JPS6228168B2 - - Google Patents

Info

Publication number
JPS6228168B2
JPS6228168B2 JP56109805A JP10980581A JPS6228168B2 JP S6228168 B2 JPS6228168 B2 JP S6228168B2 JP 56109805 A JP56109805 A JP 56109805A JP 10980581 A JP10980581 A JP 10980581A JP S6228168 B2 JPS6228168 B2 JP S6228168B2
Authority
JP
Japan
Prior art keywords
resin
weight
parts
resin composition
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56109805A
Other languages
Japanese (ja)
Other versions
JPS5811524A (en
Inventor
Kohei Yasuzawa
Yukio Yoshimura
Shinji Iwabuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP10980581A priority Critical patent/JPS5811524A/en
Publication of JPS5811524A publication Critical patent/JPS5811524A/en
Publication of JPS6228168B2 publication Critical patent/JPS6228168B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Organic Insulating Materials (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は加熱変色性、熱衝撃のため層間はくり
による白化(以下ミーズリングと称す)、ガラス
転移点(以下Tgと略す)等の耐熱性に優れた積
層板用難燃性樹脂組成物に関する。 従来、積層板又は銅張積層板の回路形成及び部
品搭載工程において、製品イメージ及び美的感覚
から変色の少ない、また基板特性上Tgが高くミ
ーズリングの少なくかつ難燃性樹脂が要求されて
きた。エポキシ樹脂において硬化剤としてヘキサ
ヒドロ無水フタール酸、4−メチル又は4−エチ
ルヘキサヒドロ無水フタール酸等の酸無水物、ジ
シアンジアミド、3.3′ジクロロ4.4′ジアミノジフ
エニルメタン等の窒素化合物、フエノールホルム
アルデヒド樹脂などが工業的に用いられている。
しかし酸無水物を硬化剤として用いる場合耐熱性
は良好であるがBステージでの耐湿性が悪いとい
う欠点がある。ジシアンジアミド等の窒素化合物
では保存安定性、硬化特性等は良好であるが、含
有窒素原子の酸化により積層板が加熱変色すると
いう欠点がある。またフエノールホルムアルデヒ
ド樹脂においても高いTg及び良好なミーズリン
グ性は得られるが加熱変色は良好でなかつた。本
発明者らはこのフエノールホルムアルデヒド樹脂
をエポキシ樹脂の硬化剤として使用した時に生じ
る積層板の変色性について鋭意検討した結果この
変色の主たる原因がフエノール樹脂中のP位のメ
チレン結合の酸化によるものと考え、加熱変色の
原因となるフエノールホルムアルデヒド樹脂中の
P位メチレン結合の比較的少ない樹脂即ちハイオ
ルソフエノールホルムアルデヒド樹脂を用いるこ
とにより耐熱性を得ることが可能となり、また難
燃性付与剤として比較的安価でハロゲン含量の高
く、エポキシ基と反応性を有し、かつ水酸基のP
位にメチレン結合を有しないハロゲン化ビスフエ
ノールAを用いることにより難燃性を得ることが
可能であることを見い出した。 以上のごとく本発明は耐熱性に優れた積層板用
難燃性樹脂組成物の提供を目的とするものであ
る。 本発明で使用されるエポキシ化合物としては1
分子内に2個以上のエポキシ基を有する化合物か
らなるいわゆるエポキシ樹脂であればよく特に限
定するものではない。具体的にはたとえばビスフ
エノール系エポキシ樹脂、ノボラツク系エポキシ
樹脂、ポリフエノール系エポキシ樹脂、ポリグリ
コール型エポキシ樹脂、脂環型エポキシ樹脂など
である。これらを二種以上併用して使用すること
も可能である。なおエポキシ化合物が酸化変色さ
れやすい物質の場合硬化物が若干加熱変色するが
通常のフエノールホルムアルデヒド樹脂の使用に
比べて変色の程度は著しく改善される。 本発明に用いられるハロゲン化ビスフエノール
Aは
The present invention relates to a flame-retardant resin composition for laminates that has excellent heat resistance such as heat discoloration, whitening due to interlayer peeling due to thermal shock (hereinafter referred to as Measling), and glass transition point (hereinafter referred to as Tg). . Conventionally, in the process of forming circuits and mounting components on laminates or copper-clad laminates, there has been a demand for flame-retardant resins that exhibit little discoloration, have a high Tg due to board characteristics, have little measling, and from the standpoint of product image and aesthetics. In epoxy resins, curing agents include acid anhydrides such as hexahydrophthalic anhydride, 4-methyl or 4-ethylhexahydrophthalic anhydride, nitrogen compounds such as dicyandiamide, 3.3'dichloro4.4'diaminodiphenylmethane, and phenol formaldehyde resins. Used industrially.
However, when an acid anhydride is used as a curing agent, heat resistance is good, but there is a drawback that moisture resistance at the B stage is poor. Nitrogen compounds such as dicyandiamide have good storage stability, curing properties, etc., but have the disadvantage that the laminated plate discolors when heated due to oxidation of the nitrogen atoms contained therein. In addition, phenol formaldehyde resin also had high Tg and good measling properties, but discoloration by heating was not good. The inventors of the present invention have conducted extensive studies on the discoloration of laminates that occurs when this phenol formaldehyde resin is used as a curing agent for epoxy resins, and have found that the main cause of this discoloration is the oxidation of the methylene bond at the P position in the phenol resin. Based on this idea, it is possible to obtain heat resistance by using a resin with relatively few P-position methylene bonds in phenol formaldehyde resin, which causes discoloration on heating, that is, high orthophenol formaldehyde resin, and it is also relatively effective as a flame retardant imparting agent. It is inexpensive, has high halogen content, is reactive with epoxy groups, and has P of hydroxyl group.
It has been found that flame retardancy can be obtained by using halogenated bisphenol A that does not have a methylene bond at the position. As described above, an object of the present invention is to provide a flame-retardant resin composition for laminates that has excellent heat resistance. The epoxy compound used in the present invention is 1
There are no particular limitations as long as it is a so-called epoxy resin consisting of a compound having two or more epoxy groups in the molecule. Specific examples include bisphenol epoxy resins, novolak epoxy resins, polyphenol epoxy resins, polyglycol epoxy resins, and alicyclic epoxy resins. It is also possible to use two or more of these in combination. If the epoxy compound is a substance that is easily discolored by oxidation, the cured product will be slightly discolored by heating, but the degree of discoloration is significantly improved compared to when a normal phenol formaldehyde resin is used. The halogenated bisphenol A used in the present invention is

【式】であらわされ Rは水素又はハロゲンであり、少くなくとも1つ
のRはハロゲン化合物であり、テトラブロモビス
フエノールA、テトラクロロビスフエノールA等
がある。 本発明で使用するハイオルソフエノールホルム
アルデヒド樹脂とはオルソ率が50%以上のものを
いい好ましくは70%以上のものである。なおオル
ソ率は赤外吸収スペクトルにより以下の計算式で
算出した。 オルソ率(%) =760cm−1820cm−1×1.44+
60cm−1×100 ハイオルソフエノールホルムアルデヒド樹脂製
造に用いられるフエノール類としてはフエノール
またはアルキルフエノールを用いることが可能で
あるがアルキル基の酸化変色を考慮すればなるべ
く置換基の少ないフエノールが好ましい。また
2.2ビス(4′−オキシフエニル)プロパン〔ビス
フエノールA〕はホルムアルデヒドとフエノール
性水酸基のオルソ位にしか反応位を有していない
ことよりビスフエノールAのホルムアルデヒド樹
脂もハイオルソフエノール樹脂に含まれる。 ホルムアルデヒド源としてはホルマリン、パラ
ホルムアルデヒド等特に限定するものでない。 フエノール類に対するホルムアルデヒドのモル
比としては特に限定するものではないが1以上に
なれば樹脂合成中にゲル化することがある。また
あまりにも少なすぎると未反応フエノールが多く
残り樹脂の収率が悪くなる。 合成反応終了時に残つた未反応フエノールは水
流、水蒸気蒸留、減圧蒸留、および常圧蒸留等の
方法により除去する必要がある。その量は好まし
くは、ボラツク樹脂中の3重量%以下、さらに好
ましくは0.3重量%以下にするのがよい。この未
反応フエノールは樹脂積層板の変色にあまり影響
を与えないが樹脂積層板のTg、ミーズリング等
の耐熱性に大きく影響を与える。上記未反応フエ
ノール除去方法のうち、水流を用いた場合に合成
触媒もフエノールと同時に除去されることから樹
脂積層板の電気特性も著しく向上する傾向にあ
る。 樹脂合成触媒としてはアルカリ土類金属の水酸
化物、酢酸塩、又はその他金属のハロゲン化物等
が使用可能であり特に限定するものでない。ビス
フエノールAの場合にはホルムアルデヒドとの反
応位置はオルソ位しかないためにノボラツク合成
触媒であるならば特に限定するものでない。 合成時における樹脂の酸化変色を防止するため
に窒素気流下で合成するのが好ましいが、特に限
定するものではない。 必要な場合には、ベンジルジメチルアミンのよ
うなアミン類、イミダゾールおよびその誘導体、
BF3アミンコンプレツクス等を用いることも可能
である。 本発明の樹脂組成物には充填剤として通常の無
機、有機充填剤の使用も可能である。 難燃性を向上させるために三酸化アンチモンの
使用も可能である。 エポキシ化合物、ハロゲン化ビスフエノールA
とハイオルソフエノールホルムアルデヒド樹脂の
配合割合はエポキシ基1当量に対してハロゲン化
ビスフエノールAとハイオルソフエノールホルム
アルデヒド樹脂の水酸基当量が0.7〜2.0当量好ま
しくは0.9〜12当量でかつハロゲン含量が10〜25
重量%が好ましい。なお三酸化アンチモンを併用
する場合はハロゲン含量が少ない条件で配合する
ことも可能である。 両者の混合に際しての方法、順序については特
に規定するものではない。また基材に含浸させる
方法も特に限定するものでなく溶剤を使用しても
よく、又溶剤を使わずに樹脂を熱溶融させて含浸
させる方法も可能である。 以下本発明を実施例に基いて説明する。 実施例 1 フエノール940g、パラホルムアルデヒド250
g、酢酸亜鉛12gを窒素を通しながら4時間120
℃加熱した後150℃で2時間加熱し常圧濃縮す
る。更に未反応のフエノールを除去するため水洗
を行ない減圧脱水し、ハイオルソフエノールノボ
ラツク樹脂〔A〕を得た。この樹脂の未反応フエ
ノール含量は0.2%でオルソ率は72%であつた。
〔A〕樹脂を次のように配合し樹脂組成物をつく
つた。 〔A〕樹脂 100重量部 エポキシ化合物〔エピコート828油化エポキシ
(株)製商品名〕 320重量部 テトラブロモ2.2−ビス(4−ヒドロキシフエニ
ル)プロパン(フアイアーガード2000帝人化成製
商品名) 210重量部 ベンジルジメチルアミン 3.2重量部 メチルエチルケトン 400重量部 この樹脂組成物をガラス布基材に含浸し150℃
25分乾燥し、付着樹脂量が50%の含浸基材をつく
つた。これを所定枚数重ね表面に銅箔を配置し、
170℃30Kg/cm2で90分加熱加圧銅張積層板を製造
した。 比較例 1 フエノール940g、パラホルムアルデヒド250g
蓚酸10gを窒素ガスを流しながら4時間120℃加
熱した後150℃で2時間加熱し常圧濃縮する。更
に未反応のフエノールを除去するために減圧蒸留
してフエノールノボラツク樹脂〔B〕を得たこの
樹脂の未反応フエノール含量は6%でオルソ率は
46%であつた。〔B〕樹脂を次のように配合し樹
脂組成物をつくつた。 〔B〕樹脂 100重量部 エピコート828 320重量部 フアイアーガード2000 210重量部 ベンジルジメチルアミン 3.2重量部 メチルエチルケトン 400重量部 この樹脂組成物をガラス布基材に含浸し150℃
で5分間乾燥し、付着樹脂量が50%の含浸基材を
つくつた。これを所定枚数重ね表面の銅箔を配置
し170℃、30Kg/cm2で90分加熱加圧し銅張積層板
を製造した。 実施例 2 〔A〕樹脂を次のように配合し樹脂組成物をつ
くつた。 〔A〕樹脂 100重量部 エポキシ化合物(エピコート154油化シエルエポ
キシ社製 商品名) 320重量部 2.2−ビス(3ブロモ4ヒドロオキシ)プロパン
180重量部 BF3・ピペリジン 6重量部 メチルエチルケトン 400重量部 この樹脂組成物を実施例1と同様にして樹脂含
浸基材をつくつた。これを所定枚数重ね合せ表面
に銅箔を配置し加熱加圧し銅張り積層板を製造し
た。 比較例 2 〔B〕樹脂を次のように配合し樹脂組成物をつ
くつた。 〔B〕樹脂 100重量部 エポキシ化合物(エピコート154油化シエルエポ
キシ社製 商品名) 320重量部 2.2ビス(3ブロモ4ヒドロオキシ)プロパン
180重量部 BF3・ピペリジン 6重量部 メチルエチルケトン 400重量部 この樹脂組成物を実施例1と同様にして樹脂含
浸基材をつくつた。これを所定枚数重ね合せ表面
に銅箔を配置し、加熱加圧し銅張り積層板を製造
した。 実施例 3 ビスフエノールA900g、37%ホルマリン200
g、蓚酸9gを冷却管及び撹拌装置付四つ口フラ
スコに入れて2時間加熱還流して反応させた後脱
水濃縮しビスフエノールノボラツク樹脂〔C〕を
得た。これを用い、次のように配合して樹脂組成
物をつくつた。 〔C〕樹脂 100重量部 エピコート828 320重量部 フアイアーガード2000 210重量部 ベンジルジメチルアミン 3.2重量部 メチルエチルケトン 400重量部 この樹脂組成物を実施例1と同様にして樹脂含
浸基材をつくつた。これを所定枚数重ね合せ表面
に銅箔を配置し加熱加圧し銅張り積層板を製造し
た。 以上実施例1〜3、比較例1、2の銅張り積層
板の諸特性を表に示す。
[Formula] R is hydrogen or halogen, and at least one R is a halogen compound, such as tetrabromobisphenol A and tetrachlorobisphenol A. The high-orthophenol formaldehyde resin used in the present invention refers to one with an ortho ratio of 50% or more, preferably 70% or more. The ortho rate was calculated using the following formula based on the infrared absorption spectrum. Ortho rate (%) = D 760cm −1 / D 820cm −1 ×1.44+ D 7
60 cm −1 ×100 High orthophenol Formaldehyde As the phenols used in the production of the resin, phenols or alkylphenols can be used, but in consideration of oxidative discoloration of alkyl groups, phenols with as few substituents as possible are preferred. Also
2.2 Bis(4'-oxyphenyl)propane [bisphenol A] has a reactive position only at the ortho position of formaldehyde and the phenolic hydroxyl group, so formaldehyde resins of bisphenol A are also included in high orthophenol resins. The formaldehyde source is not particularly limited, such as formalin and paraformaldehyde. The molar ratio of formaldehyde to phenols is not particularly limited, but if it is 1 or more, gelation may occur during resin synthesis. On the other hand, if the amount is too small, a large amount of unreacted phenol will remain and the yield of the resin will be poor. Unreacted phenol remaining at the end of the synthesis reaction must be removed by methods such as water flow, steam distillation, vacuum distillation, and atmospheric distillation. The amount thereof is preferably 3% by weight or less, more preferably 0.3% by weight or less in the borax resin. This unreacted phenol does not significantly affect the discoloration of the resin laminate, but it greatly affects the Tg and heat resistance of the resin laminate, such as Measling. Among the above methods for removing unreacted phenol, when a water stream is used, the synthesis catalyst is also removed at the same time as the phenol, so the electrical properties of the resin laminate tend to be significantly improved. As the resin synthesis catalyst, alkaline earth metal hydroxides, acetates, or other metal halides can be used, and the catalyst is not particularly limited. In the case of bisphenol A, since the reaction position with formaldehyde is only the ortho position, there is no particular limitation as long as it is a novolak synthesis catalyst. In order to prevent oxidative discoloration of the resin during synthesis, it is preferable to synthesize under a nitrogen stream, but there is no particular limitation. If necessary, amines such as benzyldimethylamine, imidazole and its derivatives,
It is also possible to use BF 3 amine complexes and the like. It is also possible to use ordinary inorganic or organic fillers as fillers in the resin composition of the present invention. It is also possible to use antimony trioxide to improve flame retardancy. Epoxy compound, halogenated bisphenol A
The mixing ratio of halogenated bisphenol A and high-orthophenol formaldehyde resin is 0.7 to 2.0 equivalents, preferably 0.9 to 12 equivalents, and the halogen content is 10 to 25 equivalents of hydroxyl groups per equivalent of epoxy group.
Weight percent is preferred. Note that when antimony trioxide is used in combination, it is also possible to mix it under conditions where the halogen content is low. There are no particular restrictions on the method or order for mixing the two. Further, the method of impregnating the base material is not particularly limited, and a solvent may be used, or a method of impregnating the resin by thermally melting it without using a solvent is also possible. The present invention will be explained below based on examples. Example 1 940g of phenol, 250g of paraformaldehyde
g, 12 g of zinc acetate for 4 hours while passing nitrogen through it.
℃, then heated at 150℃ for 2 hours and concentrated under normal pressure. Further, in order to remove unreacted phenol, the product was washed with water and dehydrated under reduced pressure to obtain a high orthophenol novolak resin [A]. The unreacted phenol content of this resin was 0.2% and the ortho rate was 72%.
[A] A resin composition was prepared by blending resins as follows. [A] Resin 100 parts by weight Epoxy compound [Epicote 828 Yuka Epoxy Co., Ltd. trade name] 320 parts by weight Tetrabromo 2.2-bis(4-hydroxyphenyl)propane (Fire Guard 2000 Teijin Chemicals trade name) 210 parts by weight Benzyldimethylamine 3.2 parts by weight Methyl ethyl ketone 400 parts by weight This resin composition was impregnated into a glass cloth base material and heated to 150°C.
After drying for 25 minutes, an impregnated base material with 50% adhesion resin was created. Layer a predetermined number of these sheets and place copper foil on the surface.
A copper clad laminate was produced by heating and pressing at 170°C and 30 kg/cm 2 for 90 minutes. Comparative example 1 940g of phenol, 250g of paraformaldehyde
10 g of oxalic acid was heated at 120°C for 4 hours while flowing nitrogen gas, then heated at 150°C for 2 hours and concentrated under normal pressure. Furthermore, in order to remove unreacted phenol, vacuum distillation was performed to obtain phenol novolak resin [B].The unreacted phenol content of this resin was 6%, and the ortho rate was
It was 46%. [B] A resin composition was prepared by blending resins as follows. [B] Resin 100 parts by weight Epicote 828 320 parts by weight Fireguard 2000 210 parts by weight Benzyldimethylamine 3.2 parts by weight Methyl ethyl ketone 400 parts by weight This resin composition was impregnated into a glass cloth base material and heated to 150°C.
The material was dried for 5 minutes to create an impregnated base material with a 50% amount of resin attached. A predetermined number of these sheets were stacked, a copper foil was placed on the surface, and the sheets were heated and pressed at 170° C. and 30 kg/cm 2 for 90 minutes to produce a copper-clad laminate. Example 2 [A] A resin composition was prepared by blending resins as follows. [A] Resin 100 parts by weight Epoxy compound (Epicote 154 manufactured by Yuka Ciel Epoxy Co., Ltd., trade name) 320 parts by weight 2.2-bis(3bromo4hydroxy)propane
180 parts by weight BF 3 /piperidine 6 parts by weight Methyl ethyl ketone 400 parts by weight A resin-impregnated base material was prepared from this resin composition in the same manner as in Example 1. A predetermined number of these sheets were stacked together, a copper foil was placed on the surface, and the sheets were heated and pressed to produce a copper-clad laminate. Comparative Example 2 [B] A resin composition was prepared by blending resins as follows. [B] Resin 100 parts by weight Epoxy compound (Epicote 154 manufactured by Yuka Ciel Epoxy Co., Ltd., trade name) 320 parts by weight 2.2 bis(3bromo4hydroxy)propane
180 parts by weight BF 3 /piperidine 6 parts by weight Methyl ethyl ketone 400 parts by weight A resin-impregnated base material was prepared from this resin composition in the same manner as in Example 1. A predetermined number of these sheets were stacked together, a copper foil was placed on the surface, and the sheets were heated and pressed to produce a copper-clad laminate. Example 3 Bisphenol A 900g, 37% formalin 200
g and 9 g of oxalic acid were placed in a four-necked flask equipped with a condenser and a stirrer, heated under reflux for 2 hours to react, and then dehydrated and concentrated to obtain a bisphenol novolac resin [C]. Using this, a resin composition was prepared by blending as follows. [C] Resin 100 parts by weight Epicoat 828 320 parts by weight Fireguard 2000 210 parts by weight Benzyldimethylamine 3.2 parts by weight Methyl ethyl ketone 400 parts by weight This resin composition was used in the same manner as in Example 1 to prepare a resin-impregnated base material. A predetermined number of these sheets were stacked together, a copper foil was placed on the surface, and the sheets were heated and pressed to produce a copper-clad laminate. The properties of the copper-clad laminates of Examples 1 to 3 and Comparative Examples 1 and 2 are shown in the table above.

【表】 本発明の樹脂組成物により加熱変色性、ミーズ
リング性等が良好で高いTgを有する難燃性の積
層板を得ることが可能となつた。
[Table] By using the resin composition of the present invention, it has become possible to obtain a flame-retardant laminate having good thermal discoloration properties, measling properties, etc., and a high Tg.

Claims (1)

【特許請求の範囲】 1 分子内に2個以上のエポキシ基を有するエポ
キシ化合物と、ハロゲン化ビスフエノールAと、
フエノールまたはビスフエノールAを主原料とし
メチレン結合のオルソ率が少なくとも50%以上で
あるハイオルソフエノール・ホルムアルデヒド樹
脂とからなり、前記エポキシ化合物のエポキシ基
(a)と前記ハロゲン化ビスフエノールAおよびハイ
オルソフエノール・ホルムアルデヒド樹脂の水酸
基(b)との当量比がa:b=1:0.7〜2.0の比率で
配合してなることを特徴とする積層板用難燃性樹
脂組成物。 2 ハイオルソフエノール・ホルムアルデヒド樹
脂に含まれる未反応フエノール類の量が3重量%
以下である特許請求の範囲第1項記載の積層板用
難燃性樹脂組成物。 3 ハロゲン化ビスフエノールAがテトラブロモ
2・2−ビス(4ヒドロオキシフエニル)プロパ
ンである特許請求の範囲第1項記載の積層板用難
燃性樹脂組成物。
[Scope of Claims] 1. An epoxy compound having two or more epoxy groups in the molecule, halogenated bisphenol A,
The epoxy group of the epoxy compound is composed of a high-orthophenol formaldehyde resin whose main raw material is phenol or bisphenol A and whose ortho ratio of methylene bonds is at least 50%.
(a) and the hydroxyl group (b) of the halogenated bisphenol A and high-orthophenol formaldehyde resin in an equivalent ratio of a:b=1:0.7 to 2.0. Flame retardant resin composition for use. 2 The amount of unreacted phenols contained in the high orthophenol formaldehyde resin is 3% by weight.
A flame-retardant resin composition for a laminate according to claim 1, which is as follows. 3. The flame-retardant resin composition for a laminate according to claim 1, wherein the halogenated bisphenol A is tetrabromo 2.2-bis(4hydroxyphenyl)propane.
JP10980581A 1981-07-13 1981-07-13 Flame-retardant resin composition for laminatings Granted JPS5811524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10980581A JPS5811524A (en) 1981-07-13 1981-07-13 Flame-retardant resin composition for laminatings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10980581A JPS5811524A (en) 1981-07-13 1981-07-13 Flame-retardant resin composition for laminatings

Publications (2)

Publication Number Publication Date
JPS5811524A JPS5811524A (en) 1983-01-22
JPS6228168B2 true JPS6228168B2 (en) 1987-06-18

Family

ID=14519651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10980581A Granted JPS5811524A (en) 1981-07-13 1981-07-13 Flame-retardant resin composition for laminatings

Country Status (1)

Country Link
JP (1) JPS5811524A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6253342A (en) * 1985-09-03 1987-03-09 Mitsubishi Gas Chem Co Inc Production of epoxy resin laminate sheet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50145920A (en) * 1974-05-14 1975-11-22
JPS56159219A (en) * 1980-05-13 1981-12-08 Dainippon Ink & Chem Inc Curing agent composition for flame-retardant epoxy resin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50145920A (en) * 1974-05-14 1975-11-22
JPS56159219A (en) * 1980-05-13 1981-12-08 Dainippon Ink & Chem Inc Curing agent composition for flame-retardant epoxy resin

Also Published As

Publication number Publication date
JPS5811524A (en) 1983-01-22

Similar Documents

Publication Publication Date Title
US4529790A (en) Epoxy resin composition
US4874669A (en) Curable compositions containing an epoxy resin, a difunctional phenol and a polyfunctional phenol
US5218061A (en) Partially post-glycidylated epoxy resin, epoxy resin composition and cured product thereof
JPS6228168B2 (en)
JPH0722718A (en) Epoxy resin composition for printed wiring board, manufacture of prepreg for printed wiring board, and manufacture of composite laminated sheet
JPH11140275A (en) Polyfuctional cyanic acid ester resin composition and printed circuit board
JPH08169937A (en) Epoxy resin composition and copper-clad laminate
JPH069752A (en) Epoxy resin composition and cured product thereof
JPH0834832A (en) Thermosetting resin composition and copper-clad laminate
EP0612783B1 (en) Cyanate resin composition and copper-clad laminate
JP3252291B2 (en) Epoxy resin composition
JP3009947B2 (en) Epoxy resin composition
JP2788927B2 (en) New epoxy compound
JPS6159331B2 (en)
JP3440365B2 (en) Epoxy resin composition for laminated board
JP3331222B2 (en) Epoxy resin and epoxy resin composition
JPH0261507B2 (en)
US5364925A (en) Epoxy resin advanced with a dihydric phenol and further chain extended with an additional dihydric phenol for use in electrical laminates
JP2002226557A (en) Flame-retardant epoxy resin composition
JPH09278882A (en) Flame-retardant cyanic ester resin composition and copper-clad laminate
JP3261840B2 (en) Copper clad laminate using cyanate resin composition
EP0590463A2 (en) Halogen containing epoxy resin composition and copper-clad laminate
CN116120369A (en) Novel nitrogen and phosphorus containing heat-resistant epoxy curing agent and preparation method and application thereof
JPH09272737A (en) Cyanate resin composition and copper-clad laminate
JP3647488B2 (en) Epoxy resin and epoxy resin composition