JPS62280220A - Production of high-mw polylactide or polyglycolide - Google Patents

Production of high-mw polylactide or polyglycolide

Info

Publication number
JPS62280220A
JPS62280220A JP12509986A JP12509986A JPS62280220A JP S62280220 A JPS62280220 A JP S62280220A JP 12509986 A JP12509986 A JP 12509986A JP 12509986 A JP12509986 A JP 12509986A JP S62280220 A JPS62280220 A JP S62280220A
Authority
JP
Japan
Prior art keywords
molecular weight
polycondensate
reaction
polyglycolide
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12509986A
Other languages
Japanese (ja)
Other versions
JPH043763B2 (en
Inventor
Hironobu Fukuzaki
裕延 福崎
Takao Okada
隆雄 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taki Chemical Co Ltd
Original Assignee
Taki Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taki Chemical Co Ltd filed Critical Taki Chemical Co Ltd
Priority to JP12509986A priority Critical patent/JPS62280220A/en
Publication of JPS62280220A publication Critical patent/JPS62280220A/en
Publication of JPH043763B2 publication Critical patent/JPH043763B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Abstract

PURPOSE:To obtain inexpensively the title slow-releasing polymer useful as, e.g., a slow-releasing matrix for medicines, agricultural chemicals, etc., by reacting a low-MW polylactide or polyglycolide or a condensate thereof with a specified acid chloride and subjecting the product to a melt polycondensation reaction, etc. CONSTITUTION:Lactic acid and/or glycolic acid are polycondensed at 150-250 deg.C for 1-10hr in the presence (absence) of a catalyst such as a tin compound in a vacuum or a stream of an inert gas to obtain a low-MW polylactide, polyglycolide or cocondensate thereof of a number-average MW of 1,000-6,000. The product is dissolved in an organic solvent such as toluene to form a solution of a concentration of 5-60wt% and this solution is reacted with an acid chloride selected from a dichloride compound (e.g., succinyl chloride) and thionyl chloride, heated in a vacuum or a stream of nitrogen gas to remove the organic solvent and either melt-polycondensed at 150-250 deg.C for 1-10hr or reacted at 30-100 deg.C for 1-8hr after adding an amine compound such as trimethylamine to increase the MW to about 40,000. The title polymer can thus be obtained.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 本発明は礼酸、グリコール酸の脱水重縮合反応によって
得られるポリラクチド、ポリグリコリド又はそれらの共
重縮合体の製造方法に関し、珠に徐放性重合体として有
用なる高分子量のポリラクチド、ポリグリコリド又はそ
れらの共重縮合体を提供することを目的とするものであ
る。
Detailed Description of the Invention 3. Detailed Description of the Invention (Industrial Application Field) The present invention relates to the production of polylactide, polyglycolide, or copolycondensates thereof obtained by dehydration polycondensation reaction of ceric acid and glycolic acid. Regarding the method, it is an object of the present invention to provide a high molecular weight polylactide, polyglycolide, or a copolycondensate thereof, which is useful as a sustained release polymer.

ポリラクチド、ポリグリコリド又はそれらの共重縮合体
は徐放性重合体として、縫合糸等の生体分解性医用材料
、除草剤、土壌殺菌剤等の土壌処理用農薬組成物、マイ
クロカプセルとしての基剤等として、近年多方面に利用
されている。
Polylactide, polyglycolide, or their copolycondensates are used as sustained-release polymers for biodegradable medical materials such as sutures, agricultural chemical compositions for soil treatment such as herbicides and soil fungicides, and base materials for microcapsules. In recent years, it has been used in many ways.

この徐放性重合体が具イfすべき条件として、農薬組成
物の場合では長期間にわたり薬剤成分を放出することが
必要とされ、そのためには適度に高分子量であることが
必要である。 また医用材料として使用される場合につ
いても重合体材料が生体に癒合するまでの期間に必要な
強度を保持し、その後は速やかに分解吸収されることが
必要であり、同様に高分子量の重合体が要求されている
In the case of agricultural chemical compositions, the sustained-release polymer must have a suitably high molecular weight to release the drug component over a long period of time. In addition, when used as a medical material, it is necessary for the polymer material to maintain the necessary strength until it fuses with the living body, and then be quickly decomposed and absorbed. is required.

(従来の技術) 高分子量のポリラクチド、ポリグリコリド等を得る方法
として一般に1し酸、グリコール酸からラクチド、グリ
コリドを製造し、これを611環重合してポリラクチド
、ポリグリコリドを製造する方法が知られているが、こ
の方法によると高分子量のものが得られる反面、ラクチ
ド、グリコリドの袈造に際して多大の労力と費用を必要
とし、経済的でない、 また別の方法として、1L酸、
グリコール酸から直接ポリラクチド、ポリグリコリドを
得る方法があるが、この方法は簡易な重縮合方法である
反面、高分子量の重縮合体力!得られない。
(Prior art) As a method for obtaining high molecular weight polylactide, polyglycolide, etc., there is generally known a method in which lactide and glycolide are produced from 1-esteric acid and glycolic acid, and then 611-ring polymerization is performed to produce polylactide and polyglycolide. However, although this method allows the production of lactide and glycolide with high molecular weight, it requires a great deal of labor and cost to prepare lactide and glycolide, making it uneconomical.
There is a method to obtain polylactide and polyglycolide directly from glycolic acid, but while this method is a simple polycondensation method, it requires high molecular weight polycondensation! I can't get it.

(発明が解決しようとする問題点) そこで本発明者らは安価で高分子量の重縮金品を得べく
、1し酸、グリコール酸からの直接重縮合法による検討
を行った。
(Problems to be Solved by the Invention) Therefore, in order to obtain an inexpensive polycondensed metal product with a high molecular weight, the present inventors conducted an investigation using a direct polycondensation method from 1-esteric acid and glycolic acid.

fL酸、グリコール酸の直接重縮合反応は、二塩基酸と
多価アルコールによるエステル化反応と同様に逐次反応
であり、反応時間と共に分子量は増大する。 しかしこ
の反応は平衡反応であり、その平衡定数が著しく小さい
ため、分子量を増大させる為には触媒を必要とする。
The direct polycondensation reaction of fL acid and glycolic acid is a sequential reaction similar to the esterification reaction between a dibasic acid and a polyhydric alcohol, and the molecular weight increases with reaction time. However, this reaction is an equilibrium reaction and its equilibrium constant is extremely small, so a catalyst is required to increase the molecular weight.

一般にこの種の触媒として金属塩、金属酸化物等が使用
されるが、1LP!!、グリコール酸等のオキシ酸の場
合には、たとえfL縮合反応でエステル結合が生成して
もポリマーの分解作用も併有するため、この作用により
高分子量の重縮金品を得ることば困難であった。
Generally, metal salts, metal oxides, etc. are used as this type of catalyst, but 1LP! ! In the case of oxyacids such as glycolic acid, even if ester bonds are formed in the fL condensation reaction, they also have the effect of decomposing the polymer, so it has been difficult to obtain polycondensed metal products with a high molecular weight due to this effect.

(問題点を解決するための手段) 本発明者らはこれらの知見をもとに高分子量のポリラク
チド、ポリグリコリド又はそれらの共重縮合体を得べく
、乳酸、グリコール酸の直接脱水重縮合法から得られる
重縮合体を、更に高分子量化する方法について鋭意研究
を進めたが、その結果、これらの重縮合体をジクロリド
化合OI等の酸塩化物と反応させた後、溶融重縮合反応
を行わせるか、又はアミン化合物を添加反応させること
により、前記重縮合体を更に高分子量化させることが容
易であることを見い出し、本発明を完成させたものであ
る。
(Means for Solving the Problems) Based on these findings, the present inventors developed a direct dehydration polycondensation method for lactic acid and glycolic acid in order to obtain high molecular weight polylactide, polyglycolide, or copolycondensates thereof. We have conducted intensive research on methods for further increasing the molecular weight of polycondensates obtained from The present invention was completed based on the discovery that it is easy to further increase the molecular weight of the polycondensate by carrying out the reaction or adding an amine compound.

即ち、本発明は低分子量のポリラクチド、ポリグリコリ
ド又はそれらの共重縮合体を、ジクロリド化合物又は塩
化チオニルから選ばれた酸塩化物と反応させた後、溶融
重縮合反応を行わせるか、又はアミン化合物を添加反応
させることからなる高分子量ポリラクチド、ポリグリコ
リド又はそれ・ らの共重縮合体の製造法に関する。
That is, the present invention involves reacting low molecular weight polylactide, polyglycolide, or a copolycondensate thereof with an acid chloride selected from a dichloride compound or thionyl chloride, and then performing a melt polycondensation reaction, or The present invention relates to a method for producing high molecular weight polylactide, polyglycolide, or a copolycondensate thereof, which comprises adding and reacting a compound.

(作 用) 本発明に使用するモノマーは、乳酸、グリコール酸であ
って、1L酸に関してはD型またはL型のいずれであっ
ても、あるいはラセミ体であってもよい。
(Function) The monomers used in the present invention are lactic acid and glycolic acid, and 1L acid may be either D-type or L-type, or racemic.

反応を行う際にこれらの濃度について特に限定はされな
いが、重縮合反応開始時の濃度が低い場合には反応の切
期に生成するオリゴマー等の揮散量が多くなり、収率が
低下することがら、モノマー濃度が低い場合には開始前
、適度に濃縮を行い使用することが望ましい。
There are no particular limitations on the concentrations of these when performing the reaction, but if the concentration at the start of the polycondensation reaction is low, the amount of oligomers etc. produced at the end of the reaction will increase and the yield will decrease. If the monomer concentration is low, it is desirable to concentrate the mixture appropriately before use.

!!縮縮尺反応、fL酸、グリコール酸、又は乳酸とグ
リコール酸の混合物を、無触媒或いは触媒としてスズ化
合物等を添加後、減圧下、又は窒素ガス等の不活性ガス
の導入下で、150〜250°Cに加温をしながら行う
! ! Reduced scale reaction, fL acid, glycolic acid, or a mixture of lactic acid and glycolic acid, without catalyst or after adding a tin compound etc. as a catalyst, under reduced pressure or under the introduction of an inert gas such as nitrogen gas, to 150 to 250 This is done while warming to °C.

反応の開始後、重縮合体の分子量は逐次上昇し、開始後
1〜10時間で重縮合体の数平均分子量は1000〜6
000の範囲となる。 本発明で使用する(氏分子量の
ポリラクチド、ポリグリコリド又はそれらの共重縮合体
の分子量としては、通常この範囲のものであり、分子量
が6000を超えるものを使用しても別設支障はないが
、この範囲のものを直接脱水重縮合法により得ることは
困難であり、実質上これ以上のものを用いることは経済
的に好ましくない。 また、分子量が1000を下回る
と、本発明の高分子量重縮合体を得ることが極めて困難
となる。
After the start of the reaction, the molecular weight of the polycondensate increases gradually, and the number average molecular weight of the polycondensate increases from 1000 to 6 within 1 to 10 hours after the start of the reaction.
The range is 000. The molecular weight of the polylactide, polyglycolide, or copolycondensate thereof used in the present invention (molecular weight of polylactide, polyglycolide, or copolycondensate thereof) is usually within this range, and there is no problem in using one with a molecular weight exceeding 6,000. It is difficult to directly obtain a substance in this range by a dehydration polycondensation method, and it is economically undesirable to use a substance exceeding this range.In addition, if the molecular weight is less than 1000, the high molecular weight of the present invention It becomes extremely difficult to obtain a condensate.

尚、重縮合反応時に逐次上昇する重縮合体の数平均分子
量は、一定時間毎に反応液を採取し、次の方法で分子量
測定を行う。
The number average molecular weight of the polycondensate, which increases sequentially during the polycondensation reaction, is determined by sampling the reaction solution at regular intervals and measuring the molecular weight using the following method.

く分子量測定方法〉 反応液の約1gを20m【のベンジルアルコールに力1
1熱溶解し、冷却後フェノールフタレ・インを指示薬に
用゛い0.025Nの水酸化カリウムのベンジルアルコ
ール溶液で滴定する。 滴定に際しては空気中の二酸化
炭素等の妨害を除去するためN2ガスを導入しながら窒
素雰囲気下で行う。
Molecular weight measurement method> About 1g of the reaction solution was added to 20ml of benzyl alcohol for 1 hour.
After heating and cooling, titrate with 0.025N potassium hydroxide in benzyl alcohol using phenolphthalein as an indicator. Titration is performed under a nitrogen atmosphere while introducing N2 gas to remove interference such as carbon dioxide in the air.

111i2値より次式により重縮合体の分子量を求める
The molecular weight of the polycondensate is determined from the 111i2 value using the following formula.

但しW:重縮合体重量(g) f  :  Q、025N水酸化カリウム?8液のファ
クターS :         °         
滴2推(ソン7°ル)(ml)B :        
 °         滴定量(7″′Vンク)(ff
ll)Mn= 重縮合体の数平均分子量 尚、この方法は重縮合体末端基のカルボキシル基量を定
量することにより、この値から分子量を算出し求めるも
のであり、本発明でいう分子量は数平均分子量をいう。
However, W: Polycondensation weight (g) f: Q, 025N potassium hydroxide? Factor S of 8 liquids: °
2 drops (7°) (ml) B:
° Titration amount (7″′V) (ff
ll) Mn= Number average molecular weight of the polycondensate In this method, the molecular weight is calculated from this value by quantifying the amount of carboxyl groups at the end groups of the polycondensate. Mean molecular weight.

この様にして得られるポリラクチド、ポリグリコリド又
はそれらの共を縮合体を有機溶媒に5〜60fflff
i%の濃度で溶解させる。
The polylactide, polyglycolide, or condensate thereof obtained in this way is dissolved in an organic solvent at 5 to 60 fflff.
Dissolve at a concentration of i%.

有機溶媒としては、上記重縮合体を溶解するものであれ
ば何れのものでもよいが、ベンゼン、クロルベンゼン、
l・ルエン、キシンン、テトラヒドロフラン、ジオキサ
ン等の使用が一般的である。
Any organic solvent may be used as long as it dissolves the above polycondensate, including benzene, chlorobenzene,
Commonly used are l.luene, xinin, tetrahydrofuran, dioxane, and the like.

次いで、本発明ではこの重縮合体溶液に酸塩化物を添加
し、重縮合体末端基を酸クロリド化することにより活性
化させる。 本発明で用いる酸塩化物としては、塩化チ
オニル、又はジクロリド化合物である塩化オキサリル、
塩化サクシニル、二塩化テレフタロイル等が挙げられる
Next, in the present invention, an acid chloride is added to this polycondensate solution to activate the polycondensate terminal group by converting it into acid chloride. As the acid chloride used in the present invention, thionyl chloride or oxalyl chloride which is a dichloride compound,
Examples include succinyl chloride and terephthaloyl dichloride.

尚、これら以外の酸塩化物として、例えばモノクロリド
化合物である塩化アセチル、塩化プロピオニル、塩化ベ
ンゾイル等を用いた場合には末端基の酸クロリド化は行
えるが、本発明でいう高分子量化を行うことができない
In addition, when using acid chlorides other than these, for example, monochloride compounds such as acetyl chloride, propionyl chloride, benzoyl chloride, etc., it is possible to convert the terminal group into acid chloride, but it is possible to convert the terminal group into acid chloride. I can't.

また酸塩化物は、重縮合体の分子鎖末端のカルボキシル
基量に対し、0.25〜2モルの範囲で使用する。 即
ち、0.25モルを下回ると本発明の高分子量化が達成
できず、また2モルを上回ると高分子量化は可能であっ
ても、前記酸塩化物を重縮合体中に多含する結果、得ら
れた高分子量gL重縮合体劣化を誘起し、低分子量化す
ることより好ましくない。
Further, the acid chloride is used in an amount of 0.25 to 2 moles based on the amount of carboxyl groups at the end of the molecular chain of the polycondensate. That is, if it is less than 0.25 mol, the high molecular weight of the present invention cannot be achieved, and if it exceeds 2 mol, even if high molecular weight is possible, the result is that the acid chloride is contained in a large amount in the polycondensate. This is less preferable than inducing deterioration of the obtained high molecular weight gL polycondensate and lowering the molecular weight.

尚、前掲の1重縮合体の分子鎖末端のカルボキシル基量
は、前記分子量測定法によって算出する重縮合体の数平
均分子量から、次式により算出されるものである。
The amount of carboxyl groups at the molecular chain ends of the single polycondensate mentioned above is calculated by the following formula from the number average molecular weight of the polycondensate calculated by the above molecular weight measurement method.

X=  − n 但しX:重縮合体のカルボキシル基i(mol/g)+
1n:重縮合体の数平均分子量 酸塩化物の添加後反応は、温度20〜100℃で0,5
〜10時間攪はん下で行う。
X= − n However, X: carboxyl group i (mol/g) of polycondensate +
1n: Number average molecular weight of polycondensate The reaction after addition of acid chloride is 0.5 at a temperature of 20 to 100°C.
Carry out under stirring for ~10 hours.

この時の温度と時間の関係は、一般に相反する関係にあ
り、20°Cでは8時間、60°Cでは4時間、100
0Cでは1時間となる。
The relationship between temperature and time at this time is generally contradictory, with 8 hours at 20°C, 4 hours at 60°C, and 100
At 0C, it takes 1 hour.

このようにして得られる酸塩化物と反応後の重縮合体溶
液を、減圧下又は窒素ガス導入下で適度に加温し、有機
溶媒を除去した後、続いて150へ一250°Cに加温
して溶融重縮合反応を1〜10時間行うことにより本発
明の高分子量重縮合体を得ることができる。
The polycondensate solution obtained after the reaction with the acid chloride is heated appropriately under reduced pressure or while introducing nitrogen gas to remove the organic solvent, and then heated to 150-250°C. The high molecular weight polycondensate of the present invention can be obtained by heating and performing a melt polycondensation reaction for 1 to 10 hours.

また他方、前記酸塩化物と反応後の重縮合体溶液に、ア
ミン化合物を添加反応させることによっても、本発明の
高分子1重縮合体を得ることができる。
On the other hand, the polymer monopolycondensate of the present invention can also be obtained by adding an amine compound to the polycondensate solution after the reaction with the acid chloride.

その方法として、先ずアミン化合物は、トリメチルアミ
ン、トリエチルアミン、トリプロピルアミン、トリブチ
ルアミン、とリジン等を使用し、酸塩化物処理前の重縮
合体の分子鎖末端のカルボキシル基量に対し、0.5〜
2モルの範囲となる割合で添加する。 これを反応温度
30〜100°Cで、1〜8時間反応させることにより
、本発明の高分子量重縮合体を得ることができる。
As a method, first, trimethylamine, triethylamine, tripropylamine, tributylamine, lysine, etc. are used as amine compounds, and 0.5 ~
It is added in a proportion that is in the range of 2 moles. By reacting this at a reaction temperature of 30 to 100°C for 1 to 8 hours, the high molecular weight polycondensate of the present invention can be obtained.

この様にして得られる本発明の高分子量ポリラクチド、
ポリグリコリド又はそれらの共i縮合体の分子量は高く
、通常の直接脱水重縮合法でf′Fられる重縮合体の分
子量は、触媒無添加系で約4000、スズ化合物等の触
媒添加系では約7000が各々限界であるのに対して、
本発明の方法によれば、この分子量は約40000にま
で上昇させることが可能である。
The high molecular weight polylactide of the present invention obtained in this way,
The molecular weight of polyglycolide or their co-condensates is high, and the molecular weight of the polycondensate produced by f'F in a normal direct dehydration polycondensation method is about 4,000 in a system without a catalyst, and about 4,000 in a system with a catalyst such as a tin compound. While 7000 is the limit for each,
According to the method of the invention, this molecular weight can be increased to about 40,000.

従って、本発明品が高分子量であるがために、重縮合体
の分解性が著しく低く、またこの重縮ぞ体を成型した際
の強度が大きい等の優れた特性を有する。 因って、徐
放性基剤として例えば生イ(吸収材料、医薬、農薬等の
薬剤徐放性マトリックス、マイクロカプセル基剤、土壌
改良剤への利月のみならず、崩壊性農業用フィルム、界
面活性剤、果実の品質向上剤、気体分離透過膜等、幅広
い利用用逮をイfする。
Therefore, since the product of the present invention has a high molecular weight, the decomposability of the polycondensate is extremely low, and when the polycondensate is molded, it has excellent properties such as high strength. Therefore, sustained release bases can be used, for example, as raw materials (absorbent materials, sustained release matrices for pharmaceuticals, agricultural chemicals, etc.), microcapsule bases, soil conditioners, as well as disintegrating agricultural films, It can be used in a wide range of applications such as surfactants, fruit quality improvers, and gas separation permeable membranes.

更に本発明品は、ある一定期間までの分解性か著しく低
く、その後急速に分解が進行するという従来の直接脱水
重縮合法で得られなかった分解’+17性を有すること
より、例えば薬剤除放性マトリックスに応用した場合に
は、薬剤の放出俊速やかに重縮合体基剤が分解する等の
長所を有する。
Furthermore, the product of the present invention has extremely low degradability up to a certain period of time and then rapidly decomposes, which is not possible with the conventional direct dehydration polycondensation method. When applied to a sexual matrix, it has the advantage that the polycondensate base decomposes quickly to release the drug.

(実施例) 以下に本発明の実施例を掲げて説明を行うが、本発明は
これらに限定されるものではない。
(Example) The present invention will be described below with reference to Examples, but the present invention is not limited thereto.

尚、%は特にことわらない限り全て重量%を示す。It should be noted that all percentages are by weight unless otherwise specified.

実施例1 攪はん機、温度計、コンデンサーを備えた500ffi
I容の三つロフラスコに90%L−テl、 @ 400
(を入れ、攪はん下、温度85°C,減圧度100mm
HgでL−=1.酸を濃縮した9 約45gの水が流出した後、温度、減圧度を除々に上昇
し、200°C1L5mmHgで12時間の反応を行っ
た。
Example 1 500ffi equipped with stirrer, thermometer and condenser
90% L-Tel in a three-bottle flask, @400
(Put in, under stirring, temperature 85°C, degree of vacuum 100mm)
In Hg, L-=1. After approximately 45 g of water after concentrating the acid flowed out, the temperature and degree of vacuum were gradually increased, and the reaction was carried out at 200°C, 1L, and 5mmHg for 12 hours.

この時得られた重縮合体の数平均分子量は3100であ
った。
The number average molecular weight of the polycondensate obtained at this time was 3,100.

実施例2 N2ガス導入管、温度計、コンデンサーを備えた200
1111容ガラス製の反応器に、90%L−7L酸90
jとグリコール酸60.8[を入れ、N2ガスを300
m1/minの流量で溶液中に吹込みながら、温度を2
05°Cに昇温しな。この温度を保持しつつ10時間の
反応を行った。
Example 2 200 equipped with N2 gas introduction pipe, thermometer, and condenser
In a 1111 volume glass reactor, 90% L-7L acid 90%
Add 60.8 g of glycolic acid and 300 g of N2 gas.
While blowing into the solution at a flow rate of m1/min, the temperature was increased to 2.
Raise the temperature to 05°C. The reaction was carried out for 10 hours while maintaining this temperature.

この時得られた正縮合体の数平均分子量は3200であ
った・ 実施例3 実施例1と同じフラスコに90%DL−乳酸400gを
入れ、攪はん下、温度90°C,減圧度100mmHg
−′C−0L−1し酸を濃縮した。
The number average molecular weight of the normal condensate obtained at this time was 3200. Example 3 400 g of 90% DL-lactic acid was placed in the same flask as in Example 1, and the mixture was stirred at a temperature of 90°C and a degree of vacuum of 100 mmHg.
-'C-0L-1 acid was concentrated.

約45トの水が流出した後、塩化第一スズ(Snclp
・2HaO)を018g添加し、温度、減圧度を徐々に
上昇し、205°C110C11Oで8時間の反応を行
った。
After approximately 45 tons of water had spilled, stannous chloride (Snclp)
018g of 2HaO) was added, the temperature and degree of vacuum were gradually increased, and the reaction was carried out at 205°C, 110C11O for 8 hours.

この時得られた重縮合体の数平均分子量は6000であ
った。
The number average molecular weight of the polycondensate obtained at this time was 6,000.

実施例4 実施例1で得られた重縮合体(分子鎖末端のカルボキシ
ル某社3.23X10−’mat/g)の100gを粉
砕し、実施例1と同様のフラスコに入れ、ベンゼン20
0m1を加えて攪はん下重縮合体を溶解した。
Example 4 100 g of the polycondensate obtained in Example 1 (carboxyl at the end of the molecular chain, 3.23 x 10-' mat/g) was ground, placed in the same flask as in Example 1, and mixed with benzene 20
0ml was added and the polycondensate was dissolved under stirring.

これに第1表に示した塩化チオニル及び各種の酸塩化物
の所定量を添加し、82°C14時間の反応を行った。
To this, thionyl chloride and various acid chlorides shown in Table 1 were added in predetermined amounts, and a reaction was carried out at 82°C for 14 hours.

次いで、減圧度1001!llllHgでベンゼンを除
去した後、205°C,減圧度15mmHgで4時間の
反応を行った。
Next, the degree of decompression is 1001! After removing benzene at 111 Hg, the reaction was carried out at 205°C and a reduced pressure of 15 mmHg for 4 hours.

反応後の重縮合体をクロロホルム200m1に溶解させ
、次にこれを多量のメタノール中に析出し、更にメタノ
ールで洗浄後、30°Cで一任夜真空乾燥した。
The polycondensate after the reaction was dissolved in 200 ml of chloroform, then precipitated in a large amount of methanol, further washed with methanol, and then vacuum-dried overnight at 30°C.

この様にして得た重縮合体の数平均分子量を測定し、結
果を第1表に示した。
The number average molecular weight of the polycondensate thus obtained was measured and the results are shown in Table 1.

実施例5 実施例2で得られた重縮合体(分子鎖末端のカルボキシ
ル基l 3.L3XIQ−’mol/g)ノ100gを
粉砕し、実施例1と同様のフラスコに入れ、トルエン2
00i1を加えて攪はん下重縮合体を溶解した。
Example 5 100 g of the polycondensate obtained in Example 2 (carboxyl group at the end of the molecular chain 13.L3XIQ-'mol/g) was ground, placed in the same flask as in Example 1, and mixed with toluene 2
00i1 was added and the polycondensate was dissolved under stirring.

これに塩化オキサリル4.8g(3,38X10−2m
ol)を添加し、78℃、6時間の反応を行った。
To this, 4.8g of oxalyl chloride (3,38X10-2m
ol) was added thereto, and the reaction was carried out at 78°C for 6 hours.

次いで、トリエチルアミン4.0g(3,96X10−
2mol)を反応系に徐々に滴下し、83℃、2時間の
反応を行なった。
Next, 4.0 g of triethylamine (3,96×10-
2 mol) was gradually added dropwise to the reaction system, and the reaction was carried out at 83°C for 2 hours.

反応後の重縮合体を多量のメタノール中に析出し、更に
メタノールで洗浄後、30°Cで一任夜真空乾燥した。
The polycondensate after the reaction was precipitated in a large amount of methanol, further washed with methanol, and then vacuum-dried overnight at 30°C.

この様にして得た本発明重縮合体の数平均分子量は17
800であった。
The number average molecular weight of the polycondensate of the present invention thus obtained was 17
It was 800.

実施例6 実施例3で得られた重縮合体(分子鎖末端のカルボキシ
ル基jJf 1.29X10−’mol/g)のBog
を粉砕し、実施例1と同様のフラスコに入れ、キシレン
25011を加えて攪はん下重縮合体を溶解した。
Example 6 Bog of the polycondensate obtained in Example 3 (carboxyl group at the end of the molecular chain jJf 1.29X10-'mol/g)
was crushed and placed in the same flask as in Example 1, and xylene 25011 was added thereto to dissolve the polycondensate under stirring.

コn i: i 化”f クシ= ル3.Og(1,9
4X10−2mal)を添力[し、85℃、5時間の反
応を行った。
Con i: i conversion"f kushi=ru3.Og(1,9
4×10 −2 mal) was added, and the reaction was carried out at 85° C. for 5 hours.

次いで、減圧度50mmHgでキシレンを除去した後、
20υC,iJ&圧度8mIIIHgで5時間の反応を
行った。
Next, after removing xylene at a reduced pressure of 50 mmHg,
The reaction was carried out for 5 hours at 20υC, iJ & pressure 8mIIIHg.

反応後の重縮合体をクロロホルム300m1l:溶解さ
せ、次にこれを多量のメタノール中に析出し、更にメタ
ノールで洗浄後、30°Cで一任夜興空乾燻した。
The polycondensate after the reaction was dissolved in 300 ml of chloroform, then precipitated in a large amount of methanol, further washed with methanol, and air-dried at 30°C.

この様にして得た本発明重縮合体の数平均分子量は37
700であった。
The number average molecular weight of the polycondensate of the present invention thus obtained was 37.
It was 700.

実施例7 実施例4で得た本発明及び比較例の重縮合体を使用し、
重縮合体の加水分解性を調べた。
Example 7 Using the polycondensates of the present invention and comparative example obtained in Example 4,
The hydrolyzability of the polycondensate was investigated.

試験方法は、これらの重縮合体を粉砕して24〜48m
eshとしたものを、50m1容のスクリュウ瓶に10
0gづつ採り、水30m1を加え密閉し、37°C恒温
で保存した。
The test method involves crushing these polycondensates into 24-48 m
esh in a 50ml screw bottle.
0 g each was taken, 30 ml of water was added, the mixture was sealed, and the mixture was stored at a constant temperature of 37°C.

これを所定期間放置した後、重縮合体の乾燥」量を測定
し、次式により重縮合体の加水分解率を求めた。
After this was left for a predetermined period of time, the dry amount of the polycondensate was measured, and the hydrolysis rate of the polycondensate was determined using the following formula.

但しY−重縮合体の加水分解率(%) W:i縮合体の乾燥後の重量(g) 結果を第2表に示した。However, the hydrolysis rate (%) of Y-polycondensate W: Weight of i-condensate after drying (g) The results are shown in Table 2.

第2表Table 2

Claims (1)

【特許請求の範囲】[Claims] 低分子量のポリラクチド、ポリグリコリド又はそれらの
共重縮合体を、ジクロリド化合物又は塩化チオニルから
選ばれた酸塩化物と反応させた後、溶融重縮合反応を行
わせるか、又はアミン化合物を添加反応させることから
なる高分子量ポリラクチド、ポリグリコリド又はそれら
の共重縮合体の製造法。
After reacting a low molecular weight polylactide, polyglycolide, or a copolycondensate thereof with an acid chloride selected from a dichloride compound or thionyl chloride, a melt polycondensation reaction is performed or an amine compound is added to the reaction. A method for producing a high molecular weight polylactide, polyglycolide, or a copolycondensate thereof, comprising:
JP12509986A 1986-05-29 1986-05-29 Production of high-mw polylactide or polyglycolide Granted JPS62280220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12509986A JPS62280220A (en) 1986-05-29 1986-05-29 Production of high-mw polylactide or polyglycolide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12509986A JPS62280220A (en) 1986-05-29 1986-05-29 Production of high-mw polylactide or polyglycolide

Publications (2)

Publication Number Publication Date
JPS62280220A true JPS62280220A (en) 1987-12-05
JPH043763B2 JPH043763B2 (en) 1992-01-24

Family

ID=14901829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12509986A Granted JPS62280220A (en) 1986-05-29 1986-05-29 Production of high-mw polylactide or polyglycolide

Country Status (1)

Country Link
JP (1) JPS62280220A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993025191A3 (en) * 1992-06-15 1994-02-17 Centre Nat Rech Scient Bioresorbable polymer microspheres free from surface active agents, their preparation and application as drug
FR2707653A1 (en) * 1993-07-16 1995-01-20 Vetoquinol Sa Conjugate between a biocompatible and biodegradable polymer and a molecule, especially a biologically active molecule containing mobile hydrogen, process for its preparation and pharmaceutical composition including this conjugate
JPH1072375A (en) * 1996-06-26 1998-03-17 Takeda Chem Ind Ltd Sustained release pharmaceutical preparation
US5770683A (en) * 1994-11-02 1998-06-23 Mitsui Toatsu Chemicals, Inc. Preparation process of polyhydroxycarboxylic acid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MAKROMOL CHEM 182=1981 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993025191A3 (en) * 1992-06-15 1994-02-17 Centre Nat Rech Scient Bioresorbable polymer microspheres free from surface active agents, their preparation and application as drug
FR2707653A1 (en) * 1993-07-16 1995-01-20 Vetoquinol Sa Conjugate between a biocompatible and biodegradable polymer and a molecule, especially a biologically active molecule containing mobile hydrogen, process for its preparation and pharmaceutical composition including this conjugate
US5770683A (en) * 1994-11-02 1998-06-23 Mitsui Toatsu Chemicals, Inc. Preparation process of polyhydroxycarboxylic acid
JPH1072375A (en) * 1996-06-26 1998-03-17 Takeda Chem Ind Ltd Sustained release pharmaceutical preparation

Also Published As

Publication number Publication date
JPH043763B2 (en) 1992-01-24

Similar Documents

Publication Publication Date Title
Chujo et al. Synthesis and redox gelation of disulfide-modified polyoxazoline
Kawasaki et al. Synthesis, thermal and mechanical properties and biodegradation of branched polyamide 4
EP0171907A1 (en) Use of a copolymer in a controlled drug release composition
JPH0733861A (en) Production of polyhydroxycarboxylic acid
WO2005090438A1 (en) Process for producing aliphatic polyester reduced in residual cyclic ester content
US5386004A (en) Polyhydroxycarboxylic acid and purification process thereof
Kim et al. Direct condensation polymerization of lactic acid
JPS6128521A (en) Novel polymer and its production
US5719256A (en) Process for preparing polycondensation polymer compound
US4933431A (en) One step preparation of poly(amide-anhydride)
JPS62280220A (en) Production of high-mw polylactide or polyglycolide
Takahashi et al. Convenient synthesis of poly (butylene succinate) catalyzed by distannoxane
JPS62501144A (en) Method for producing linear polychlorophosphazene having a terminal group PXCI↓2 in which X is an oxygen atom or a sulfur atom by solution polycondensation of P↓2NXCI↓5 monomers
JPS6225121A (en) Production of polyglycolide or polylactide
Afli et al. A preliminary study on polyhydrazides incorporating furan moieties
JP3273821B2 (en) Purification method of polyhydroxycarboxylic acid
KR0134938B1 (en) Biodegradable polymeric film and process for the preparation thereof
JPS6264823A (en) Production of polyglycolide or polylactide
JPH07102053A (en) Polyhydroxycarboxylic acid and its purification
JPH08109250A (en) Method for purifying polyhydroxycarboxylic acid
CN113150254A (en) Method for preparing nontoxic polylactic acid by regulating and controlling lactic acid aqueous solution
JPH06287278A (en) Production of aliphatic polyester
JPS61111326A (en) Novel polymer and its production
RU2128673C1 (en) Method of preparing polyazomethines
JP3648550B2 (en) Process for producing polyγ-butyrolactone using metal complex catalyst