JPS6228523B2 - - Google Patents

Info

Publication number
JPS6228523B2
JPS6228523B2 JP17128979A JP17128979A JPS6228523B2 JP S6228523 B2 JPS6228523 B2 JP S6228523B2 JP 17128979 A JP17128979 A JP 17128979A JP 17128979 A JP17128979 A JP 17128979A JP S6228523 B2 JPS6228523 B2 JP S6228523B2
Authority
JP
Japan
Prior art keywords
tube
fluorescent lamp
lamp
tube wall
entire length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17128979A
Other languages
Japanese (ja)
Other versions
JPS5697907A (en
Inventor
Seigo Wada
Makoto Toho
Minoru Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP17128979A priority Critical patent/JPS5697907A/en
Publication of JPS5697907A publication Critical patent/JPS5697907A/en
Publication of JPS6228523B2 publication Critical patent/JPS6228523B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Discharge Lamp (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[技術分野] 本発明はいわゆるVHOランプと称せられる高
出力蛍光灯ランプに関するものである。 [背景技術] 近年蛍光ランプの大きさを変えずに大電流を流
して光束を増す高出力蛍光ランプが開発されてい
るが、管電流が大きいために管壁温度の過上昇を
招き易く、これが光束の低下や短寿命の原因にな
るという問題がある。第2図はランプ管壁温度と
管内水銀蒸気圧との関係を示すもので、蛍光物質
の励起紫外線(253.7nm)の発生効率は管壁温度
40℃すなわち水銀蒸気圧6mTorrで最大となり、
蛍光ランプの効率は管内水銀蒸気圧がこれより高
くても低くても低下し、この蒸気圧は管壁の最冷
点温度で決定される。そこで高出力蛍光ランプで
は大きな管電流を流すために、管壁温度を最適に
維持する必要があり、従来より第1図に示すよう
に、管中央部に直径10mm深さ10mm程度の突起部5
を設け、この突起部が他の部分より冷え易いの
で、それによつて適当な最冷点温度を得る方法が
提案されている。 [発明の目的] しかし上記従来方法は、突起部5が突出してい
るために壊れ易く、運搬保管に不便である上に製
作上の困難を伴い、また突起部を下に向けるとい
う使用制限があるなど問題が多かつた。本発明は
上記の問題点を解決すると同時に、ランプ効率低
下させることなくランプ光束を向上することを目
的とするものである。 [発明の開示] 第3図は本発明装置の一実施例を示すもので、
管内に水銀粒と共にネオン、アルゴン、クリプト
ンの混合ガスを封入した直管形の蛍光ランプ1の
管中央の小部分3および両端電極部を除く管壁の
全長に亙つて、厚み方向に同一極性で着磁された
帯状の永久磁石片2を固着したものである。また
第4図の実施例は、同様にして着磁された永久磁
石片2を、例えばN極を上面にして器具4に固着
したものである。 次に本発明装置の動作原理を説明する。 一般に蛍光ランプに封入される希ガスの原子量
が小さくなると管壁温度が上昇する。一方第5図
に示すように、陽光柱消費電力と光出力の関係を
見ると、希ガスの原子量が小さくなるほど光出力
の飽和レベルは向上し、陽光柱入力が100Wより
大きいと、ネオンガス封入ランプの方がアルゴン
ガス封入ランプよりも多くの光を出す。従つて高
出力蛍光ランプでは、ネオンのような原子量の小
さい希ガスが封入されることが多い。しかし原子
量の小さい希ガスを封入すると、陰極降下電圧が
上昇して電極のスパツタが促進され、点灯時間と
共に陰極の電子放射性が低下し、それにつれてま
すます陰極降下が大きくなり、その結果陰極破壊
が促進されてランプの寿命が短くなるという欠点
がある。その対策として、ネオンガスと共にクリ
プトンやキセノンのような原子量の大きい希ガス
を封入することにより、陰極降下電圧を低くし
て、ランプ寿命を長くすることができる。またそ
れによつて、希ガスと電子との弾性衝突ロスが低
下するため、ランプ電力が低下し、管壁温度が低
下して約40℃程度になり、励起水銀原子からの紫
外線発生効率は最大となり、ランプ電力に対する
全光束の比率は大きくなる。しかしその反面、ラ
ンプ電力の低下と同時に全光束の絶対量が低下し
て、高出力蛍光ランプの本来の使用目的に反する
ことになる。 そこで本発明のように、ランプ内の電界方向と
交叉する磁界を加えると、電子は電磁力を受けて
屈曲し、管壁における電子―イオン再結合が促進
されるので、磁界印加部分の電位傾度が大きくな
り、またランプ電流は管の全長に亙つて同一であ
るから、磁界印加部分の消費電力が上昇すること
になり、全光束は増加する。従つて磁界印加部分
の管壁温度は上昇するが、管中央部の磁界が印加
されない部分3の管壁温度は上昇せず、これが最
冷点温度となつて水銀蒸気圧を決定するのであ
る。電子―イオン再結合が管壁で行なわれる理由
は、蛍光ランプ内では負イオンを作るガスが存在
しないために、負イオンを仲介とする高速の電子
の捕捉は行なわれず、電子が管壁に衝突して負に
帯電させ、これが正イオンを引き付けて再結合が
行なわれるからである。 [実施例] 例えば第4図に示した配置により、管長1500
mm、管径35mmのランプ内に、ネオン50%、クリプ
トン50%の混合希ガスを2.2mTorr封入し、管中
央部分3で5〜10cmの間隔を空けて、厚み方向に
同一極性で着磁された2枚の永久磁石2を設け、
磁石に最も近いランプ管外壁で約300G(ガウ
ス)となる磁界を印加した時と非印加時との温度
を測定した結果を第6図に示す。また上記両例
を、同一寸法で突起部5を有する第1図の従来例
(アルゴン100%2.5mTorr)と比較した特性表を
下記に示す。 従来例と本発明とを比較すると、ランプ電力は
4%低下し、全光束は5%増加し、ランプ効率は
9%増加しており、本発明によつて高出力、高効
[Technical Field] The present invention relates to a high-output fluorescent lamp called a so-called VHO lamp. [Background technology] In recent years, high-output fluorescent lamps have been developed that increase the luminous flux by flowing a large current without changing the size of the fluorescent lamp, but the large tube current tends to cause an excessive rise in the tube wall temperature. There are problems in that it causes a decrease in luminous flux and a short lifespan. Figure 2 shows the relationship between the lamp tube wall temperature and the mercury vapor pressure inside the tube.
It reaches its maximum at 40℃ or mercury vapor pressure of 6 mTorr,
The efficiency of a fluorescent lamp decreases whether the mercury vapor pressure inside the tube is higher or lower than this, and this vapor pressure is determined by the temperature of the coldest spot on the tube wall. Therefore, in high-output fluorescent lamps, in order to pass a large tube current, it is necessary to maintain the tube wall temperature at an optimum level, and as shown in Figure 1, a protrusion 5 with a diameter of 10 mm and a depth of 10 mm is conventionally installed in the center of the tube.
Since this protrusion cools more easily than other parts, a method has been proposed in which a suitable coldest point temperature can be obtained. [Object of the Invention] However, the above conventional method is easy to break because the protrusion 5 protrudes, is inconvenient to transport and store, is difficult to manufacture, and is restricted in use by requiring the protrusion to face downward. There were many problems. It is an object of the present invention to solve the above-mentioned problems and at the same time to improve the luminous flux of the lamp without reducing the lamp efficiency. [Disclosure of the Invention] FIG. 3 shows an embodiment of the device of the present invention.
A straight tube type fluorescent lamp 1, in which a mixed gas of neon, argon, and krypton is sealed together with mercury particles in the tube, has the same polarity in the thickness direction over the entire length of the tube wall, excluding the small part 3 in the center of the tube and the electrodes at both ends. It is made by fixing magnetized strip-shaped permanent magnet pieces 2. In the embodiment shown in FIG. 4, a permanent magnet piece 2 magnetized in the same manner is fixed to a device 4 with, for example, the north pole facing upward. Next, the operating principle of the device of the present invention will be explained. Generally, when the atomic weight of the rare gas enclosed in a fluorescent lamp decreases, the temperature of the tube wall increases. On the other hand, as shown in Figure 5, when looking at the relationship between positive column power consumption and light output, the saturation level of light output increases as the atomic weight of the rare gas decreases, and when the positive column input is greater than 100W, neon gas-filled lamps produces more light than an argon gas-filled lamp. Therefore, high-output fluorescent lamps are often filled with a rare gas such as neon, which has a small atomic weight. However, when a rare gas with a small atomic weight is filled, the cathode drop voltage increases and electrode spatter is promoted, and the electron emissivity of the cathode decreases as the lighting time increases.As a result, the cathode drop becomes larger, resulting in cathode destruction. This has the disadvantage of shortening the life of the lamp. As a countermeasure to this, by filling in a rare gas with a large atomic weight such as krypton or xenon together with neon gas, the cathode drop voltage can be lowered and the lamp life can be extended. This also reduces the elastic collision loss between the rare gas and electrons, which reduces the lamp power and lowers the tube wall temperature to about 40°C, maximizing the efficiency of ultraviolet light generation from excited mercury atoms. , the ratio of total luminous flux to lamp power increases. However, on the other hand, as the lamp power decreases, the absolute amount of total luminous flux decreases, which goes against the original purpose of the high-output fluorescent lamp. Therefore, as in the present invention, when a magnetic field that crosses the direction of the electric field inside the lamp is applied, the electrons are bent by the electromagnetic force and electron-ion recombination on the tube wall is promoted, so that the potential gradient of the part where the magnetic field is applied is Since the lamp current is the same over the entire length of the tube, the power consumption of the magnetic field application portion increases, and the total luminous flux increases. Therefore, although the temperature of the tube wall in the part to which the magnetic field is applied increases, the temperature of the tube wall in the part 3 at the center of the tube to which no magnetic field is applied does not rise, and this becomes the coldest point temperature and determines the mercury vapor pressure. The reason why electron-ion recombination takes place on the tube wall is that because there is no gas that creates negative ions inside a fluorescent lamp, there is no high-speed capture of electrons mediated by negative ions, and the electrons collide with the tube wall. This is because they become negatively charged, which attracts positive ions and recombination occurs. [Example] For example, by the arrangement shown in Fig. 4, a pipe length of 1500
A rare gas mixture of 50% neon and 50% krypton is filled at 2.2 mTorr in a lamp with a tube diameter of 35 mm, and the tube is magnetized with the same polarity in the thickness direction with an interval of 5 to 10 cm in the center part 3 of the tube. Two permanent magnets 2 are provided,
Figure 6 shows the results of measuring the temperature at the outer wall of the lamp tube closest to the magnet when a magnetic field of approximately 300 G (Gauss) was applied and when no magnetic field was applied. Further, a characteristic table comparing both of the above examples with the conventional example shown in FIG. 1 (argon 100% 2.5 mTorr) having the same dimensions and the protrusion 5 is shown below. Comparing the conventional example and the present invention, the lamp power has decreased by 4%, the total luminous flux has increased by 5%, and the lamp efficiency has increased by 9%.

【表】 率且つ長寿命の蛍光ランプが提供できることが明
らかである。 [発明の効果] 本発明は上述のように、水銀および希ガスを封
入した蛍光ランプの管中央の小部分を除く管壁の
ほぼ全長に亙つて静磁界発生手段を近接配設する
という簡単な構造により、陽光柱の消費電力を増
加して高出力化を図ることができるという利点が
あり、またそのために管壁温度は上昇しても、管
中央の最冷点温度により水銀蒸気圧が最適に維持
されるので、ランプ効率が低下しないという利点
がある。
[Table] It is clear that a fluorescent lamp with high efficiency and long life can be provided. [Effects of the Invention] As described above, the present invention is a simple method of arranging static magnetic field generating means close to almost the entire length of the tube wall of a fluorescent lamp filled with mercury and a rare gas, except for a small part at the center of the tube. This structure has the advantage of increasing the power consumption of the positive column to achieve high output, and even if the tube wall temperature rises, the mercury vapor pressure is optimal due to the temperature of the coldest point in the center of the tube. This has the advantage that lamp efficiency does not decrease.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の側面図、第2図は同上の原理
説明図、第3図は本発明の一実施例の側面図、第
4図は同上の他の実施例の側面図、第5図および
第6図は本発明の原理説明図である。 1はランプ、2は永久磁石片、3は管中央の小
部分、4は器具、5は突起部。
FIG. 1 is a side view of the conventional example, FIG. 2 is a diagram explaining the principle of the same as above, FIG. 3 is a side view of one embodiment of the present invention, FIG. 4 is a side view of another embodiment of the same as above, and FIG. 6 and 6 are explanatory diagrams of the principle of the present invention. 1 is a lamp, 2 is a permanent magnet piece, 3 is a small part in the center of the tube, 4 is an instrument, and 5 is a protrusion.

Claims (1)

【特許請求の範囲】 1 水銀および希ガスを封入した蛍光ランプの管
中央の小部分を除く管壁のほぼ全長に亙つて近接
配設された静磁界発生手段により蛍光ランプ内の
電界作用方向と交叉する磁界を形成せしめて成る
高出力蛍光灯装置。 2 蛍光ランプの管中央の小部分および両端電極
部を除く管壁の全長に亙つて厚み方向に同一極性
で着磁された帯状の永久磁石片を固着して成る特
許請求の範囲第1項記載の高出力蛍光灯装置。
[Claims] 1. The direction of electric field within the fluorescent lamp is controlled by a static magnetic field generating means disposed close to the wall of the fluorescent lamp filled with mercury and a rare gas along almost the entire length of the tube except for a small part at the center of the tube. A high-output fluorescent lamp device that forms intersecting magnetic fields. 2. Claim 1, comprising a strip-shaped permanent magnet piece magnetized with the same polarity in the thickness direction over the entire length of the tube wall, excluding a small central part of the fluorescent lamp tube and the electrodes at both ends. High output fluorescent lighting equipment.
JP17128979A 1979-12-29 1979-12-29 High power fluorescent lamp Granted JPS5697907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17128979A JPS5697907A (en) 1979-12-29 1979-12-29 High power fluorescent lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17128979A JPS5697907A (en) 1979-12-29 1979-12-29 High power fluorescent lamp

Publications (2)

Publication Number Publication Date
JPS5697907A JPS5697907A (en) 1981-08-07
JPS6228523B2 true JPS6228523B2 (en) 1987-06-20

Family

ID=15920546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17128979A Granted JPS5697907A (en) 1979-12-29 1979-12-29 High power fluorescent lamp

Country Status (1)

Country Link
JP (1) JPS5697907A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842156A (en) * 1981-09-04 1983-03-11 Matsushita Electric Works Ltd Prevention against end flicker of low pressure discharge lamp

Also Published As

Publication number Publication date
JPS5697907A (en) 1981-08-07

Similar Documents

Publication Publication Date Title
JPS63141256A (en) Discharge lamp
US4698547A (en) Low pressure arc discharge lamp apparatus with magnetic field generating means
US3562583A (en) Magnetically rotating constricted arc-discharge device
US4974228A (en) Magnetic field profile for improved ion laser performance
CN203761670U (en) Neutron generator
JPS6228523B2 (en)
JPH0529085A (en) Rare gas discharge lamp device
US3716750A (en) Magnetrons
JPS6417361A (en) High energy large current particle source
US3173048A (en) Ion vacuum pump for magnetrons controlled for leakage of magnetron magnet
US4514662A (en) Magnetic arc spreading fluorescent lamps
US3335311A (en) Glow discharge device having parallel permanent magnetic rod electrodes
JP4426692B2 (en) Glow discharge device, driving method thereof, and display device using the same
JPH04101346A (en) Cold cathode-type discharge lamp
JP2002324520A (en) Electrode-less discharge lamp
JPS6489487A (en) Gas laser tube
JPS5665450A (en) Fluorescent lamp
KR930001213Y1 (en) Electrode of fluorescent lamp
JPH08180833A (en) Short arc metal halide lamp
KR100721917B1 (en) Cylindrical Electrodeless Fluorescence Lamp Using Thermal Contraction Tube
KR102081589B1 (en) Electrodeless discharge lamp
JPS6143802B2 (en)
JPS5743352A (en) Metal halide lamp
RU2219617C2 (en) High-speed low-pressure gas valve
JPH11329352A (en) Metal halide lamp and lighting system