JPS62284258A - Measuring method for shape abnormality of internal surface of tube - Google Patents
Measuring method for shape abnormality of internal surface of tubeInfo
- Publication number
- JPS62284258A JPS62284258A JP61125792A JP12579286A JPS62284258A JP S62284258 A JPS62284258 A JP S62284258A JP 61125792 A JP61125792 A JP 61125792A JP 12579286 A JP12579286 A JP 12579286A JP S62284258 A JPS62284258 A JP S62284258A
- Authority
- JP
- Japan
- Prior art keywords
- pig
- internal surface
- tube
- ultrasonic waves
- hollow cone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005856 abnormality Effects 0.000 title claims description 7
- 238000000034 method Methods 0.000 title claims description 4
- 239000000523 sample Substances 0.000 claims abstract description 21
- 238000012856 packing Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000002604 ultrasonography Methods 0.000 description 4
- 241000282887 Suidae Species 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/028—Material parameters
- G01N2291/02872—Pressure
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/028—Material parameters
- G01N2291/0289—Internal structure, e.g. defects, grain size, texture
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
Abstract
Description
【発明の詳細な説明】
3、発明の詳細な説明
〔産業上の利用分野〕
本発明は、例えばガス管等の管内面に発生した腐食およ
び凹部等の形状の異常を計測する管内面形状異常計測方
法に関するものである。Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention is a method for measuring abnormalities in the shape of the inner surface of a pipe, such as measuring corrosion and abnormalities in shape such as recesses that occur on the inner surface of a pipe such as a gas pipe. It is related to the measurement method.
第3図は従来の超音波ピグの模式図で、(A)は正面図
、(B)は側面図である。図において、液体導管11の
内周面に摺動バッキング12aを接して滑走する円筒状
のピグ12があり、とのピグ12の円筒状本体の中間部
全外周に沿って探触子13が配設されている。FIG. 3 is a schematic diagram of a conventional ultrasonic pig, in which (A) is a front view and (B) is a side view. In the figure, there is a cylindrical pig 12 that slides on the inner peripheral surface of a liquid conduit 11 with a sliding backing 12a in contact with it, and a probe 13 is arranged along the entire outer periphery of the middle part of the cylindrical body of the pig 12. It is set up.
次にこの作用について説明する。Next, this effect will be explained.
液体導管11内にピグ12を挿入して後方から液体の圧
力を加又ると、ピグ12は液体導管1−1内を前進する
。このようにしてピグ12が前進しながら、他方におい
てピグ12の胴体外周に配設された超音波探触子13よ
り超音波を発信し、導管11の内壁面からの反射超音波
を検知し、これを繰り返しながら連続的に探触子13と
導管11の内壁までの距離を計測する。このようにして
、導管11の内壁と探触子13との距離に異常を検知し
たときは、これによって導管内壁面の腐食。When the pig 12 is inserted into the liquid conduit 11 and liquid pressure is applied from behind, the pig 12 moves forward within the liquid conduit 1-1. While the pig 12 moves forward in this manner, on the other hand, the ultrasonic probe 13 disposed on the outer periphery of the body of the pig 12 emits ultrasonic waves, and the reflected ultrasonic waves from the inner wall surface of the conduit 11 are detected, While repeating this, the distance between the probe 13 and the inner wall of the conduit 11 is continuously measured. In this way, when an abnormality is detected in the distance between the inner wall of the conduit 11 and the probe 13, this may cause corrosion of the inner wall of the conduit.
凹部等の形状変化を感知するものである。It senses changes in the shape of recesses, etc.
従来の超音波ピグは液体の満された導管に限られたもの
であって、空気又はガスのような気体の導管に空中超音
波探触子を用いて通常の検知を行っても超音波は管内面
の全面に当たらないため、異常の見落しが出るという問
題があった。Conventional ultrasonic pigs are limited to liquid-filled conduits, and even if normal detection is performed using an airborne ultrasonic probe in a gas conduit such as air or gas, ultrasonic waves cannot be detected. Since it does not hit the entire inner surface of the tube, there is a problem in that abnormalities may be overlooked.
本発明はこのような問題点を解決するためになされたも
ので、
ピグ後面に空中超音波探触子を配設し、更にピグ後方の
一定距離の位置に回転する多面中空コーン型反射板を設
け、前記空中超音波探触子から多面中空コーンヤ反射板
を介して管内壁までの距離を全面にわたり測定するよう
にした管内面形状異常計測方法を提供する。The present invention was made to solve these problems, and includes an aerial ultrasonic probe placed on the rear surface of the pig, and a rotating multi-sided hollow cone reflector placed at a certain distance behind the pig. Provided is a method for measuring an abnormality in the shape of an inner surface of a tube, in which the distance from the aerial ultrasonic probe to the inner wall of the tube is measured over the entire surface via a multifaceted hollow cone-ya reflector.
ビグ後面に配設された空中超音波探触子より超音波を発
信し、一定距離の位置に回転する多面中空コーン型反射
板に反射させて超音波を管内壁面にあて、更にその反射
超音波を多面中空コーン型反射板を介して空中超音波探
触子によって検知することにより、空中超音波探触子と
管内壁面との距離を全面にわたり計測し、これによって
腐食、プント等の管内壁面の形状変化を検知することが
出来る。Ultrasonic waves are emitted from an aerial ultrasonic probe placed on the back of the VIG, reflected by a rotating multi-faceted hollow cone reflector at a certain distance, and applied to the inner wall of the tube. By detecting this with an airborne ultrasonic probe through a multifaceted hollow cone reflector, the distance between the airborne ultrasonic probe and the pipe inner wall surface can be measured over the entire surface, and this can be used to detect corrosion, punts, etc. Changes in shape can be detected.
“〔実施例〕
第1図は本発明の一実施例の模式図で、(A)はピグの
背面図、(B)は全体の構成を示す側面図である。図に
おいて、1はガス導管で、ガス導管1の内面に摺動バッ
キング2aを接触して滑動するピグ2がある。ピグ2の
後面に空中超音波探触子3が円周に沿って等角に配設さ
れ、更に後方一定距離の位置に45°の傾斜面を備えた
多面中空コーン型反射板4が取付けられている。[Embodiment] Fig. 1 is a schematic diagram of an embodiment of the present invention, in which (A) is a rear view of the pig, and (B) is a side view showing the overall configuration. In the figure, 1 is a gas conduit There is a pig 2 that slides by contacting a sliding backing 2a on the inner surface of the gas conduit 1.Aerial ultrasound probes 3 are arranged equiangularly along the circumference on the rear surface of the pig 2, and A multifaceted hollow cone-shaped reflector plate 4 with a 45° inclined surface is attached at a certain distance.
又第2図はピグ2内に配設された機器の構成図である。Further, FIG. 2 is a configuration diagram of equipment arranged inside the pig 2.
図に示すように、ピグ2の内部には電源6によって駆動
するサーボモータ5があり、サーボモータ5の駆動は多
面中空コーン型反射板4を回転させている。7は空中超
音波距離計で、空中超音波探触子3と連結して距離を測
定し、レコーダー8に記録出来るようになっている。9
はピグ速度計でサーボモータ5を介して多面中空コーン
型反射板4の回転と連動し、速度制御するようになって
いる。As shown in the figure, there is a servo motor 5 driven by a power source 6 inside the pig 2, and the drive of the servo motor 5 rotates a multifaceted hollow cone reflector 4. Reference numeral 7 denotes an airborne ultrasonic distance meter, which is connected to the airborne ultrasonic probe 3 to measure the distance and record it on the recorder 8. 9
is a pig speedometer which is linked to the rotation of a multifaceted hollow cone reflector 4 via a servo motor 5 to control the speed.
次にこの作用を説明する。Next, this effect will be explained.
ガス導管1内に摺動バッキング2aを内接させてピグ2
を挿入し、ピグ2の後方からガス圧を加えれば、ピグ2
はガス導管1内を滑走する。この時、電源6の動力によ
ってサーボモータ5を駆動し、多面中空コーン型反射板
4を回転させ、同時に空中超音波探触子3より超音波を
発信すれば、多面中空コーン型反射板4によって直角に
変針し、導管1の内面に超音波が当てられる。乙の反射
波を探触子3で受けて感知すれば、空中超音波の反射波
を確実に検知することが出来る。乙の動作を繰り返せば
ガス導管1内面の形状変化を検知することが出来る。こ
の時ビグ2のスピードVと多面中空コーン型反射板4の
角速度ωとの間には、下記の関係が保たれるよう制御が
行われる。The pig 2 is installed by inscribing the sliding backing 2a in the gas conduit 1.
If you insert the Pig 2 and apply gas pressure from the rear of the Pig 2, the Pig 2
slides inside the gas conduit 1. At this time, if the servo motor 5 is driven by the power of the power source 6 to rotate the multifaceted hollow cone reflector 4 and at the same time transmits ultrasonic waves from the aerial ultrasound probe 3, the multifaceted hollow cone reflector 4 The course is changed at a right angle, and the inner surface of the conduit 1 is irradiated with ultrasonic waves. If the probe 3 receives and senses the reflected wave of the airborne ultrasonic wave, the reflected wave of the aerial ultrasonic wave can be reliably detected. By repeating the operation B, changes in the shape of the inner surface of the gas conduit 1 can be detected. At this time, control is performed so that the following relationship is maintained between the speed V of the BIG 2 and the angular velocity ω of the multifaceted hollow cone reflector 4.
・−登り
但しこの場合、ω:r1多面中空コーン型反射板回転角
速度、v: ピグスピード、n:振動子個数。- Climb However, in this case, ω: r1 rotational angular velocity of the multifaceted hollow cone reflector, v: pig speed, n: number of oscillators.
φ:管壁における空中超音波有効法がり直径、である。φ: Effective diameter of airborne ultrasound on the pipe wall.
従って超音波有効広がり直径がお互いの探触子で重なる
ように値を決めれば、限られた数の探触子が螺旋状に走
査するため、全面を走査することができる
〔発明の効果〕
本発明により、従来液体導管の内面形状の計測のみに使
用された超音波ピグが、ガス管のような気体導管に使用
することが可能となり、ガス管等の管内面に発生した腐
食およびプント等の全面的検知を容易に行うことが出来
る効果がある。Therefore, if the effective spread diameter of the ultrasonic waves is determined so that the diameters of the two probes overlap, the entire surface can be scanned because a limited number of probes scan in a spiral pattern. With the invention, ultrasonic pigs, which were conventionally used only to measure the inner surface shape of liquid pipes, can now be used for gas pipes such as gas pipes, and can be used to detect corrosion and punts that occur on the inner surface of gas pipes. This has the effect that comprehensive detection can be easily performed.
第1図は本発明の一実施例の模式図で、(A)は背面図
、(B)は側面図、第2図は81話の構成図、第3図は
従来例の模式図で(A)は背面図。
(B)は側面図である。
1:ガス導管、2: ピグ、3:空中超音波探触子、4
:多面中空コーン型反射板、5:サーボモータ、6:電
源、7:空中超音波距離計、8ニレコーダー、9:ピグ
速度計。
代理人 弁理士 佐 藤 正 年
〜tvv?Ln(j)ト■0Fig. 1 is a schematic diagram of an embodiment of the present invention, (A) is a rear view, (B) is a side view, Fig. 2 is a configuration diagram of episode 81, and Fig. 3 is a schematic diagram of a conventional example ( A) is a rear view. (B) is a side view. 1: Gas pipe, 2: Pig, 3: Airborne ultrasound probe, 4
: Multi-sided hollow cone reflector, 5: Servo motor, 6: Power supply, 7: Airborne ultrasonic distance meter, 8 Recorder, 9: Pig speed meter. Agent: Masaru Sato, patent attorney ~ tvv? Ln(j) ト■0
Claims (1)
一定距離の位置に回転する多面中空コーン型反射板を設
け、超音波を発信受信することによって前記空中超音波
探触子から多面中空コーン型反射板を介して管内壁まで
の距離を全面にわたり測定することを特徴とする管内面
形状異常計測方法。An airborne ultrasonic probe is installed on the rear surface of the pig, and a rotating multi-faceted hollow cone reflector is installed at a certain distance behind the pig to transmit and receive ultrasonic waves. A method for measuring abnormalities in the shape of the inner surface of a tube, which is characterized by measuring the distance to the inner wall of the tube over the entire surface via a multifaceted hollow cone reflector.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61125792A JPS62284258A (en) | 1986-06-02 | 1986-06-02 | Measuring method for shape abnormality of internal surface of tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61125792A JPS62284258A (en) | 1986-06-02 | 1986-06-02 | Measuring method for shape abnormality of internal surface of tube |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62284258A true JPS62284258A (en) | 1987-12-10 |
Family
ID=14918983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61125792A Pending JPS62284258A (en) | 1986-06-02 | 1986-06-02 | Measuring method for shape abnormality of internal surface of tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62284258A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01229904A (en) * | 1988-03-10 | 1989-09-13 | Iseki Tory Tech Inc | Measuring device within pipe |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60205254A (en) * | 1984-03-30 | 1985-10-16 | Nippon Mining Co Ltd | Ultrasonic flaw detection for pipe |
JPS6147556A (en) * | 1984-08-15 | 1986-03-08 | Hitachi Ltd | Tube-in type ultrasonic probe |
-
1986
- 1986-06-02 JP JP61125792A patent/JPS62284258A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60205254A (en) * | 1984-03-30 | 1985-10-16 | Nippon Mining Co Ltd | Ultrasonic flaw detection for pipe |
JPS6147556A (en) * | 1984-08-15 | 1986-03-08 | Hitachi Ltd | Tube-in type ultrasonic probe |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01229904A (en) * | 1988-03-10 | 1989-09-13 | Iseki Tory Tech Inc | Measuring device within pipe |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4055990A (en) | Pipeline inspection apparatus | |
US5549004A (en) | Hand held tube wall thickness ultrasonic measurement probe and system | |
CN102016564A (en) | System for ultrasonically detecting defects in a pipe wall | |
GB1376538A (en) | Rotary ultrasonic testing apparatus | |
US5574223A (en) | Scan assembly and method using scan rate modulation | |
CN110045024A (en) | A kind of oil pipeline defect ultrasonic sensor | |
JP6039599B2 (en) | Tube ultrasonic inspection equipment | |
CN104749245B (en) | Water-immersion ultrasonic detection method for small-pipe-diameter and large-wall-thickness pipeline equipment | |
CN109709210A (en) | A kind of ultrasonic examination detection method and the failure detector using this method | |
JPS62284258A (en) | Measuring method for shape abnormality of internal surface of tube | |
EP0047239B1 (en) | Ultrasonic inspection | |
WO2020236785A1 (en) | Ultrasonic based internal inspection of tubes | |
WO1992021965A1 (en) | A method and an apparatus for the dectection of corrosion in pipes | |
JPH0798303A (en) | Ultrasonic automatic crack detector | |
GB1359187A (en) | Ultrasonic flaw detecting apparatus for pipes and tubes | |
JPS58169015A (en) | Pig for measuring thickness of pipe line | |
JPS60205254A (en) | Ultrasonic flaw detection for pipe | |
JPS6159458B2 (en) | ||
CN109900807A (en) | A kind of ultrasound positioning device of plastic conduit steel keel | |
JPH0377056A (en) | Ultrasonic inspection device | |
JPH01140056A (en) | Ultrasonic flaw detector for tube | |
CN209446529U (en) | Steel-pipe welding flaw detection probe | |
JPH09138123A (en) | Pipe-inserted ultrasonic-wave probing device | |
WO2020091011A1 (en) | Ultrasonic probe, and method for measuring thickness of pipe being inspected using same | |
JPH0953926A (en) | Tube wall thickness measuring instrument |