JPS62283823A - Method for melting potassium phosphate-base glass - Google Patents

Method for melting potassium phosphate-base glass

Info

Publication number
JPS62283823A
JPS62283823A JP12236786A JP12236786A JPS62283823A JP S62283823 A JPS62283823 A JP S62283823A JP 12236786 A JP12236786 A JP 12236786A JP 12236786 A JP12236786 A JP 12236786A JP S62283823 A JPS62283823 A JP S62283823A
Authority
JP
Japan
Prior art keywords
glass
high frequency
melting
potassium phosphate
frequency induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12236786A
Other languages
Japanese (ja)
Inventor
Shigeyoshi Kobayashi
小林 重義
Tsuneo Manabe
恒夫 真鍋
Ichiro Yanagisawa
柳沢 一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP12236786A priority Critical patent/JPS62283823A/en
Publication of JPS62283823A publication Critical patent/JPS62283823A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/021Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by induction heating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To rapidly and uniformly melt potassium phosphate-base glass by putting the glass in an electrically conductive vessel and melting in by high frequency induction heating. CONSTITUTION:Glass contg. >=70wt% potassium potassium phosphate as starting material is put in an electrically conductive vessel and melted by high frequency induction heating. The preferred atomic ratio of Ca/P in the potassium phosphate-base glass is 0.35-0.7. The electrically conductive vessel used may be made of any electrically conductive material having >=1,300 deg.C m.p. and <=10<4>OMEGA.cm electric resistance but it is preferably made of Pt or a Pt alloy which does not color glass under heating in the air. The high frequency induction heating is carried out with a high frequency induction heater having preferably 400kHz-4MHz frequency and 1-5kW high frequency output.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 本発明はリン酸カルシウム系ガラスの溶融方法、特に迅
速且均−にリン酸カルシウム系ガラスを溶融する方法に
係るものである。
Detailed Description of the Invention 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for melting calcium phosphate glass, particularly to a method for rapidly and uniformly melting calcium phosphate glass.

(従来の技術) 従来リン酸カルシウム系ガラスの溶融方法としては、ガ
ラス原料を適当な容器に入れ、これを電気炉等を用いて
加熱溶融する方法が採られている。
(Prior Art) As a conventional method for melting calcium phosphate glass, a method has been adopted in which glass raw materials are placed in a suitable container and heated and melted using an electric furnace or the like.

他方、原料の加熱溶融手段としてブローパイプ、抵抗加
熱f、高周波H4加熱炉、アーク炉を用いる方法が知ら
れている。
On the other hand, methods using blow pipes, resistance heating f, high frequency H4 heating furnaces, and arc furnaces are known as means for heating and melting raw materials.

(発明の解決しようとする問題点) しかしながら、電気炉を用いる手段は、比較的溶融に時
間がかかると共に構造上均一溶融し得る原料ガラス量も
限られる欠点を有している。
(Problems to be Solved by the Invention) However, the method using an electric furnace has disadvantages in that it takes a relatively long time to melt and, due to its structure, the amount of raw material glass that can be uniformly melted is limited.

又、ブローパイプ等の上記溶融手段は、何れも溶融原料
が金属材料に限られ用いられて2す、これら手段をリン
酸カルシウム系ガラスに対して適用する場合には、次の
様な問題点が存する。
In addition, the above-mentioned melting means such as blow pipes are used only when the raw material to be melted is limited to metal materials, and when these means are applied to calcium phosphate glass, there are the following problems. .

先づブローパイプ、抵抗加熱炉に2いては、溶融にかな
りの時間を要し、又ブローパイプ、アーク炉においては
均一な溶融が比較的困難であり、又高周波誘導加熱炉、
アーク炉においてはガラス原料が非導電性である為溶融
自体が困難である等の欠点を有している。
First, it takes a considerable amount of time for melting in blow pipes and resistance heating furnaces, and it is relatively difficult to achieve uniform melting in blow pipes and arc furnaces.
Arc furnaces have drawbacks such as difficulty in melting the glass raw materials because they are non-conductive.

(問題点を解決する為の手段〉 本発明者は、前記欠点を尽く排除し、リン酸塩系ガラス
を迅速且均−に溶融し得る手段を見出すことを目的とし
て種々研究、検討した結果、導電性の容器を用い、これ
と誘導加熱とを併用することにより前記目的を達成し得
ることを見出した。
(Means for Solving the Problems) As a result of various studies and examinations, the present inventors have conducted various studies and examinations with the aim of eliminating the above-mentioned drawbacks and finding a means for quickly and uniformly melting phosphate glass. It has been found that the above object can be achieved by using a conductive container and using induction heating in combination.

かくして本発明は、リンはカルシウムを70重量−以上
含有するガラス原料を導電性を有する容器に収容し、こ
れを高周波誘導加熱して該原料を溶融せしめることを特
徴とするリン酸カルシウム系ガラスの溶融方法を提供す
るにある。
Thus, the present invention provides a method for melting calcium phosphate glass, which comprises placing a glass raw material containing at least 70 parts by weight of phosphorus and calcium in an electrically conductive container, and melting the raw material by high-frequency induction heating. is to provide.

本発明において用いられるリン酸カルシウム系ガラスと
しては、リン酸カルシウムを70重its以上含有する
ものであれば特に制限はないが、リンに対するカルシウ
ムの原子比Ca/Pが0.35〜0.7であるのが好ま
しい。
The calcium phosphate glass used in the present invention is not particularly limited as long as it contains 70 weights or more of calcium phosphate, but the atomic ratio Ca/P of calcium to phosphorus is 0.35 to 0.7. preferable.

Ca/Pが0.7を超える場合には融液をガラス状に固
化するのが困難となり、0.35に満たない場合には得
られるガラスの耐水性が低く、大気中での使用が困難と
なり、例えばこれを歯科材料の如き生体材料として利用
する場合、支障を来たす虞れがあるので好ましくない0 本発明において原料ガラスの溶融に用いられる導電性の
容器としては、融点が1300”0以上で、電気抵抗が
10Ω・α以下の導電性材料であれば一義的に使用し得
るが、大気中で用いられ、又ガラスを着色しない等の理
由で白金及び白金の合金が好ましい。又、炭素質や黒鉛
質或は1300℃以上の融点を有する金属材料容器の内
側にAl2O3,ムライト等のリン酸カルシウム系溶融
ガラスに侵食されにくい電気絶縁性耐火物層を設けたも
のや逆に、電気絶縁性耐火物性容器の内側に白金及び白
金の合金層を設けたものも使用し得る。
When Ca/P exceeds 0.7, it becomes difficult to solidify the melt into glass, and when it is less than 0.35, the resulting glass has low water resistance and is difficult to use in the atmosphere. For example, when this is used as a biomaterial such as a dental material, it is not preferable because it may cause problems. In the present invention, the conductive container used for melting the raw material glass has a melting point of 1300" or higher. Any conductive material with an electrical resistance of 10Ω・α or less can be used, but platinum and platinum alloys are preferable because they are used in the atmosphere and do not color glass. An electrically insulating refractory layer that is resistant to corrosion by calcium phosphate-based molten glass such as Al2O3 or mullite is provided on the inside of a container made of a material made of graphite or a metal material with a melting point of 1,300°C or higher. It is also possible to use a physical property container provided with a layer of platinum and an alloy of platinum on the inside.

又本発明に用いられる高周波誘導加熱装置は、上記容器
を1300’O程度迄加熱し得るものであれば特に制限
はないが、周波数4 Q Q KHz〜4MHz1高周
波出力1〜5KWを有するものが好ましい。
The high frequency induction heating device used in the present invention is not particularly limited as long as it can heat the container to about 1300'O, but it is preferably one having a frequency of 4 KHz to 4 MHz and a high frequency output of 1 to 5 KW. .

そしてかかる装置は、鋳造製置と一体となっているもの
が鋳造温度制御の点から好ましく、鋳造方式は遠心式、
圧迫式、吸引式及びこれらの併用方式等適宜な方式を採
用し得る。
It is preferable that such a device be integrated with the casting equipment from the viewpoint of controlling the casting temperature, and the casting method may be a centrifugal type,
An appropriate method such as a compression method, a suction method, or a combination of these methods may be adopted.

本発明方法を採用すると、ガラス原料が比較的低温の間
は導電性の容器のみが加熱されるが、容器が加熱される
ことに工りガラス原料が高温(800°Q以上)になる
とこれが導電性を示すようになり、容器と共にガラス原
料も直接均一に加熱される為、溶融が早まるものと推定
される。
When the method of the present invention is adopted, only the conductive container is heated while the glass raw material is at a relatively low temperature, but when the container is heated and the glass raw material reaches a high temperature (over 800°Q), it becomes conductive. It is presumed that the melting process is accelerated because the glass raw materials are heated directly and uniformly along with the container.

(実施例) Ca03Q″i址係、P2O157ON、量チの組成を
有するガラス原料3gを白金るつぼに入れ、これを出力
2にW。
(Example) 3 g of a glass raw material having a composition of Ca03Q''i, P2O157ON, and quantity Q was placed in a platinum crucible, and the power was set to 2.

周波数2000 K11!liの高周波誘導加熱式遠心
鋳造機により加熱した処、約1分間で1300”0に達
し、均一な溶融状態を呈した。これを予めリン酸塩系埋
没材(徳山口過社製ブルーベスト)を用いた径3m、長
さ10膳の湯道空洞及びこれに続(41Q ws 、長
さ201118、高さ1mの空洞を有する61に遠心鋳
造を行なった。
Frequency 2000 K11! When heated using a high-frequency induction heating type centrifugal casting machine, the temperature reached 1300"0 in about 1 minute and a uniform molten state was obtained. This was preliminarily melted into a phosphate-based investment material (Blue Best manufactured by Tokuyamaguchi Kasha Co., Ltd.). Centrifugal casting was performed on a runner cavity with a diameter of 3 m and a length of 10, and a subsequent cavity (41Q ws ) with a length of 201118 and a height of 1 m.

その後型を除去した処、型の隅迄ガラスが行き渡り、十
分ガラスが溶融していたことが認められた。又、得られ
た鋳造ガラスはクラックや着色は認められなかった0 比戟例 5!施例と同組成、同重量のガラス原料を同様な白金る
つぼに入れ、1300’Oに保たれた抵抗加熱炉内に1
分間保持した後、実施例と同様な鋳凰内に同様に鋳造し
、鋳型を除去した処、型の隅迄ガラスは行き渡っておら
ず、溶融が不十分であったことが認められた。
When the mold was subsequently removed, it was found that the glass had spread all the way to the corners of the mold, indicating that the glass had sufficiently melted. In addition, no cracks or coloring were observed in the obtained cast glass.0 Comparison Example 5! Glass raw materials having the same composition and weight as in the example were placed in a similar platinum crucible, and placed in a resistance heating furnace maintained at 1300'O.
After holding for a minute, the glass was cast in the same mold as in the example, and when the mold was removed, it was found that the glass did not reach all the corners of the mold, indicating that the melting was insufficient.

又、型の隅迄ガジスが行き渡る迄の抵抗加熱炉内での溶
融時間は約5分を要した。
Further, it took about 5 minutes for melting in the resistance heating furnace until the gas was spread to the corners of the mold.

Claims (1)

【特許請求の範囲】 1、リン酸カルシウムを70重量%以上含有するガラス
原料を導電性を有する容器に収容し、これを高周波誘導
加熱して該原料を溶融せしめることを特徴とするリン酸
カルシウム系ガラスの溶融方法。 2、導電性を有する容器は、融点1300℃以上あって
電気抵抗が10^4Ω・cm以下である請求の範囲(1
)の方法。 3、導電性を有する容器は、白金、白金合金、炭素、黒
鉛である請求の範囲(1)又は(2)の方法。 4、高周波誘導加熱は、周波数400KHz〜4MHz
、高周波出力1〜5KWである請求の範囲(1)の方法
[Scope of Claims] 1. Melting of calcium phosphate glass, which comprises placing a glass raw material containing 70% by weight or more of calcium phosphate in a conductive container, and melting the raw material by high-frequency induction heating. Method. 2. The conductive container has a melting point of 1300°C or higher and an electrical resistance of 10^4 Ω・cm or less (1)
)the method of. 3. The method according to claim (1) or (2), wherein the conductive container is made of platinum, platinum alloy, carbon, or graphite. 4. High frequency induction heating has a frequency of 400KHz to 4MHz
, a high frequency output of 1 to 5 KW.
JP12236786A 1986-05-29 1986-05-29 Method for melting potassium phosphate-base glass Pending JPS62283823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12236786A JPS62283823A (en) 1986-05-29 1986-05-29 Method for melting potassium phosphate-base glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12236786A JPS62283823A (en) 1986-05-29 1986-05-29 Method for melting potassium phosphate-base glass

Publications (1)

Publication Number Publication Date
JPS62283823A true JPS62283823A (en) 1987-12-09

Family

ID=14834112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12236786A Pending JPS62283823A (en) 1986-05-29 1986-05-29 Method for melting potassium phosphate-base glass

Country Status (1)

Country Link
JP (1) JPS62283823A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2634191A1 (en) * 1988-07-13 1990-01-19 Rhone Poulenc Chimie PROCESS FOR THE PREPARATION OF PHOSPHATES BY FUSION
JP2018158853A (en) * 2017-03-22 2018-10-11 日本電気硝子株式会社 Production method of tin phosphate-based glass

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2634191A1 (en) * 1988-07-13 1990-01-19 Rhone Poulenc Chimie PROCESS FOR THE PREPARATION OF PHOSPHATES BY FUSION
JP2018158853A (en) * 2017-03-22 2018-10-11 日本電気硝子株式会社 Production method of tin phosphate-based glass

Similar Documents

Publication Publication Date Title
BR0211193B1 (en) photovoltaic quality silicon production process from oxygen or chlorine-tuned metallurgical silicon containing less than 500 ppm metal elements.
CA2466765A1 (en) Method and apparatus for melting metals
KR890003675B1 (en) Melt consolidation of silicon powder
JPS60260499A (en) Preparation of sic whisker
US3540519A (en) Process for producing self-destroying silica molds
JPS62283823A (en) Method for melting potassium phosphate-base glass
JP2003519612A (en) Method and apparatus for heat treating glass and natural materials, especially ignited materials
JPS5835938B2 (en) Jiyungarasu no Koushiyu Hachiyousei
JP2002509513A (en) Infrared emitting ceramic material
JPH03505474A (en) Method for refining light metal crystals
CN108220636A (en) A kind of preparation method of beryllium silicon alloy
JPS61150758A (en) Method for heating molten metal in tundish for continuous casting
JPS6039758Y2 (en) Crucible for microwave heating
JP2001133162A (en) Cold crucible for molten salt and method of melting
CN212842883U (en) Production facility is smelted to gold
US1337305A (en) A coxpqbation oe con
JPH0218562B2 (en)
US1425679A (en) Method of producing phosphor metals
RU2013459C1 (en) Method of silver refining
US3698A (en) a tptt c x ip
SU764838A1 (en) Method of drying moulds in lost-pattern casting
JPH0641619B2 (en) Dental titanium or titanium alloy casting equipment by levitation melting
GB454506A (en) An improved method of providing crucibles and tools for use in contact with molten masses with a protective coating
JPS59120358A (en) Melting method of brass casting by crucible furnace
JPS5925953A (en) Method for adding ti to molten steel