JPS62284220A - Optical sensor - Google Patents

Optical sensor

Info

Publication number
JPS62284220A
JPS62284220A JP12681486A JP12681486A JPS62284220A JP S62284220 A JPS62284220 A JP S62284220A JP 12681486 A JP12681486 A JP 12681486A JP 12681486 A JP12681486 A JP 12681486A JP S62284220 A JPS62284220 A JP S62284220A
Authority
JP
Japan
Prior art keywords
light
lens
self
cut surface
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12681486A
Other languages
Japanese (ja)
Other versions
JPH0466297B2 (en
Inventor
Toyohachi Yokota
横田 豊八
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP12681486A priority Critical patent/JPS62284220A/en
Publication of JPS62284220A publication Critical patent/JPS62284220A/en
Publication of JPH0466297B2 publication Critical patent/JPH0466297B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0414Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using plane or convex mirrors, parallel phase plates, or plane beam-splitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/08Arrangements of light sources specially adapted for photometry standard sources, also using luminescent or radioactive material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0228Control of working procedures; Failure detection; Spectral bandwidth calculation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To eliminate the need for extra signal processing for the removal of a self-diagnosing function by forming a cut surface which receives and reflects self-diagnosing light so that a detector detects it at the peripheral edge part of one optional lens of an optical system. CONSTITUTION:The cut surface A with a 45 deg. tilt angle is formed by cutting inside the outer peripheral edge part end surface of the optical flat lens 3 and this cut surface is a desired reflecting surface obtained by specular surface processing. A light source chamber 7 is projected from the outer peripheral surface of a lens barrel 1 right above the formation position of the cut surface A. The reflection angle of the cut surface A to the self-diagnosing light 1 is 90 deg., so the self-diagnosing light 11 is reflected by the cut surface A at right angles and incident on a combined lens 4 in parallel to an optical axis 12. Then, the light is incident on the optical axis position of a light receiving part 21 through combined lenses 5 and 6. Consequently, conventional extra signal processing is not necessary because no halfmirror is provided on the lens surface of the optical system.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 本発明は、光学系と検出器の動作良否等を自己診断する
機能を備えた光学センサに関する。
Detailed Description of the Invention 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an optical sensor having a function of self-diagnosing the operation quality of an optical system and a detector.

(従来の技術) 従来、自己診断機能を備える光学センサとしては、例え
ば第2図に示すものが知られている。
(Prior Art) Conventionally, as an optical sensor equipped with a self-diagnosis function, one shown in FIG. 2, for example, is known.

第2図において、符号1は鏡胴であり、この鏡胴1には
、内奥に検出器2が配置され、開口部側から検出器2に
向かってオプティカルフラットレンズ3、組レンズ4、
同5、同6の順に光学系を構成する各種レンズを配置し
である。検出器2は2次元のCCD (Charge 
Coupled Device)イメージセンサを備え
る受光部21と、信号処理部22とからなる。また、鏡
胴1の開口部側の外周囲の所定部位には光源室7を突設
してあり、この光−源室7には発光ダイオードやランプ
等の光源8と、ピンホール板9と、凸レンズ10とが設
けである凸レンズ10は、ピンホール板9のピンホール
を介して入射する光源8の光を平行化し、それを自己診
断光11としてオプティカルフラットレンズ3の外表面
に沿って光軸12に直交する向きに出射する。そして、
オプティカルフラットレンズ3の外表面の光軸位置には
ハーフプリズム13を貼着してあり、自己診断光11は
このハーフプリズム13で直角方向に反射され、光学系
を介して検出器2で検出される。
In FIG. 2, reference numeral 1 denotes a lens barrel, and a detector 2 is disposed deep inside the lens barrel 1, and an optical flat lens 3, a set of lenses 4,
Various lenses constituting the optical system are arranged in the order of numbers 5 and 6. Detector 2 is a two-dimensional CCD (Charge
(Coupled Device) Consists of a light receiving section 21 equipped with an image sensor and a signal processing section 22. Further, a light source chamber 7 is provided protruding from a predetermined portion of the outer periphery on the opening side of the lens barrel 1, and this light source chamber 7 includes a light source 8 such as a light emitting diode or a lamp, and a pinhole plate 9. , a convex lens 10 is provided.The convex lens 10 collimates the light from the light source 8 that enters through the pinhole of the pinhole plate 9, and converts the light into self-diagnosis light 11 along the outer surface of the optical flat lens 3. The light is emitted in a direction perpendicular to the axis 12. and,
A half prism 13 is attached to the optical axis position of the outer surface of the optical flat lens 3, and the self-diagnosis light 11 is reflected in the right angle direction by this half prism 13, and is detected by the detector 2 via the optical system. Ru.

要するに、この光学センサでは、検出器2の受光部21
において、自己診断光11の検出位置が光軸位置からず
れていれば光学系の各種レンズに位!ずれが生じた、あ
るいは検出器2が移動して受光部21の受光面に傾きが
生じた等と診断できるようになっている。
In short, in this optical sensor, the light receiving section 21 of the detector 2
In this case, if the detection position of the self-diagnosis light 11 deviates from the optical axis position, it may be due to various lenses in the optical system! It is possible to diagnose that a shift has occurred or that the detector 2 has moved and the light receiving surface of the light receiving section 21 has tilted.

(発明が解決しようとする問題点) しかしながら、従来のこのような光学センサでは、オプ
ティカルフラットレンズ3の光軸値1等にハーフプリズ
ム13を設けているので、次の如き種々の問題点がある
(Problems to be Solved by the Invention) However, in such a conventional optical sensor, since the half prism 13 is provided at the optical axis value 1 of the optical flat lens 3, there are various problems as follows. .

まず、通常の使用においては、ハーフプリズム13の影
響を除去するために、余分の信号処理が必要である。
First, in normal use, extra signal processing is required to remove the influence of the half prism 13.

また、この種の光学センサを衛星搭載用とした場合、耐
振性の要求に合致させようとすると、ハーフプリズム1
3の微量分だけオプティカルフラットレンズ3の厚みを
増す必要が生じ、当該光学センサの重量が増加する。一
方、耐熱性の要求については、ハーフプリズム13を貼
着する接着剤として好適なものの入手が困難である。そ
して、接着剤には経年変化があるので、これによりハー
フプリズム13の貼着位置にずれが生ずることが想定さ
れ、一定内容の自己診断機能を安定的に持続させること
が困難である。
In addition, when this type of optical sensor is mounted on a satellite, in order to meet the vibration resistance requirements, a half prism 1
It becomes necessary to increase the thickness of the optical flat lens 3 by a small amount of 3, which increases the weight of the optical sensor. On the other hand, regarding the requirement for heat resistance, it is difficult to obtain an adhesive suitable for pasting the half prism 13. Since the adhesive changes over time, it is assumed that this will cause a shift in the attachment position of the half prism 13, making it difficult to maintain a constant self-diagnosis function stably.

本発明は、このような従来の問題点に鑑みなされたもの
で、その目的は、耐振性や耐熱性の要求に簡単に対応で
き、かつ自己診断機能の影響を除去するための余分な信
号処理を必要としない光学センサを提供することにある
The present invention was developed in view of these conventional problems, and its purpose is to easily meet the requirements for vibration resistance and heat resistance, and to eliminate unnecessary signal processing to eliminate the influence of self-diagnosis functions. The objective is to provide an optical sensor that does not require

(問題点を解決するための手段) 本発明の光学センサは、前記目的を達成するために、次
の如き構成を有する。
(Means for Solving the Problems) In order to achieve the above object, the optical sensor of the present invention has the following configuration.

即ち、本発明の光学センサは、複数のレンズの組合せか
らなる光学系を収容する鏡胴の内奥に、その光学系を介
して外部から入射する光を受光する検出器を配設すると
ともに、その鏡胴の外周囲の所定部位に、前記光学系の
光軸と交差する向きに自己診断光を出射する光源を配設
した光学センサにおいて; 前記光学系の任意の1つの
レンズの周縁端部に、前記自己診断光を受けてそれを前
記検出器が受光すべく反射する切削面を形成してあるこ
とを特徴とする。
That is, in the optical sensor of the present invention, a detector for receiving light incident from the outside via the optical system is disposed deep inside a lens barrel that houses an optical system consisting of a combination of a plurality of lenses, and In an optical sensor in which a light source that emits self-diagnosis light in a direction intersecting the optical axis of the optical system is disposed at a predetermined part on the outer periphery of the lens barrel; a peripheral edge of any one lens of the optical system; Preferably, a cutting surface is formed to receive the self-diagnosis light and reflect it so that the detector receives the self-diagnosis light.

(作 用) 次に、前記の如く構成される本発明の光学センサの作用
を説明する。
(Function) Next, the function of the optical sensor of the present invention configured as described above will be explained.

自己診断光は、光学系の任意の1つのレンズの端面に切
削形成しである切削面で反射され、光学系を介して検出
器に受光される。
The self-diagnosis light is reflected by a cut surface formed by cutting an end face of any one lens of the optical system, and is received by a detector via the optical system.

従って、従来の光学センサと同等の自己診断機能が得ら
れる。
Therefore, a self-diagnosis function equivalent to that of a conventional optical sensor can be obtained.

このように、本発明の光学センサによれば、光学系のレ
ンズ表面に、ハーフプリズムを設けないので、従来の如
き余分な信号処理は不要となる。
As described above, according to the optical sensor of the present invention, no half prism is provided on the lens surface of the optical system, so that extra signal processing as in the conventional method is not required.

また、反射面はレンズの周縁端部に切削形成するのであ
るから、耐振性や耐熱性の要求に対して簡単に対応でき
る。さらに、従来のものよりも部品点数が減少するので
、信頼性が一段と向上し、長期間に渡って一定内容の自
己診断機能を安定的に維持させ得るという優れた効果が
得られる。
Furthermore, since the reflective surface is formed by cutting at the peripheral edge of the lens, it is easy to meet the requirements for vibration resistance and heat resistance. Furthermore, since the number of parts is reduced compared to the conventional system, reliability is further improved, and the excellent effect of stably maintaining a certain level of self-diagnosis function over a long period of time can be obtained.

(実 施 例) 以下、本発明の実施例を図面を参照して説明する。第1
図は、本発明の一実施例に係る光学センサを示す、なお
、従来装置と同一構成部分には同一名称符号を付しその
説明を省略する。
(Embodiments) Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1st
The figure shows an optical sensor according to an embodiment of the present invention. Components that are the same as those of the conventional device are given the same names and symbols, and their explanations will be omitted.

この実施例においては、オプティカルフラットレンズ3
の外周縁部端面内側に、傾斜角45°の切削面Aを切削
形成し、この切削面は鏡面処理に・l よって所望の反射面となっている。従って、光源室7は
、切削面Aの形成位置直上の鏡胴1外周面に突設される
In this embodiment, the optical flat lens 3
A cut surface A having an inclination angle of 45° is cut on the inner side of the end face of the outer peripheral edge, and this cut surface becomes a desired reflective surface by mirror finishing. Therefore, the light source chamber 7 is provided in a protruding manner on the outer peripheral surface of the lens barrel 1 directly above the formation position of the cutting surface A.

図示例では、自己診断光11の切削面Aにおける反射角
は90°であるので、自己診断光11は切削面Aで直角
方向に反射され、光軸12に平行して組レンズ4に入射
し、その後組レンズ5、同6を介して受光部21の光軸
位置に入射するようになっている。
In the illustrated example, since the reflection angle of the self-diagnosis light 11 on the cutting surface A is 90°, the self-diagnosis light 11 is reflected in the right angle direction on the cutting surface A and enters the lens assembly 4 in parallel to the optical axis 12. , and then enters the optical axis position of the light receiving section 21 via the assembled lenses 5 and 6.

なお、自己診断光11の受光部21への入射位置は光軸
位置である必要はないので、切削面Aの傾斜角は45°
以外の任意の角度が選択できる。
Note that the incident position of the self-diagnosis light 11 on the light receiving part 21 does not need to be at the optical axis position, so the inclination angle of the cutting surface A is 45°.
Any angle can be selected.

また、切削面Aを形成するレンズは、この実施例では製
作容易性を考慮して一番外側のオプティカルフラットレ
ンズ3に形成したが、内側の組レンズ4、同5等に形成
してもよい。
In addition, in this embodiment, the lens forming the cut surface A was formed on the outermost optical flat lens 3 in consideration of ease of manufacture, but it may also be formed on the inner set of lenses 4, 5, etc. .

(発明の効果) 以上詳述したように、本発明の光学センサによれば、光
学系のレンズ表面に、ハーフプリズムを設けないので、
従来の如き余分な信号処理は不要となる。また、反射面
はレンズの周縁端部に切削形成するのであるから、耐振
性や耐熱性の要求に対して簡単に対応できる。さらに、
従来のものよりも部品点数が減少するので、信頼性が一
段と向上し、長期間に渡って一定内容の自己診断機能を
安定的に持続させ得るという優れた効果が得られる。
(Effects of the Invention) As detailed above, according to the optical sensor of the present invention, since no half prism is provided on the lens surface of the optical system,
There is no need for extra signal processing as in the past. Furthermore, since the reflective surface is formed by cutting at the peripheral edge of the lens, it is easy to meet the requirements for vibration resistance and heat resistance. moreover,
Since the number of parts is reduced compared to the conventional type, reliability is further improved, and the excellent effect of being able to stably maintain a certain level of self-diagnosis function over a long period of time can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る光学センサの側面断面
図、第2図は従来装置の側面断面図である。 1・・・・・・鏡胴、 2・・・・・・検出器、 3・
・・・・・オプティカルフラットレンズ、 4,5.6
・・・・・・組レンズ、 8・・・・・・光源、 9・
・・・・・ピンホール板、10・・・・・・凸レンズ、
  11・・・・・・自己診断光、12・・・・・・光
軸、 A・・・・・・切削面。 代理人 弁理士  八 幡  義 博 本セ輸尤学tンザ□皿入イテj ′$/  図 8光瀝 めまltv壌入シ)l 第 2 固
FIG. 1 is a side sectional view of an optical sensor according to an embodiment of the present invention, and FIG. 2 is a side sectional view of a conventional device. 1... Lens barrel, 2... Detector, 3.
...Optical flat lens, 4,5.6
....lens set, 8..light source, 9.
...Pinhole plate, 10...Convex lens,
11... Self-diagnosis light, 12... Optical axis, A... Cutting surface. Agent Patent Attorney Yoshi Hachiman

Claims (1)

【特許請求の範囲】[Claims] 複数のレンズの組合せからなる光学系を収容する鏡胴の
内奥に、その光学系を介して外部から入射する光を受光
する検出器を配設するとともに、その鏡胴の外周囲の所
定部位に、前記光学系の光軸と交差する向きに自己診断
光を出射する光源を配設した光学センサにおいて;前記
光学系の任意の1つのレンズの周縁端部に、前記自己診
断光を受けてそれを前記検出器が受光すべく反射する切
削面を形成してあることを特徴とする光学センサ。
A detector that receives light incident from the outside through the optical system is disposed deep inside the lens barrel that houses an optical system consisting of a combination of multiple lenses, and a detector is installed at a predetermined location around the outside of the lens barrel. In an optical sensor including a light source that emits self-diagnosis light in a direction intersecting the optical axis of the optical system; a peripheral end of any one lens of the optical system receives the self-diagnosis light; An optical sensor characterized in that a cut surface is formed to reflect the light so that the detector receives the light.
JP12681486A 1986-05-31 1986-05-31 Optical sensor Granted JPS62284220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12681486A JPS62284220A (en) 1986-05-31 1986-05-31 Optical sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12681486A JPS62284220A (en) 1986-05-31 1986-05-31 Optical sensor

Publications (2)

Publication Number Publication Date
JPS62284220A true JPS62284220A (en) 1987-12-10
JPH0466297B2 JPH0466297B2 (en) 1992-10-22

Family

ID=14944619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12681486A Granted JPS62284220A (en) 1986-05-31 1986-05-31 Optical sensor

Country Status (1)

Country Link
JP (1) JPS62284220A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2656420A1 (en) * 1989-12-22 1991-06-28 Centre Nat Etd Spatiales DEVICE FOR CALIBRATING OPTICAL INSTRUMENT AND APPLICATIONS THEREOF.
EP0533490A2 (en) * 1991-09-20 1993-03-24 Nec Corporation Systems for calibration of optical instrument on satellite with reference light source

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2656420A1 (en) * 1989-12-22 1991-06-28 Centre Nat Etd Spatiales DEVICE FOR CALIBRATING OPTICAL INSTRUMENT AND APPLICATIONS THEREOF.
EP0533490A2 (en) * 1991-09-20 1993-03-24 Nec Corporation Systems for calibration of optical instrument on satellite with reference light source

Also Published As

Publication number Publication date
JPH0466297B2 (en) 1992-10-22

Similar Documents

Publication Publication Date Title
US5995304A (en) Plastic lens
US4770528A (en) Optical system of a radiation thermometer
WO1999038033A8 (en) General asphere-conic conformal optical windows
GB2167206A (en) Apertured concave reflector optical system
US4147417A (en) Optical sensing system for focusing a reflex camera
JP2000329517A (en) Distance-measuring apparatus
US7830531B2 (en) Displacement detecting device and optical instrument having the same
JPS62284220A (en) Optical sensor
JPH0611660A (en) Optical beam scanner and system using optical beam scanner
TWI687709B (en) Sensing device for making two-dimensional optical radar with cone mirror
US4381145A (en) Single lens reflex camera
US4533226A (en) Still or motion picture camera
JP2894017B2 (en) Optical object detector
JPH0719868A (en) Position and azimuth measuring device for moving body
JPH1195001A (en) Plastic lens
US4624527A (en) Radiation-utilizing measurement system
JPH0714835Y2 (en) Radiation thermometer
JP2502300B2 (en) Optical beam scanning device
JPS62135116U (en)
JP2526335Y2 (en) Optical resonator
JPS61255302A (en) Optical device
TW573131B (en) Image reading device
KR20220155315A (en) lidar device
JPH0321507Y2 (en)
JPS605896B2 (en) Reflectance measuring device