JPS6228090B2 - - Google Patents

Info

Publication number
JPS6228090B2
JPS6228090B2 JP13889784A JP13889784A JPS6228090B2 JP S6228090 B2 JPS6228090 B2 JP S6228090B2 JP 13889784 A JP13889784 A JP 13889784A JP 13889784 A JP13889784 A JP 13889784A JP S6228090 B2 JPS6228090 B2 JP S6228090B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
press
laser light
glass
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13889784A
Other languages
Japanese (ja)
Other versions
JPS6121925A (en
Inventor
Takaharu Kobayashi
Tetsuo Izumitani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP13889784A priority Critical patent/JPS6121925A/en
Publication of JPS6121925A publication Critical patent/JPS6121925A/en
Publication of JPS6228090B2 publication Critical patent/JPS6228090B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B29/00Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins
    • C03B29/02Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins in a discontinuous way
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/46Lenses, e.g. bi-convex
    • C03B2215/47Bi-concave

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、ガラスのプレス成形方法に関し、特
に炭酸ガスレーザ光により最終的に所望するレン
ズ形状に近い研削品の表面を鏡面となし、これを
最終的に所望の光学鏡面と面精度を有するレンズ
にプレス加工する方法に係るものである。 [従来技術とその問題点] 従来、ガラスレンズの製造方法は、ガラスを溶
融又は軟化して金型に入れ、これをだいたいのレ
ンズ形状にプレス成形した後、更にこれを研削・
研磨することにより製造されてきたが、時間と労
力を要しコスト高となつていた。ところが最近の
特許公報には特殊な金型材料を用い、それを所望
のレンズ形状の金型に加工しかつ型表面を光学鏡
面に仕上げ、非酸化雰囲気でガラスをプレス成形
することによつて研削・研磨を必要としない光学
鏡面と面精度を有するレンズが得られることが開
示されている。例えば、特開昭47―11277号公報
には金型材としてガラス状炭素を用い、非酸化性
雰囲気にして、ガラスを金型上に置いたまま金型
を加熱しガラスを軟化させてプレスを開始し、ガ
ラスがガラス転移点以下になるまでプレスし続け
てレンズを得る方法が記載されている。このよう
な方法でレンズを製造すると研削・研磨工程が不
要となるため、かなりのコストダウンが期待され
るが、プレス成形のサイクルタイムが著しく長く
なり、かつ常時ガラスが金型と接触しているた
め、ガラスと金型材料の化学反応により、金型の
肌荒れが起こりやすくなり、金型の寿命(モール
ドライフ)に悪影響をおよぼすという問題点を生
ずる。 [発明の目的] 本発明は、このような問題点に着目してなされ
たもので、研磨工程を省き、かつ研削工程を簡略
化して時間と労力とを節約し、かつ金型の寿命の
改善とプレス成形のサイクルタイムを短縮するこ
とができるガラスの高精度プレス成形方法を提供
することを目的としている。 [問題点を解決するための手段] 本発明は、プレス成形に先立ち、最終レンズ形
状に近い研削品をホルダーの上に置き、炭酸ガス
レーザ光を照射することによりガラス形状をほと
んど変形させることなく研削面表面を鏡面となし
た後、これをプリフオームとして加熱・軟化し、
金型によりプレス成形して最終的に所望するレン
ズを成形することを特徴としている。 最終レンズ形状に近い研削品は、球面研削によ
り調整し、ダイヤモンドペレツトによる精研削を
する必要はない。この研削品をホルダーに置きガ
ラス転移点以上に予備加熱する。ついでデイフオ
ーカスした炭酸ガスレーザ光をこの研削品の表面
に照射して加熱・軟化し鏡面を得る。この場合ス
リツト状にした炭酸ガスレーザ光を走査して加熱
軟化しても良く、またデイフオーカスした炭酸ガ
スレーザ光自体を走査してもよい。 炭酸ガスレーザ光の波長は10.6μmと長く、ガ
ラス表面の極く浅い数μm〜十数μmの表面層で
吸収されて発熱軟化して研削面の凹凸が滑らかに
なり、鏡面が形成されるため、ガラスの変形量が
わずかでかなり面精度の良い面が得られるため、
金型によるプレス成形において極くわずかの変形
量をプリフオームに与えれば所望の光学レンズが
得られる。 金型によるプリフオームのプレス成形方法は、
上記の方法によつて得られたプリフオームを所定
温度に予熱し、同様に予熱した最終レンズ形状が
得られる金型によりプレスして行なわれる。その
プリフオームは108〜1011poiseの高粘性領域でプ
レス成形できるので、プリフオームおよび金型温
度をその粘性に相当する比較的低温に維持した状
態で短時間にプレス成形することができる。この
ため、金型の肌荒れが起こりにくくなり、プレス
成形の時間を短縮することができる。 デイフオーカスした炭酸ガスレーザ光を研削面
に照射する場合、面精度の良い面を得るために
は、出来るだけ短時間で表面の浅い部分を高温に
加熱することが望ましい。しかし表面を高温にし
すぎるとガラスの揮発に伴う発泡現象が生じるた
め、余り高温にすることは出来ない。また、研削
面をデイフオーカスした炭酸ガスレーザ光により
照射して鏡面とするとき、研削時に発生する微細
なクラツクのために微細な泡が発生する。この種
の泡は、クラツク上部が先に軟化しクラツクをふ
さぎ、空気がそのクラツク内部に閉じ込められて
発生する。このようなクラツクの幅はおよそ1〜
2μmで、深さは数μm〜20μm程度である。し
たがつて、発生する泡の大きさは数μmの直径で
極めて小さく肉眼ではほとんど観察されないが光
学顕微鏡では観察され、その数が非常に多い場合
には肉眼でも観察される。これらの発泡現象を解
決するには、デイフオーカスした炭酸ガスレーザ
光の強度を2〜30w/cm2に弱めてガラス表面に照
射することが望ましい。2w/cm2より低い強度で
炭酸ガスレーザ光をガラス表面に照射するとガラ
スと周囲の雰囲気との熱収支によりガラスはあま
り加熱・軟化されず、鏡面が得られない。30w/
cm2より高い強度で炭酸ガスレーザ光をガラス表面
に照射すると前記の微細な泡が肉眼でも顕著に見
られる。また、100w/cm2より高い強度で同様に照
射すると瞬時にして揮発が始まり発泡現象が起き
る。したがつて、2〜30w/cm2の強度でデイフオ
ーカスした炭酸ガスレーザ光をガラス表面に照射
することが望ましい。このとき照射時間は、少く
とも30秒以上は必要である。また、微細な泡の発
生を防ぐために、研削面をフツ酸又はフツ酸と硫
酸等の混酸によりエツチングし微細なクラツクを
取り除いた後、デイフオーカスした炭酸ガスレー
ザ光を照射することも望ましい。この前処理は、
遊離砥粒による砂掛け面に適用する。通常、遊離
砥粒は超音波洗浄後も砂掛け面に残存し、炭酸ガ
スレーザ光により、その表面を軟化すると、遊離
砥粒がガラス表面の汚れとなる。しかし、フツ酸
処理すると微細なクラツクとともに、その砥粒が
表面から取り除かれるので炭酸ガスレーザ光で照
射しても汚れが発生しないからである。 また、微細な泡の発生を防ぐために、研削品を
真空チヤンバーに入れ真空中で炭酸ガスレーザ光
を研削面に照射することも望ましい。クラツク上
部が先に軟化し、クラツクが閉じてもクラツク内
部に空気が存在しないため、その後内部のガラス
が自然流動してクラツクがふさがり軟化するので
泡は発生せずが得られる。これらの条件下ではデ
イフオーカスした炭酸ガスレーザ光の強度を30〜
100w/cm2にして照射してもよい。炭酸ガスレーザ
光は、デイフオーカスするのでシングルモードで
もマルチモードでもよい。前記レーザ光の発振形
態は連続でもパルスでもよい。研削品をのせるホ
ルダーはSUS系ステンレス鋼の平面のトレー、曲
率のついたトレーあるいはドーナツ状リングでも
よい。ドーナツ状リングをホルダーとして用いた
場合、研削面の両側から炭酸ガスレーザ光を照射
してもよい。また、デイフオーカスした炭酸ガス
レーザ光を研削面に照射してプリフオームを調整
し、それを連続にプレス成形しても、プリフオー
ムの調整とプレス成形とを別途に行なつて不連続
にプレス成形してもよい。プレス成形前のプリフ
オームの面精度はニユートン本数で十数本である
が、プレス成形後の面精度がニユートン本数で1
〜2本のプレスレンズが得られる。 [実施例] 次に本発明の内容を実施例にをもとづいて、よ
り具体的に説明する。第1図は最終レンズ形状に
近い研削品1をリング状ホルダー2にのせた状
態、第2図はホルダー上の研削品にデイフオーカ
スした炭酸ガスレーザ光を照射している状態、第
3図は得られたプリフオームをプレスしている状
態、第4図は研削品に真空中でレーザ光を照射し
ている状態を断面図で示している。まず、最終レ
ンズ形状に近い研削品1の段差の付いたリング状
ホルダー2に置く。このときこのホルダー2はガ
ラス転移温度以上保つておく。研削品1はホルダ
ー2上に乗つたまま、ガラス転移温度以上に保つ
た電気炉内の炭酸ガスレーザ光照射位置に移さ
れ、レーザ光出力端3から出たレーザ光4により
照射・加熱され、あまり変形せずに表面が軟化し
鏡面となる。このようにして得られたプリフオー
ムは上型5と下型6とを案内する円筒状スリーブ
内に移され、所定温度で上型5と下型6とにより
プレス成形される。また、第4図に研削品8を真
空チヤンバー9内に置きレーザ光出力端3から出
たレーザ光4を炭酸ガスレーザ光透過材性窓10
を通して照射し、加熱軟化する状態を示す。研削
品8はプレート状ホルダー11に置かれ、両者は
X―Yテーブル12に置かれ照射位置が決定され
る。真空チヤンバー9は真空弁13を通して真空
ポンプ14に脱気され、安定な10-6torrの真空状
態が得られる。次表に各実施例における炭酸ガス
レーザ光の照射条件、前処理条件を記載する。
[Industrial Application Field] The present invention relates to a glass press-molding method, and in particular, the surface of a ground product is made into a mirror surface close to the final desired lens shape using a carbon dioxide gas laser beam, and this is finally transformed into a desired optical mirror surface. The present invention relates to a method of press working into a lens having a surface precision of . [Prior art and its problems] Conventionally, the manufacturing method for glass lenses involves melting or softening glass, putting it into a mold, press-molding it into the approximate shape of the lens, and then grinding and
It has been manufactured by polishing, but it requires time and labor and is expensive. However, recent patent publications use a special mold material, process it into a mold with the desired lens shape, finish the mold surface to an optical mirror surface, and press-form the glass in a non-oxidizing atmosphere to grind it. - It is disclosed that a lens having an optical mirror surface and surface precision that does not require polishing can be obtained. For example, in JP-A-47-11277, glassy carbon is used as the mold material, the glass is placed on the mold, the mold is heated to soften the glass, and pressing is started. However, a method is described in which a lens is obtained by continuing pressing until the glass becomes below the glass transition point. Manufacturing lenses using this method eliminates the need for grinding and polishing processes, which is expected to result in significant cost reductions, but the press molding cycle time is significantly longer and the glass is in constant contact with the mold. Therefore, the chemical reaction between the glass and the mold material tends to cause the surface of the mold to become rough, which poses the problem of adversely affecting the life of the mold (mold life). [Objective of the Invention] The present invention has been made in view of these problems, and aims to omit the polishing process, simplify the grinding process, save time and labor, and improve the life of the mold. The purpose of the present invention is to provide a high-precision glass press-forming method that can shorten the press-forming cycle time. [Means for Solving the Problems] The present invention, prior to press molding, places a ground product close to the final lens shape on a holder, and irradiates it with carbon dioxide laser light to grind the glass shape without substantially deforming it. After making the surface a mirror surface, this is heated and softened as a preform.
It is characterized by press molding using a mold to finally form the desired lens. A ground product close to the final lens shape is adjusted by spherical grinding and does not require fine grinding with diamond pellets. This ground product is placed in a holder and preheated to a temperature above the glass transition point. Next, the surface of this ground product is heated and softened by irradiating a defocused carbon dioxide gas laser beam to obtain a mirror surface. In this case, a slit-shaped carbon dioxide gas laser beam may be scanned to heat and soften it, or a defocused carbon dioxide gas laser beam itself may be scanned. The wavelength of carbon dioxide laser light is as long as 10.6 μm, and it is absorbed by the extremely shallow surface layer of several μm to over 10 μm on the glass surface, causing heat generation and softening, smoothing out the unevenness of the ground surface and forming a mirror surface. Because the amount of glass deformation is small and a surface with very good surface precision can be obtained,
A desired optical lens can be obtained by subjecting the preform to a very small amount of deformation during press molding using a mold. The preform press molding method using a mold is as follows:
The preform obtained by the above method is preheated to a predetermined temperature and pressed using a similarly preheated mold capable of obtaining the final lens shape. Since the preform can be press-molded in a high viscosity range of 10 8 to 10 11 poise, it can be press-molded in a short time while maintaining the preform and mold temperature at a relatively low temperature corresponding to its viscosity. Therefore, roughening of the mold surface is less likely to occur, and press molding time can be shortened. When irradiating a grinding surface with a defocused carbon dioxide laser beam, it is desirable to heat a shallow portion of the surface to a high temperature in as short a time as possible in order to obtain a surface with good surface precision. However, if the surface temperature is too high, a foaming phenomenon will occur due to the volatilization of the glass, so the temperature cannot be raised too high. Furthermore, when the ground surface is irradiated with defocused carbon dioxide laser light to make it a mirror surface, microscopic bubbles are generated due to microscopic cracks generated during grinding. This type of bubble is generated when the upper part of the crack softens first and blocks the crack, trapping air inside the crack. The width of such a crack is approximately 1~
2 μm, and the depth is approximately several μm to 20 μm. Therefore, the size of the generated bubbles is extremely small, with a diameter of several micrometers, and is hardly observed with the naked eye, but can be observed with an optical microscope, and if there are a large number of bubbles, they can be observed with the naked eye. In order to solve these bubbling phenomena, it is desirable to reduce the intensity of the defocused carbon dioxide gas laser light to 2 to 30 W/cm 2 and irradiate the glass surface with it. If the glass surface is irradiated with carbon dioxide laser light at an intensity lower than 2w/cm 2 , the glass will not be heated or softened much due to the heat balance between the glass and the surrounding atmosphere, and a mirror surface will not be obtained. 30w/
When a glass surface is irradiated with carbon dioxide laser light at an intensity higher than cm 2 , the above-mentioned fine bubbles can be clearly seen with the naked eye. Furthermore, when similarly irradiated with an intensity higher than 100w/cm 2 , volatilization begins instantaneously and a foaming phenomenon occurs. Therefore, it is desirable to irradiate the glass surface with a defocused carbon dioxide laser beam at an intensity of 2 to 30 w/cm 2 . At this time, the irradiation time must be at least 30 seconds or more. In order to prevent the generation of fine bubbles, it is also desirable to irradiate the ground surface with defocused carbon dioxide laser light after removing fine cracks by etching the ground surface with hydrofluoric acid or a mixed acid such as hydrofluoric acid and sulfuric acid. This pretreatment is
Applicable to sanded surfaces with loose abrasive grains. Usually, free abrasive grains remain on the sanded surface even after ultrasonic cleaning, and when the surface is softened by carbon dioxide laser light, the free abrasive grains become stains on the glass surface. However, when treated with hydrofluoric acid, fine cracks and abrasive grains are removed from the surface, so no stains are generated even when irradiated with carbon dioxide laser light. Furthermore, in order to prevent the generation of fine bubbles, it is also desirable to place the ground product in a vacuum chamber and irradiate the ground surface with carbon dioxide laser light in a vacuum. The upper part of the crack softens first, and even when the crack closes, there is no air inside the crack, so the glass inside flows naturally after that, closing the crack and softening, so no bubbles are generated. Under these conditions, the intensity of the defocused carbon dioxide laser light was
It may be irradiated at 100w/cm 2 . Since the carbon dioxide laser light is defocused, it may be single mode or multimode. The oscillation form of the laser beam may be continuous or pulsed. The holder on which the ground product is placed may be a flat tray made of SUS stainless steel, a curved tray, or a donut-shaped ring. When a donut-shaped ring is used as a holder, carbon dioxide laser light may be irradiated from both sides of the grinding surface. In addition, the preform can be adjusted by irradiating the grinding surface with a defocused carbon dioxide laser beam, and the preform can be press-formed continuously, or the preform adjustment and press-forming can be performed separately and the preform can be press-formed discontinuously. good. The surface accuracy of the preform before press forming is more than 10 Newtons, but the surface accuracy after press forming is 1 Newtons.
~2 pressed lenses are obtained. [Example] Next, the content of the present invention will be explained in more detail based on an example. Fig. 1 shows a state in which a ground product 1 close to the final lens shape is placed on a ring-shaped holder 2, Fig. 2 shows a state in which the ground product on the holder is irradiated with a defocused carbon dioxide laser beam, and Fig. 3 shows a state in which the ground product 1, which has a final lens shape, is placed on a ring-shaped holder 2. FIG. 4 is a sectional view showing a state in which a preform is being pressed and a state in which a ground product is irradiated with a laser beam in a vacuum. First, a ground product 1 close to the final lens shape is placed on a ring-shaped holder 2 with a step. At this time, the holder 2 is maintained at a temperature higher than the glass transition temperature. The ground product 1 is placed on the holder 2 and moved to a carbon dioxide laser beam irradiation position in an electric furnace kept above the glass transition temperature, where it is irradiated and heated by the laser beam 4 emitted from the laser beam output end 3, and is The surface softens and becomes a mirror surface without deformation. The preform thus obtained is transferred into a cylindrical sleeve that guides the upper mold 5 and the lower mold 6, and is press-molded by the upper mold 5 and the lower mold 6 at a predetermined temperature. In addition, as shown in FIG. 4, a grinding product 8 is placed in a vacuum chamber 9, and a laser beam 4 emitted from a laser beam output end 3 is passed through a window 10 made of a material that transmits carbon dioxide laser beam.
This shows the state in which the material is heated and softened by irradiation. The ground product 8 is placed on a plate-shaped holder 11, and both are placed on an XY table 12 to determine the irradiation position. The vacuum chamber 9 is evacuated by a vacuum pump 14 through a vacuum valve 13 to obtain a stable vacuum state of 10 -6 torr. The following table lists the carbon dioxide laser light irradiation conditions and pretreatment conditions in each example.

【表】【table】

【表】 表から明らかなように、ガラスの硝種及び形状
を問わずこの発明を適用することができる。炭酸
ガスレーザ光の照射条件はガラス硝種によつて最
適条件がある。軟化温度(Sp)が低いガラス材
では2〜10w/cm2の強度で比較的短時間で鏡面が
得られる。軟化温度(Sp)の高いガラス材では
15〜30w/cm2の強度で比較的長時間の照射で鏡面
が得られる。また、フツ酸処理後の照射および真
空チヤンバー中での照射は、照射時間の短縮が可
能である。 [発明の効果] この発明によれば、研磨工程を省き、かつ研削
工程を簡略化して、時間と労力とを節約し、かつ
金型のモールドライフを改善してプレス成形のサ
イクルタイムを短縮することができる。
[Table] As is clear from the table, the present invention can be applied regardless of the type and shape of glass. There are optimum conditions for irradiation of carbon dioxide laser light depending on the type of glass. With a glass material having a low softening temperature (Sp), a mirror surface can be obtained in a relatively short time with a strength of 2 to 10 w/cm 2 . For glass materials with a high softening temperature (Sp)
A mirror surface can be obtained with relatively long irradiation at an intensity of 15-30w/ cm2 . Furthermore, the irradiation time after the hydrofluoric acid treatment and the irradiation in a vacuum chamber can be shortened. [Effects of the Invention] According to the present invention, the polishing process is omitted, the grinding process is simplified, time and labor are saved, and the mold life of the mold is improved to shorten the cycle time of press molding. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は最終レンズ形状に近い研削品をリング
状ホルダーに乗せた状態の断面図、第2図はレー
ザを照射する工程を示す断面図、第3図はプレス
成形工程を示す断面図、第4図は真空チヤンバー
中で研削品を鏡面品とする工程を示す断面図であ
る。 1……研削品、2……リング状ホルダー、3…
…炭酸ガスレーザ光出力端、4……デイスフオー
カスしたレーザ光、5……上型、6……下型、7
……円筒状スリーブ、8……研削品、9……真空
チヤンバー、10……炭酸ガスレーザ光透過材性
窓、11……プレート状ホルダー、12……X―
Yテーブル、13……真空弁、14……真空ポン
プ。
Figure 1 is a cross-sectional view of a ground product with a final lens shape placed on a ring-shaped holder, Figure 2 is a cross-sectional view showing the laser irradiation process, Figure 3 is a cross-sectional view showing the press forming process, FIG. 4 is a cross-sectional view showing the process of turning a ground product into a mirror-finished product in a vacuum chamber. 1...Grinded product, 2...Ring-shaped holder, 3...
...Carbon dioxide laser light output end, 4...Die-focused laser light, 5...Upper mold, 6...Lower mold, 7
... Cylindrical sleeve, 8 ... Ground product, 9 ... Vacuum chamber, 10 ... Carbon dioxide laser light transmitting material window, 11 ... Plate-shaped holder, 12 ... X-
Y table, 13... vacuum valve, 14... vacuum pump.

Claims (1)

【特許請求の範囲】 1 プレス成形の前に、最終レンズ形状に近い研
削品をデイフオーカスした炭酸ガスレーザ光によ
りレージポリツシユすることにより研削面表面を
鏡面となし、次にこれをプリフオームとして加熱
軟化した後、プレス成形することを特徴とするプ
レスレンズの成形方法。 2 デイフオーカスした炭酸ガスレーザ光の強度
を2〜30w/cm2にして30秒以上、最終レンズ形状
に近い研削品に照射して研削面表面を鏡面とする
特許請求の範囲第1項記載のプレスレンズの成形
方法。 3 最終レンズ形状に近い研削品をフツ酸磨き
し、デイフオーカスした炭酸ガスレーザ光を照射
して研削面表面を鏡面とする特許請求の範囲第1
項記載のプレスレンズの成形方法。 4 真空中で最終レンズ形状に近い研削品をデイ
フオーカスした炭酸ガスレーザ光により照射する
ことにより研削面表面を鏡面とする特許請求の範
囲第1項記載のプレスレンズの成形方法。
[Claims] 1. Before press molding, a ground product close to the final lens shape was subjected to laser polishing using defocused carbon dioxide laser light to make the ground surface a mirror surface, and then this was heated and softened as a preform. A method for forming a press lens, characterized in that the lens is then press-molded. 2. The press lens according to claim 1, wherein the day-focused carbon dioxide gas laser beam is irradiated with an intensity of 2 to 30 w/cm 2 for 30 seconds or more on a ground product close to the final lens shape to make the ground surface a mirror surface. molding method. 3 A ground product close to the final lens shape is polished with hydrofluoric acid and irradiated with defocused carbon dioxide laser light to make the ground surface mirror-like.Claim 1
2. Method for forming press lenses as described in Section 1. 4. The press lens forming method according to claim 1, wherein the ground product having a final lens shape is irradiated with defocused carbon dioxide laser light in a vacuum to make the ground surface a mirror surface.
JP13889784A 1984-07-06 1984-07-06 Forming of pressed lens Granted JPS6121925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13889784A JPS6121925A (en) 1984-07-06 1984-07-06 Forming of pressed lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13889784A JPS6121925A (en) 1984-07-06 1984-07-06 Forming of pressed lens

Publications (2)

Publication Number Publication Date
JPS6121925A JPS6121925A (en) 1986-01-30
JPS6228090B2 true JPS6228090B2 (en) 1987-06-18

Family

ID=15232673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13889784A Granted JPS6121925A (en) 1984-07-06 1984-07-06 Forming of pressed lens

Country Status (1)

Country Link
JP (1) JPS6121925A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61146723A (en) * 1984-12-19 1986-07-04 Matsushita Electric Ind Co Ltd Molding method of nonspherical surface lens
JPH0712939B2 (en) * 1988-09-28 1995-02-15 ホーヤ株式会社 Method for manufacturing glass molded body
US5435818A (en) * 1992-06-02 1995-07-25 Canon Kabushiki Kaisha Mold for optical element and a method of molding optical element
US6737661B2 (en) * 2000-08-17 2004-05-18 Novartis Ag Pre-treatment of molds

Also Published As

Publication number Publication date
JPS6121925A (en) 1986-01-30

Similar Documents

Publication Publication Date Title
JPS6228090B2 (en)
EP0463463B1 (en) Method of manufacturing optical element
CN112775856B (en) Mold core polishing device and machining method for laser-induced abrasive particle microjet
JPS60118644A (en) Molding of press lenses
JP2000086255A (en) Method for molding optical element
JPH05178625A (en) Method for forming glass lens
JP3879143B2 (en) Lens material manufacturing method, molded lens manufacturing method, and lens material manufacturing apparatus
JP2002179432A (en) Method for heating glass semi-finished product above adhesion temperature and device therefor
JP4227050B2 (en) Glass lens molding method and apparatus
CN114603762A (en) Optical lens molding device and molding method
JPH046112A (en) Glass for press forming and forming method using same
KR20210081912A (en) Lenz-like finishing method for optical material
JP2002104831A (en) Method of press-forming
JPS6259539A (en) Heating method for compression molding of optical element
KR20130115671A (en) Manufacturing method of aspheric lens using glass powder
JPH10182171A (en) Formation of optical glass element
JPH05279055A (en) Production of glass lens
JPS63310735A (en) Method for forming optical element
JPH0699159B2 (en) Optical element molding method
JPH0446023A (en) Production of material for forming optical element
JPH08169721A (en) Glass blank for forming optical element
JPH06191861A (en) Molding method of glass lens
JPH0292831A (en) Compression molding of glass lens
KR20180134118A (en) Manufacturing method of aspheric glass
JP2003081659A (en) Method of manufacturing optical element