
EP3223427A1 (en) Btl output self-oscillating class d amplifier
EP0620638B1 (en) Integrated circuit amplifier arrangements
US5825228A (en) Low quiescent power, high output power rail-to rail amplifier output stages and methods for using same
TW201633703A (en) Active RC filters
JPS62286311A (en) Pulse processing circuit
US4142110A (en) Circuit to eliminate DC bias
EP0265763A2 (en) Frequency response compensation circuit
US4901030A (en) Operational amplifier stages
JPH10126179A (en) Gain control circuit and method
JPS5922436A (en) Variable delay circuit
CN111697936A (en) Low-power-consumption complementary digital variable gain amplifier
US9871495B2 (en) Thermal compensation for amplifiers
US7009450B2 (en) Low distortion and high slew rate output stage for voltage feedback amplifier
US11855588B2 (en) Differential driver
JPH051649B2 (en)
JP2531922B2 (en) Unipolar code / bipolar code conversion circuit
JPS62233921A (en) Dc compensation circuit
US20040150475A1 (en) Differential current amplifier with common mode rejection and high frequency boost
JPH04371017A (en) Self-bias type amplifier circuit
JPH07170167A (en) Level shifter for ac signal