JPS6228605B2 - - Google Patents

Info

Publication number
JPS6228605B2
JPS6228605B2 JP15391078A JP15391078A JPS6228605B2 JP S6228605 B2 JPS6228605 B2 JP S6228605B2 JP 15391078 A JP15391078 A JP 15391078A JP 15391078 A JP15391078 A JP 15391078A JP S6228605 B2 JPS6228605 B2 JP S6228605B2
Authority
JP
Japan
Prior art keywords
solid
slot
state
waveguide
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15391078A
Other languages
Japanese (ja)
Other versions
JPS5579507A (en
Inventor
Hiroshi Saka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15391078A priority Critical patent/JPS5579507A/en
Publication of JPS5579507A publication Critical patent/JPS5579507A/en
Publication of JPS6228605B2 publication Critical patent/JPS6228605B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B9/00Generation of oscillations using transit-time effects
    • H03B9/12Generation of oscillations using transit-time effects using solid state devices, e.g. Gunn-effect devices
    • H03B9/14Generation of oscillations using transit-time effects using solid state devices, e.g. Gunn-effect devices and elements comprising distributed inductance and capacitance
    • H03B9/145Generation of oscillations using transit-time effects using solid state devices, e.g. Gunn-effect devices and elements comprising distributed inductance and capacitance the frequency being determined by a cavity resonator, e.g. a hollow waveguide cavity or a coaxial cavity

Description

【発明の詳細な説明】 本発明は立体平面回路を用いたマイクロ波固体
発振器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a microwave solid-state oscillator using a three-dimensional planar circuit.

マイクロ波固体発振器に用いられる固体発振素
子としてはガンダイオードやインパツトダイオー
ド等があり、それらの固体発振素子をマウントす
る発振器の構造として導波管形発振器、同軸線路
形発振器、ストリツプ線路形発振器等があるが、
それらの発振器は、主として発振器と接続される
回路側の入力構造と一致するように選ばれるのが
普通である。更に固体発振素子の発振回路へのマ
ウントには発熱による素子の破壊を防ぐために放
熱について充分の注意が払われているのが普通で
ある。
The solid-state oscillator elements used in microwave solid-state oscillators include Gunn diodes and impact diodes, and the oscillator structures that mount these solid-state oscillators include waveguide oscillators, coaxial line oscillators, strip line oscillators, etc. There is, but
These oscillators are usually chosen primarily to match the input structure of the circuit to which they are connected. Furthermore, when mounting a solid-state oscillation element on an oscillation circuit, sufficient care is usually taken to dissipate heat to prevent the element from being destroyed due to heat generation.

導波管形共振器を用いた導波管形固体発振器で
は、固体発振素子の放熱を考慮したダイオードマ
ウントの構造は複雑で精度の高いものが要求され
るため、ダイオードマウントを含めた導波管形共
振器の切削加工費は高くつく欠点を有する。
In a waveguide solid-state oscillator using a waveguide resonator, the structure of the diode mount is complex and requires high precision in consideration of heat dissipation of the solid-state oscillator. The disadvantage is that the machining costs for shaped resonators are high.

従来の導波管形固体発振器は第1図に示すよう
な構造のものが一般的に用いられている。導波管
1の一端は短絡板2で短絡し、短絡板2から約3/
4λg(λgは管内波長)離れた位置に結合孔3
を有する短絡板4を設け、短絡板2と短絡板4と
で共振空胴5を形成する。短絡板2から約λg/4離 れた位置には固体発振素子6がダイオードマウン
ト棒7により導波管1に装着されている。短絡板
2から約λg/2離れた位置には共振空胴5の内部へ 挿入自在なネジ8が設けられている。固体発振素
子6で発生したマイクロ波電力は結合孔3を通し
て出力導波管9に伝送される。導波管形固体発振
器の発振周波数はネジ8により可変でき、共振空
胴5内部へネジ8を挿入する程、発振周波数は低
くなる。第1図の従来例では、導波管形共振空胴
を形成するには導波管1、短絡板2、短絡板4、
出力導波管9が必要であり、更に固体発振素子6
を装着するのにダイオードマウント棒7が必要に
なるなど構成が複雑になり、そのため製作費が高
くつく欠点があつた。
A conventional waveguide solid state oscillator having a structure as shown in FIG. 1 is generally used. One end of the waveguide 1 is short-circuited with a shorting plate 2, and approximately 3/3
Coupling hole 3 at a distance of 4λg (λg is the tube wavelength)
A resonant cavity 5 is formed by the shorting plate 2 and the shorting plate 4. A solid-state oscillation element 6 is attached to the waveguide 1 by a diode mount rod 7 at a position approximately λg/4 away from the shorting plate 2. A screw 8 that can be freely inserted into the resonant cavity 5 is provided at a position approximately λg/2 apart from the shorting plate 2. Microwave power generated by the solid-state oscillation element 6 is transmitted to the output waveguide 9 through the coupling hole 3. The oscillation frequency of the waveguide solid state oscillator can be varied by the screw 8, and the further the screw 8 is inserted into the resonance cavity 5, the lower the oscillation frequency becomes. In the conventional example shown in FIG. 1, in order to form a waveguide type resonant cavity, a waveguide 1, a shorting plate 2, a shorting plate 4,
An output waveguide 9 is required, and a solid-state oscillator 6 is also required.
The structure is complicated, as a diode mount rod 7 is required to mount the diode, and the manufacturing cost is therefore high.

本発明は立体平面回路形のマイクロ波固体発振
器を用いることにより、構造が簡単で製作安易な
マイクロ波固体発振器を提供するものである。
The present invention provides a microwave solid-state oscillator that has a simple structure and is easy to manufacture by using a three-dimensional planar circuit type microwave solid-state oscillator.

第2図は本発明の一実施例である。コの字形の
分割導波管10,11に挾み込まれた平面回路導
体板12には約5/4λ長(λは波長)の細長いス
ロツト13が設けられている。スロツト13の負
荷側端部A端からλ/2長離れた位置には固体発振
素子14が装着されている。19は電波吸収体材
料で、スロツト13の他端であるB端と固体発振
素子14との間でスロツト13内部のB端近くに
配置されている。またスロツト13のB端から
λ/4長離れた位置に、スロツト13に近接してネ
ジ18が設けられている。スロツト13と固体発
振素子14とで形成される共振回路は2つあり、
1つはスロツト13のA端と固体発振素子14と
で形成される第1の共振回路(共振波長はλ)で
あり、他の1つはスロツト13のB端と固体発振
素子14とで形成される第2の共振回路(共振波
長は3/2λ)とである。固体発振素子14からス
ロツト13のB端側を見たインピーダンスZは電
波吸収体材料19が配置されているため抵抗成分
を含む。従つて、固体発振素子14とスロツト1
3のB端とで形成される第2の共振回路(共振波
長は3/2λ)には抵抗成分が含まれることにな
り、この抵抗成分が固体発振素子14とスロツト
13のB端とで形成される共振回路による発振を
防ぐ効果をもつ。このようにして固体発振素子1
4とスロツト13のA端とで形成される共振回路
の共振周波数(波長はλ)のみで安定に発振が行
なわれ、その発振電力の一部がスロツト13の共
振回路と出力導波管21との結合により負荷へ伝
送される。スロツト13と出力導波管21との結
合の大きさはスロツト13のA端と平面回路導体
板12のC端との距離l1により調整できる。
FIG. 2 shows an embodiment of the present invention. A planar circuit conductor plate 12 sandwiched between the U-shaped divided waveguides 10 and 11 is provided with an elongated slot 13 having a length of approximately 5/4λ (λ is the wavelength). A solid-state oscillation element 14 is mounted at a distance of λ/2 from the load side end A of the slot 13. Reference numeral 19 denotes a radio wave absorber material, which is disposed inside the slot 13 near the B end between the B end, which is the other end of the slot 13, and the solid state oscillation element 14. Further, a screw 18 is provided close to the slot 13 at a distance of λ/4 from the B end of the slot 13. There are two resonant circuits formed by the slot 13 and the solid-state oscillation element 14.
One is a first resonant circuit (resonance wavelength is λ) formed by the A end of the slot 13 and the solid state oscillation element 14, and the other one is formed by the B end of the slot 13 and the solid state oscillation element 14. and a second resonant circuit (resonant wavelength is 3/2λ). The impedance Z seen from the solid-state oscillation element 14 toward the B end of the slot 13 includes a resistance component because the radio wave absorber material 19 is arranged. Therefore, the solid state oscillator 14 and the slot 1
The second resonant circuit (resonant wavelength is 3/2λ) formed by the B end of the slot 13 includes a resistance component, and this resistance component is formed by the solid state oscillation element 14 and the B end of the slot 13. This has the effect of preventing oscillation caused by the resonant circuit. In this way, the solid state oscillator 1
Stable oscillation is performed only at the resonant frequency (wavelength is λ) of the resonant circuit formed by the resonant circuit 4 and the A end of the slot 13, and a part of the oscillation power is transmitted to the resonant circuit of the slot 13 and the output waveguide 21. is transmitted to the load by coupling the The magnitude of the coupling between the slot 13 and the output waveguide 21 can be adjusted by adjusting the distance l1 between the A end of the slot 13 and the C end of the planar circuit conductor plate 12.

一方、スロツト13の他端であるB端と平面回
路導体板12のD端との距離l2はカツトオフ領域
にある導波管15,16を通して平面回路導体板
12のD端にまで漏れてくる発振回路の電磁界の
エバネセント波が充分に減衰するような長さに選
ばれる。ネジ17は固体発振素子14からλ/4長
離れた位置でスロツト13に近接して設けられて
いる。固体発振器の発振周波数はネジ17の挿入
量により可変できる。ネジ18は固体発振素子1
4から電波吸収体材料19側に約λ/2長離れた位
置でスロツト13に近接して設けられている。ネ
ジ18は固体発振素子14からスロツト13のB
端側を見たインピーダンスZを抵抗成分を含む状
態で変えて、固体発振素子14の負荷状態を最適
な状態に調整するためのものであり、ネジ18に
より負荷に最大の発振出力が供給できるように調
整できるとともに、ネジ17による発振周波数の
可変範囲を広帯域にできる。ネジ18の挿入量を
変えても発振周波数にはほとんど影響を与えな
い。
On the other hand, the distance l 2 between the B end, which is the other end of the slot 13, and the D end of the planar circuit conductor plate 12 leaks to the D end of the planar circuit conductor plate 12 through the waveguides 15 and 16 in the cut-off region. The length is selected so that the evanescent wave of the electromagnetic field of the oscillation circuit is sufficiently attenuated. The screw 17 is provided close to the slot 13 at a distance of λ/4 from the solid-state oscillation element 14. The oscillation frequency of the solid-state oscillator can be varied by changing the insertion amount of the screw 17. The screw 18 is the solid state oscillation element 1
The slot 13 is provided close to the slot 13 at a distance of about λ/2 from the radio wave absorber material 19 side. The screw 18 is inserted from the solid state oscillator 14 to the slot B of the slot 13.
This is to adjust the load condition of the solid-state oscillation element 14 to the optimum condition by changing the impedance Z including the resistance component when looking at the end side, and the screw 18 is used so that the maximum oscillation output can be supplied to the load. In addition, the oscillation frequency can be varied over a wide range by the screw 17. Even if the insertion amount of the screw 18 is changed, the oscillation frequency is hardly affected.

第3図は本発明のさらに他の実施例を示したも
ので、第2図と同一箇所には同一番号を付して説
明する。20,20′は電波吸収体材料で、カツ
トオフ領域にある導波管15,16内に一様に、
しかもスロツト13のB端に近接した位置に配置
されている。したがつて電波吸収体材料20,2
0′はカツトオフ領域にある導波管15,16を
通して導波管外部に漏れていく発振電磁界エバネ
セント波を吸収する働きを有する。本実施例では
スロツト13のB端と平面回路導体板12のD端
との距離l′2を、第2図の実施例の距離l2に比べて
短くすることができ、固体発振器全体の寸法も短
くすることが可能でより小型化を実現するもので
ある。
FIG. 3 shows still another embodiment of the present invention, and the same parts as in FIG. 2 are given the same numbers and will be described. 20 and 20' are radio wave absorber materials, which are uniformly distributed within the waveguides 15 and 16 in the cut-off region.
Moreover, it is located close to the B end of the slot 13. Therefore, the radio wave absorber material 20,2
0' has the function of absorbing the evanescent waves of the oscillating electromagnetic field leaking to the outside of the waveguides through the waveguides 15 and 16 in the cut-off region. In this embodiment, the distance l' 2 between the B end of the slot 13 and the D end of the planar circuit conductor plate 12 can be made shorter than the distance l 2 in the embodiment shown in FIG. It is also possible to shorten the length, thereby achieving further miniaturization.

以上の実施例からも明らかなように本発明のマ
イクロ波固体発振器は、立体平面回路を用いて構
成したことにより構成が簡単で、精度等の製作上
も有利であり、発熱その他動作に関しても安定で
あると同時に、同調範囲も広帯域を実現可能であ
るなど工業的に優れたものである。
As is clear from the above embodiments, the microwave solid-state oscillator of the present invention is simple in construction because it is constructed using a three-dimensional planar circuit, is advantageous in manufacturing accuracy, etc., and is stable in terms of heat generation and other operations. At the same time, it is industrially superior in that it can achieve a wide tuning range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは従来の導波管形マイクロ波固体
発振器を示す断面正面図および断面平面図、第2
図a〜cは本発明のマイクロ波固体発振器の一実
施例を示す正面図、平面図および側面図、第3図
a,bは本発明の他の実施例を示す断面正面図お
よび平面図である。 10,11……分割導波管、12……平面回路
導体板、13……スロツト、14……固体発振素
子、17,18……ネジ、19,20,20′…
…電波吸収材料、21……出力導波管。
Figures 1a and 1b are a cross-sectional front view and a cross-sectional plan view showing a conventional waveguide type microwave solid-state oscillator;
Figures a to c are a front view, a top view, and a side view showing one embodiment of the microwave solid-state oscillator of the present invention, and Figures 3a and b are a sectional front view and a plan view showing another embodiment of the present invention. be. 10, 11...Divided waveguide, 12...Planar circuit conductor plate, 13...Slot, 14...Solid oscillation element, 17, 18...Screw, 19, 20, 20'...
...Radio wave absorbing material, 21...Output waveguide.

Claims (1)

【特許請求の範囲】[Claims] 1 方形導波管のH面の中心線を含んでH面に垂
直な平面により、断面コ字状の2分割された分割
導波管と、5/4波長のスロツトを管軸方向に備え
て前記分割導波管に挾持された平板導体板と、前
記スロツトの一方の短絡終端から1/2波長の位置
にマウントされた固体発振素子と、前記スロツト
の他方の短絡終端近傍に配置された電波吸収体
と、前記一方の短絡終端から前記固体発振素子側
へ約1/4波長離れた位置と、前記他方の短絡終端
から前記固体発振素子側へ約1/4波長離れた位置
に、前記スロツトに近接し、前記分割導波管のH
面に垂直な方向に設けられたネジとで構成された
ことを特徴とするマイクロ波固体発振器。
1 A divided waveguide with a U-shaped cross section is divided into two by a plane that includes the center line of the H-plane of the rectangular waveguide and is perpendicular to the H-plane, and a 5/4 wavelength slot is provided in the tube axis direction. A flat conductor plate held between the divided waveguides, a solid-state oscillator mounted at a position 1/2 wavelength from one short-circuited end of the slot, and a radio wave placed near the other short-circuited end of the slot. the absorber, the slot at a position approximately 1/4 wavelength away from the one short-circuit termination toward the solid-state oscillation element, and at a position approximately 1/4 wavelength away from the other short-circuit termination toward the solid-state oscillation element. H of the split waveguide
A microwave solid-state oscillator characterized by comprising a screw installed in a direction perpendicular to a surface.
JP15391078A 1978-12-12 1978-12-12 Microwave solid-state oscillator Granted JPS5579507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15391078A JPS5579507A (en) 1978-12-12 1978-12-12 Microwave solid-state oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15391078A JPS5579507A (en) 1978-12-12 1978-12-12 Microwave solid-state oscillator

Publications (2)

Publication Number Publication Date
JPS5579507A JPS5579507A (en) 1980-06-16
JPS6228605B2 true JPS6228605B2 (en) 1987-06-22

Family

ID=15572769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15391078A Granted JPS5579507A (en) 1978-12-12 1978-12-12 Microwave solid-state oscillator

Country Status (1)

Country Link
JP (1) JPS5579507A (en)

Also Published As

Publication number Publication date
JPS5579507A (en) 1980-06-16

Similar Documents

Publication Publication Date Title
CA2292064C (en) Line transition device between dielectric waveguide and waveguide, and oscillator and transmitter using the same
US6362706B1 (en) Cavity resonator for reducing phase noise of voltage controlled oscillator
US4307352A (en) Micro-strip oscillator with dielectric resonator
JPH0439802B2 (en)
US4008446A (en) Microwave oscillation device whose oscillation frequency is controlled at the resonance frequency of a dielectric resonator
EP0053945B1 (en) Frequency-stabilized solid state oscillating circuit
US3212018A (en) Waveguide parametric amplifier employing variable reactance device and thin septa iris to resonate fixed reactance of the device
JPS6228605B2 (en)
GB1240188A (en) Electrical netdorks including semiconductor elements
US6344779B1 (en) Oscillator and radio equipment
JPS6221281B2 (en)
JP3848860B2 (en) Planar circuit with cavity resonator
US6445256B1 (en) Oscillator and radio equipment
US4386326A (en) Dielectric-resonator-tuned microwave solid state oscillator
US4025881A (en) Microwave harmonic power conversion apparatus
US4560952A (en) Cavity-stabilized microwave oscillator
US4567450A (en) Fin-line oscillator
JP4824869B2 (en) Microwave oscillator
US6512421B1 (en) Gunn diode oscillator with NRD guide
KR100587901B1 (en) NRD Guide Gunn Oscillator and Frequency Locking Method using Ceramic Resonator
JPH0462486B2 (en)
JP4299997B2 (en) Magnetron device
JPS60242702A (en) Microwave resonance circuit
JPS625530B2 (en)
JPS6024001Y2 (en) microwave integrated circuit