JP3273821B2 - Purification method of polyhydroxycarboxylic acid - Google Patents
Purification method of polyhydroxycarboxylic acidInfo
- Publication number
- JP3273821B2 JP3273821B2 JP04104993A JP4104993A JP3273821B2 JP 3273821 B2 JP3273821 B2 JP 3273821B2 JP 04104993 A JP04104993 A JP 04104993A JP 4104993 A JP4104993 A JP 4104993A JP 3273821 B2 JP3273821 B2 JP 3273821B2
- Authority
- JP
- Japan
- Prior art keywords
- polymer
- acid
- lactic acid
- catalyst
- molecular weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Polyesters Or Polycarbonates (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明はポリヒドロキシカルボン
酸の精製法に関する。更に詳しくは、ポリ乳酸、又は乳
酸とその他のヒドロキシカルボン酸のコポリマーを有機
溶媒中で塩化水素ガスと接触させることにより、触媒を
塩化物の形に変換して除去する方法に関するものであ
る。The present invention relates to a method for purifying polyhydroxycarboxylic acid. More specifically, the present invention relates to a method for converting a catalyst into a chloride form by removing polylactic acid or a copolymer of lactic acid and another hydroxycarboxylic acid in an organic solvent with hydrogen chloride gas to remove the catalyst.
【0002】[0002]
【従来の技術】熱可塑性樹脂で生分解性のあるポリマー
として、ポリ乳酸又は乳酸とその他のヒドロキシカルボ
ン酸のコポリマー(以下乳酸系ポリマーと略称する)が
知られている。これらのポリマーは、動物の体内で数カ
月から1年で100%生分解し、又、土壌や海水中に置
かれた場合、湿った環境下では数週間で分解を始め1年
から数年で消滅し、更に分解生成物は、人体に無害な乳
酸と二酸化炭素と水になるという特性を有している。2. Description of the Related Art Polylactic acid or a copolymer of lactic acid and another hydroxycarboxylic acid (hereinafter abbreviated as a lactic acid-based polymer) is known as a biodegradable polymer of a thermoplastic resin. These polymers are 100% biodegradable in the body of animals in months to one year, and when placed in soil or seawater, begin to degrade in weeks in moist environments and disappear in one to several years. Further, the decomposition product has the property of becoming lactic acid, carbon dioxide, and water that are harmless to the human body.
【0003】ポリ乳酸は、通常ラクタイドと呼ばれる乳
酸の環状2量体から合成され、その製造法に関してはU
SP1,995,970、USP2,362,511、
USP2,683,136に開示されている。又、乳酸
とその他のヒドロキシカルボン酸のコポリマーは、通常
乳酸の環状2量体であるラクタイドとヒドロキシカルボ
ン酸の環状エステル中間体(通常グリコール酸の2量体
であるグリコライド)から合成され、その製造方法に関
しては、USP3,636,956とUSP3,79
7,499に開示されている。しかし、これらの方法で
は溶融重合後そのままペレット化するため、用いた触媒
がポリマー中に残存するという欠点を有する。この場
合、ポリマーは分解しても触媒が残るため、触媒の毒性
の有無によってはポリマーの使用が制限されることにな
る。更にポリマー中に触媒が存在すると、後の加工成形
時に加熱によりポリマーの解重合反応が生じ易く、ポリ
マーの分子量が低下して物性の劣化を招くという問題が
ある。又、重合反応後に触媒を除く方法も考えられる
が、通常この反応で用いられるオクタン酸スズの場合に
は、再沈精製法等では除去が困難である。[0003] Polylactic acid is synthesized from a cyclic dimer of lactic acid, usually called lactide.
SP1,995,970, USP2,362,511,
No. 2,683,136. In addition, copolymers of lactic acid and other hydroxycarboxylic acids are synthesized from lactide, which is a cyclic dimer of lactic acid, and a cyclic ester intermediate of hydroxycarboxylic acid (glycolide, which is a dimer of glycolic acid). Regarding the production method, USP 3,636,956 and USP 3,795
7,499. However, these methods have a disadvantage that the used catalyst remains in the polymer because pelletization is performed as it is after the melt polymerization. In this case, even if the polymer is decomposed, the catalyst remains, so that the use of the polymer is restricted depending on the toxicity of the catalyst. Further, when a catalyst is present in the polymer, there is a problem that the polymer is likely to undergo a depolymerization reaction by heating during the subsequent processing and molding, whereby the molecular weight of the polymer is reduced and physical properties are deteriorated. A method of removing the catalyst after the polymerization reaction is also conceivable. However, in the case of tin octoate used in this reaction, it is difficult to remove it by a reprecipitation purification method or the like.
【0004】従って、充分に高い分子量で且つ触媒を含
まない乳酸系ポリマーを得る際には、精製により触媒を
除去する必要がある。特開昭63−145327号にお
いては、触媒を含むポリマーを水に対して不混和性の有
機溶媒に溶解した後、無機酸、水溶性有機酸又は水溶性
錯化剤を含む水性相又は水と接触させて触媒を除去する
方法が開示されている。しかしこの方法では、ポリマー
溶液が粘稠になると水性相との接触効率が悪くなり、従
って触媒の除去効率が落ちるため、ポリマー濃度が0.
5〜4.0重量%といった希薄溶液で処理しなければな
らないという問題や、有機溶媒溶液と水性相との混合後
の分液性が悪いといった問題がある。更に特開昭63−
254128号では、乱流せん断場内においてポリマー
溶液に沈澱剤を加えて精製する方法が開示されている
が、触媒の除去とポリマーの析出が同時進行であるため
に触媒の除去効率が悪く、又、特殊な設備を必要とする
など工業的に行うには問題があった。Accordingly, in order to obtain a lactic acid-based polymer having a sufficiently high molecular weight and containing no catalyst, it is necessary to remove the catalyst by purification. In JP-A-63-145327, a polymer containing a catalyst is dissolved in an organic solvent immiscible with water, and then dissolved in an aqueous phase or water containing an inorganic acid, a water-soluble organic acid or a water-soluble complexing agent. A method for contacting to remove the catalyst is disclosed. However, in this method, when the polymer solution becomes viscous, the efficiency of contact with the aqueous phase becomes poor, and thus the efficiency of removing the catalyst is reduced.
There is a problem that the treatment must be performed with a dilute solution such as 5 to 4.0% by weight, and a problem that the liquid separation property after mixing the organic solvent solution and the aqueous phase is poor. JP-A-63-
No. 254128 discloses a method for purifying a polymer solution by adding a precipitant in a turbulent shear field, but the catalyst removal efficiency and the catalyst removal efficiency are poor because the removal of the catalyst and the precipitation of the polymer proceed simultaneously. There was a problem in performing it industrially, such as requiring special equipment.
【0005】[0005]
【発明が解決しようとする課題】本発明は、乳酸系ポリ
マー中の触媒を工業的に安価且つ容易に除去する方法を
提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a method for industrially inexpensively and easily removing a catalyst in a lactic acid-based polymer.
【0006】[0006]
【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意検討した結果、乳酸系ポリマーを
有機溶媒中で塩化水素ガスと接触させることにより、該
ポリマー中の触媒を塩化物の形に変換して除去できるこ
とを見い出し本発明を完成したものである。Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, by bringing a lactic acid-based polymer into contact with hydrogen chloride gas in an organic solvent, the catalyst in the polymer was reduced. The present invention has been completed by finding that it can be converted into chloride form and removed.
【0007】即ち本発明は、ポリ乳酸又は乳酸とヒドロ
キシカルボン酸のコポリマーを有機溶媒中にて塩化水素
ガスで処理した後、沈澱剤と混合してポリマーを析出さ
せることを特徴とするポリヒドロキシカルボン酸の精製
法である。That is, the present invention is characterized in that a polylactic acid or a copolymer of lactic acid and hydroxycarboxylic acid is treated with hydrogen chloride gas in an organic solvent and then mixed with a precipitant to precipitate a polymer. This is a method for purifying an acid.
【0008】乳酸系ポリマーは、乳酸又は乳酸と他のヒ
ドロキシカルボン酸から直接脱水重縮合するか、乳酸の
環状2量体であるラクタイド又はヒドロキシカルボン酸
の環状エステル中間体、例えばグリコール酸の2量体で
あるグリコライド(GLD)や6−ヒドロキシカプロン
酸の環状エステルであるε−カプロラクトン(CL)等
の共重合可能なモノマーを適宜用いて触媒の存在下、開
環重合させたものでもよい。直接脱水重縮合する場合
は、乳酸又は乳酸と他のヒドロキシカルボン酸を好まし
くは有機溶媒下、触媒の存在下、特にフェニルエーテル
系溶媒の存在下で共沸脱水縮合し、特に好ましくは共沸
により留出した溶媒から水を除き、実質的に無水の状態
にした溶媒を反応系に戻す方法により重合させることが
できる。原料としての乳酸は、L−乳酸又はD−乳酸、
又はそれらの混合物のいずれでもよく、その他のヒドロ
キシカルボン酸としては、グリコール酸、3−ヒドロキ
シ酪酸、4−ヒドロキシ酪酸、4−ヒドロキシ吉草酸、
5−ヒドロキシ吉草酸、6−ヒドロキシカプロン酸等が
用いられる。The lactic acid-based polymer is directly dehydrated and polycondensed from lactic acid or lactic acid and another hydroxycarboxylic acid, or is a cyclic dimer of lactic acid or a cyclic ester intermediate of hydroxycarboxylic acid such as dimer of glycolic acid. Ring-opening polymerization may be carried out in the presence of a catalyst using a copolymerizable monomer such as glycolide (GLD), which is a body, and ε-caprolactone (CL), which is a cyclic ester of 6-hydroxycaproic acid. In the case of direct dehydration polycondensation, lactic acid or lactic acid and another hydroxycarboxylic acid are azeotropically dehydrated and condensed, preferably in an organic solvent, in the presence of a catalyst, particularly in the presence of a phenyl ether solvent, and particularly preferably azeotropically. Polymerization can be carried out by removing water from the distilled solvent and returning the substantially anhydrous solvent to the reaction system. Lactic acid as a raw material is L-lactic acid or D-lactic acid,
Or a mixture thereof, and other hydroxycarboxylic acids include glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 4-hydroxyvaleric acid,
5-hydroxyvaleric acid, 6-hydroxycaproic acid and the like are used.
【0009】本発明の反応において通常用いられる触媒
としては、亜鉛、錫、鉄、アルミニウム等の金属、酸化
亜鉛、酸化錫、酸化鉄、酸化アルミニウム等の金属酸化
物、炭酸亜鉛、炭酸マグネシウム等の炭酸塩、酸化亜
鉛、酢酸錫、乳酸錫、オクタン酸錫、酢酸アルミニウム
等の有機カルボン酸塩等が挙げられる。その使用量は、
使用するヒドロキシカルボン酸、又はそれらのオリゴマ
ーの0.0001〜10重量%である。Catalysts usually used in the reaction of the present invention include metals such as zinc, tin, iron and aluminum, metal oxides such as zinc oxide, tin oxide, iron oxide and aluminum oxide, zinc carbonate, magnesium carbonate and the like. Organic carbonates such as carbonate, zinc oxide, tin acetate, tin lactate, tin octoate, and aluminum acetate are exemplified. Its usage is
0.0001 to 10% by weight of the hydroxycarboxylic acid or oligomers used.
【0010】こうして公知の方法で調製された固体状或
は溶液状のポリマーを適当な有機溶媒に溶解する。用い
る溶媒は乳酸系ポリマーが溶解するものであればよく、
例えばベンゼン、トルエン等の炭化水素系溶剤、アセト
ン、メチルエチルケトン、アセトフェノン等のケトン系
溶剤、塩化メチレン、クロロホルム等のハロゲン化炭化
水素系溶剤、N,N−ジメチルホルムアミド、ジメチル
アセトアミド、ジメチルスルホキシド等の非プロトン性
極性溶剤、ジフェニルエーテル、アニソール等のエーテ
ル系溶剤、又は種々の有機溶媒の混合物であってもよ
い。溶解するポリマーの濃度は通常3〜50重量%で行
うが、ポリマー溶液が攪拌できれば特にその濃度に制限
はない。又、重合時に有機溶媒を用いる場合には、重合
反応終了後、該ポリマーを取り出す事なくそのままの反
応液を使用できる。[0010] The solid or solution polymer prepared by the known method is dissolved in a suitable organic solvent. The solvent to be used should just dissolve the lactic acid-based polymer,
For example, hydrocarbon solvents such as benzene and toluene, ketone solvents such as acetone, methyl ethyl ketone and acetophenone, halogenated hydrocarbon solvents such as methylene chloride and chloroform, and non-solvents such as N, N-dimethylformamide, dimethylacetamide and dimethylsulfoxide. It may be a protic polar solvent, an ether solvent such as diphenyl ether or anisole, or a mixture of various organic solvents. The concentration of the polymer to be dissolved is usually 3 to 50% by weight, but the concentration is not particularly limited as long as the polymer solution can be stirred. When an organic solvent is used at the time of polymerization, the reaction solution can be used as it is without taking out the polymer after completion of the polymerization reaction.
【0011】次いで、この乳酸系ポリマー溶液を塩化水
素ガスと接触させる。乳酸系ポリマーと塩化水素ガスを
接触させる方法は、乳酸ポリマーの溶液に直接塩酸ガス
を吹き込んでも良いし、塩化水素ガスを溶解した溶液を
混合する方法でも良い。乳酸系ポリマーと塩化水素ガス
を接触させて触媒が塩化物に変換するのに充分な時間だ
け攪拌を継続する。接触させる塩化水素ガスの量は触媒
と塩化物を作るのに充分な量であればよい。塩化水素ガ
スで処理する際の温度は特に制限はないが通常0〜10
0℃で行い、好ましくは10〜60℃が良い。温度が低
いと塩化物への変換速度が遅くなり、高すぎるとポリマ
ーの劣化が起こるためである。Next, the lactic acid-based polymer solution is brought into contact with hydrogen chloride gas. The method of bringing the lactic acid-based polymer into contact with hydrogen chloride gas may be a method in which hydrochloric acid gas is directly blown into a solution of the lactic acid polymer, or a method in which a solution in which hydrogen chloride gas is dissolved is mixed. The lactic acid-based polymer is brought into contact with hydrogen chloride gas, and stirring is continued for a time sufficient for the catalyst to be converted into chloride. The amount of the hydrogen chloride gas to be brought into contact may be an amount sufficient to produce the catalyst and the chloride. The temperature at the time of treatment with hydrogen chloride gas is not particularly limited, but is usually 0 to 10
It is carried out at 0 ° C., preferably 10 to 60 ° C. If the temperature is low, the conversion rate to chloride is slow, and if it is too high, the polymer is deteriorated.
【0012】塩化水素ガスと接触させた後の溶液と混合
する沈澱剤としては、水、メタノール、エタノール、イ
ソプロパノール、tert−ブタノール等がある。沈澱
剤中でのポリマー溶液の分散性を良くするために、充分
攪拌しながらポリマーを析出させることも可能である。
混合時の温度は低い方が、ポリマーの分解を抑えられる
ので好ましく、通常30℃以下で行う。Examples of the precipitant mixed with the solution after contact with hydrogen chloride gas include water, methanol, ethanol, isopropanol and tert-butanol. In order to improve the dispersibility of the polymer solution in the precipitant, the polymer can be precipitated with sufficient stirring.
It is preferable that the temperature at the time of mixing is lower because the decomposition of the polymer can be suppressed, and the temperature is usually 30 ° C. or lower.
【0013】[0013]
【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれらの実施例に限定されるものではな
い。EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited to these examples.
【0014】製造例1 L−ラクタイド10kg及びオクタン酸錫0.1重量%
と、ラウリルアルコール2重量%を、攪拌機を備えた肉
厚の円筒型ステンレス製重合容器へ封入し、真空で2時
間脱気した後窒素ガスで置換した。この混合物を窒素雰
囲気下で攪拌しつつ180℃で3時間加熱した。温度を
そのまま保ちながら、排気管及びガラス製受器を介して
真空ポンプにより徐々に脱気し反応容器内を3mmHg
まで減圧にした。脱気開始から1時間後、モノマーや低
分子量揮発分の留出がなくなったので、容器内を窒素置
換し、容器下部からポリマーを紐状に抜き出してペレッ
ト化し、ポリL−乳酸を得た。このポリマーの平均分子
量は約8万、Sn含有量は500ppmであった。Production Example 1 10 kg of L-lactide and 0.1% by weight of tin octoate
And 2% by weight of lauryl alcohol were sealed in a thick cylindrical stainless steel polymerization vessel equipped with a stirrer, degassed under vacuum for 2 hours, and then replaced with nitrogen gas. The mixture was heated at 180 ° C. for 3 hours with stirring under a nitrogen atmosphere. While maintaining the temperature as it is, the inside of the reaction vessel was gradually degassed by a vacuum pump through an exhaust pipe and a glass receiver to 3 mmHg.
The pressure was reduced to. One hour after the start of degassing, the distillation of the monomer and low-molecular-weight volatile components disappeared. Therefore, the inside of the container was replaced with nitrogen, and the polymer was drawn out from the lower part of the container in a string form and pelletized to obtain poly L-lactic acid. The average molecular weight of this polymer was about 80,000, and the Sn content was 500 ppm.
【0015】尚、ポリマーの平均分子量(重量平均分子
量)はポリスチレンを標準としてゲルパーミエーション
クロマトグラフィーにより以下の条件で測定した。装置
:島津LC−10AD 検出器:島津RID−6A カラム:日立化成GL−S350DT−5+GL−S3
70DT−5 溶媒 :クロロホルム 濃度 :1% 注入量:20μl 流速 :1.0ml/min 又、ポリマー中のSn含有量は蛍光X線分析により測定
した。The average molecular weight (weight average molecular weight) of the polymer was measured by gel permeation chromatography using polystyrene as a standard under the following conditions. Apparatus: Shimadzu LC-10AD Detector: Shimadzu RID-6A Column: Hitachi Chemical GL-S350DT-5 + GL-S3
70DT-5 Solvent: chloroform Concentration: 1% Injection volume: 20 μl Flow rate: 1.0 ml / min The Sn content in the polymer was measured by X-ray fluorescence analysis.
【0016】製造例2 L−ラクタイド10kgを、L−ラクタイド8kgとD
L−ラクタイド2kgに変えたほかは製造例1と同様に
してペレット化し、ポリDL−乳酸を得た。このポリマ
ーの平均分子量は約7万、Sn含有量は550ppmで
あった。Production Example 2 10 kg of L-lactide, 8 kg of L-lactide and D
Pelletization was carried out in the same manner as in Production Example 1 except that L-lactide was changed to 2 kg to obtain poly-DL-lactic acid. The average molecular weight of this polymer was about 70,000, and the Sn content was 550 ppm.
【0017】製造例3 L−ラクタイド10kgを、L−ラクタイド8kgとグ
リコライド2kgに変えた他は製造例1と同様にしてペ
レット化し、L−ラクタイドとグリコライドのコポリマ
ーを得た。このポリマーの平均分子量は約6万、Sn含
有量は600ppmであった。Production Example 3 Pelletization was carried out in the same manner as in Production Example 1 except that 10 kg of L-lactide was changed to 8 kg of L-lactide and 2 kg of glycolide to obtain a copolymer of L-lactide and glycolide. The average molecular weight of this polymer was about 60,000, and the Sn content was 600 ppm.
【0018】製造例4 90重量%L−乳酸10kgを150℃/50mmHg
で3時間攪拌しながら水を留出させた後、錫末6.2g
を加え、150℃/30mmHgで更に2時間攪拌して
オリゴマー化した。このオリゴマーに錫末28.8gと
ジフェニルエーテル21.1kgを加え150℃/35
mmHgで共沸脱水反応を行い、留出した水と溶媒を水
分離器で分離して溶媒のみを反応器に戻した。2時間
後、反応器に戻す有機溶媒を、4.6kgのモレキュラ
ーシーブ3Aを充填したカラムに通液してから反応器に
戻るようにして、150℃/35mmHgで更に40時
間反応を行い、平均分子量約11万のポリ乳酸溶液を得
た。このポリマー中のSn含有量は1800ppmであ
った。Production Example 4 10 kg of 90% by weight L-lactic acid was added at 150 ° C./50 mmHg.
After distilling water while stirring for 3 hours, 6.2 g of tin powder was obtained.
Was added, and the mixture was further stirred at 150 ° C./30 mmHg for 2 hours to oligomerize. To this oligomer were added 28.8 g of tin powder and 21.1 kg of diphenyl ether, and added at 150 ° C./35
An azeotropic dehydration reaction was performed at mmHg, and the distilled water and the solvent were separated by a water separator, and only the solvent was returned to the reactor. Two hours later, the organic solvent to be returned to the reactor was passed through a column packed with 4.6 kg of molecular sieve 3A, and then returned to the reactor. A polylactic acid solution having a molecular weight of about 110,000 was obtained. The Sn content in this polymer was 1800 ppm.
【0019】製造例5 90重量%L−乳酸5kgと70重量%グリコール酸
0.6kgを140℃/50mmHgで3時間攪拌しな
がら水を留出させた後、錫末15gを加え、150℃/
50mmHgで更に3時間攪拌してオリゴマー化した。
このオリゴマーに錫末62gとジフェニルエーテル6k
gを加え、溶媒がモレキュラーシーブ3A(2kg)を
充填したカラムを経て反応器に戻るようにして、140
℃/25mmHgで50時間還流を行い、平均分子量約
7万のコポリマー溶液を得た。このポリマー中のSn含
有量は5400ppmであった。Production Example 5 5 kg of 90% by weight L-lactic acid and 0.6 kg of 70% by weight glycolic acid were stirred at 140 ° C./50 mmHg for 3 hours to distill water, and then 15 g of tin powder was added.
The mixture was further stirred at 50 mmHg for 3 hours to be oligomerized.
62 g of tin powder and 6 k of diphenyl ether are added to this oligomer.
g was added, and the solvent was returned to the reactor through a column packed with molecular sieve 3A (2 kg).
Reflux was performed at 50 ° C./25 mmHg for 50 hours to obtain a copolymer solution having an average molecular weight of about 70,000. The Sn content in this polymer was 5,400 ppm.
【0020】実施例1 製造例1で得られたポリL−乳酸4kgを塩化メチレン
36kgに溶解させ、これに塩化水素ガスを1重量%溶
解させた塩化メチレン0.8kgを加え、室温で1時間
攪拌した。次いで20℃で攪拌しているメタノール中に
このポリマー溶液を滴下して、析出したポリマーを濾過
し、ヘキサンで洗浄した後、約60℃の真空乾燥器内で
乾燥した。このポリマーの平均分子量は約8万であり、
Sn含有量は20ppmであった。得られたポリマーを
ペレット化機で処理して、平均分子量約8万のペレット
を製造した。Example 1 4 kg of the poly L-lactic acid obtained in Production Example 1 was dissolved in 36 kg of methylene chloride, and 0.8 kg of methylene chloride in which 1% by weight of hydrogen chloride gas was dissolved was added thereto. Stirred. Next, the polymer solution was dropped into methanol stirred at 20 ° C., and the precipitated polymer was filtered, washed with hexane, and then dried in a vacuum dryer at about 60 ° C. The average molecular weight of this polymer is about 80,000,
The Sn content was 20 ppm. The obtained polymer was treated with a pelletizer to produce pellets having an average molecular weight of about 80,000.
【0021】実施例2 製造例2で得られたポリDL−乳酸2kgをN,N−ジ
メチルホルムアミド18kgに溶解させ、これに塩化水
素ガスをバブリングさせて2gの塩化水素を溶解させ
た。この溶液を40℃で2時間攪拌した後、20℃でメ
タノールにより再沈し、平均分子量約7万、Sn含有量
25ppmのポリマーを得た。このポリマーを再度N,
N−ジメチルホルムアミドに溶解させて同様に処理した
結果、平均分子量約7万、Sn含有量10ppm以下の
ポリマーを得た。Example 2 2 kg of the poly DL-lactic acid obtained in Production Example 2 was dissolved in 18 kg of N, N-dimethylformamide, and hydrogen chloride gas was bubbled into the solution to dissolve 2 g of hydrogen chloride. The solution was stirred at 40 ° C. for 2 hours and then reprecipitated with methanol at 20 ° C. to obtain a polymer having an average molecular weight of about 70,000 and a Sn content of 25 ppm. This polymer is again converted to N,
As a result of dissolving in N-dimethylformamide and treating in the same manner, a polymer having an average molecular weight of about 70,000 and an Sn content of 10 ppm or less was obtained.
【0022】実施例3 製造例3で得られたL−ラクタイドとグリコライドのコ
ポリマーを用いた以外は、実施例1と同様にして、平均
分子量約6万、Sn含有量30ppmのコポリマーを得
た。Example 3 A copolymer having an average molecular weight of about 60,000 and a Sn content of 30 ppm was obtained in the same manner as in Example 1 except that the copolymer of L-lactide and glycolide obtained in Production Example 3 was used. .
【0023】実施例4 製造例4で得られたポリ乳酸溶液2kgをクロロホルム
3kgに溶解させ、これに塩化水素ガスを1重量%溶解
させたジフェニルエーテル100gを加え、室温で1時
間攪拌した。次いで20℃で攪拌しているイソプロパノ
ール中にこのポリマー溶液を滴下し、得られたポリマー
を濾過、洗浄、乾燥した。このポリマーの平均分子量は
約11万であり、Sn含有量は60ppmであった。Example 4 2 kg of the polylactic acid solution obtained in Production Example 4 was dissolved in 3 kg of chloroform, and 100 g of diphenyl ether in which 1% by weight of hydrogen chloride gas was dissolved was added thereto, followed by stirring at room temperature for 1 hour. Next, this polymer solution was dropped into isopropanol stirred at 20 ° C., and the obtained polymer was filtered, washed and dried. The average molecular weight of this polymer was about 110,000, and the Sn content was 60 ppm.
【0024】実施例5 製造例5で得られたL−乳酸とグリコール酸のコポリマ
ー溶液を用いた以外は、実施例4と同様にして、平均分
子量約7万、Sn含有量70ppmのコポリマーを得
た。Example 5 A copolymer having an average molecular weight of about 70,000 and an Sn content of 70 ppm was obtained in the same manner as in Example 4 except that the copolymer solution of L-lactic acid and glycolic acid obtained in Production Example 5 was used. Was.
【0025】比較例1 製造例1で得られたポリL−乳酸4kgを塩化メチレン
36kgに溶解させ室温で1時間攪拌した。次いで20
℃で攪拌しているメタノール中にこのポリマー溶液を滴
下し、得られたポリマーを濾過、洗浄、乾燥した。この
ポリマーの平均分子量は約8万であり、Sn含有量は5
00ppmであった。得られたポリマーをペレット化機
で処理して、平均分子量約6万のペレットを製造した。Comparative Example 1 4 kg of the poly L-lactic acid obtained in Production Example 1 was dissolved in 36 kg of methylene chloride and stirred at room temperature for 1 hour. Then 20
This polymer solution was dropped into methanol stirred at ℃, and the obtained polymer was filtered, washed and dried. The average molecular weight of this polymer is about 80,000 and the Sn content is 5
It was 00 ppm. The obtained polymer was treated with a pelletizer to produce pellets having an average molecular weight of about 60,000.
【0026】比較例2 製造例4で得られたポリ乳酸溶液2kgをクロロホルム
3kgに溶解させ室温で1時間攪拌した。次いで20℃
で攪拌しているイソプロパノール中にこのポリマー溶液
を滴下し、得られたポリマーを濾過、洗浄、乾燥した。
このポリマーの平均分子量は約11万であり、Sn含有
量は1800ppmであった。Comparative Example 2 2 kg of the polylactic acid solution obtained in Production Example 4 was dissolved in 3 kg of chloroform and stirred at room temperature for 1 hour. Then 20 ° C
The polymer solution was added dropwise to isopropanol which was being stirred under, and the obtained polymer was filtered, washed and dried.
The average molecular weight of this polymer was about 110,000, and the Sn content was 1800 ppm.
【0027】比較例3 製造例1で得られたポリL−乳酸40gを塩化メチレン
160gに溶解させ、0.1N塩酸を100ml添加し
て室温で1時間攪拌した。次いで20℃で攪拌している
メタノール中にこの溶媒相を滴下し、得られたポリマー
を濾過、洗浄、乾燥した。このポリマーの平均分子量は
約8万であり、Sn含有量は460ppmであった。Comparative Example 3 40 g of poly L-lactic acid obtained in Production Example 1 was dissolved in 160 g of methylene chloride, 100 ml of 0.1N hydrochloric acid was added, and the mixture was stirred at room temperature for 1 hour. Subsequently, this solvent phase was dropped into methanol stirred at 20 ° C., and the obtained polymer was filtered, washed and dried. The average molecular weight of this polymer was about 80,000, and the Sn content was 460 ppm.
【0028】[0028]
【発明の効果】触媒を用いて得られた高分子量の乳酸系
ポリマーを、本発明の方法による塩化水素ガスで処理す
ることにより、除去の容易な塩化物の形で触媒を除くこ
とができ、安全で加熱成形加工時にも安定な乳酸系ポリ
マーを得ることができる。According to the present invention, by treating a high molecular weight lactic acid-based polymer obtained using a catalyst with hydrogen chloride gas according to the method of the present invention, the catalyst can be removed in the form of chloride which can be easily removed. A lactic acid-based polymer that is safe and stable even during heat molding can be obtained.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C08G 63/00 - 63/91 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) C08G 63/00-63/91
Claims (3)
シカルボン酸のコポリマーを有機溶媒中にて塩化水素ガ
スで処理した後、沈澱剤と混合してポリマーを析出させ
ることを特徴とするポリヒドロキシカルボン酸の精製
法。1. A polyhydroxycarboxylic acid, comprising treating polylactic acid or a copolymer of lactic acid and another hydroxycarboxylic acid with hydrogen chloride gas in an organic solvent and mixing with a precipitant to precipitate a polymer. Acid purification method.
混合物であることを特徴とする請求項1記載の精製法。2. The method according to claim 1, wherein the lactic acid is L-lactic acid, D-lactic acid or a mixture thereof.
あることを特徴とする請求項1記載の精製法。3. The method according to claim 1, wherein the hydroxycarboxylic acid is glycolic acid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04104993A JP3273821B2 (en) | 1993-03-02 | 1993-03-02 | Purification method of polyhydroxycarboxylic acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04104993A JP3273821B2 (en) | 1993-03-02 | 1993-03-02 | Purification method of polyhydroxycarboxylic acid |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06256492A JPH06256492A (en) | 1994-09-13 |
JP3273821B2 true JP3273821B2 (en) | 2002-04-15 |
Family
ID=12597553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04104993A Expired - Fee Related JP3273821B2 (en) | 1993-03-02 | 1993-03-02 | Purification method of polyhydroxycarboxylic acid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3273821B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014171011A1 (en) | 2013-04-19 | 2014-10-23 | 株式会社武蔵野化学研究所 | Method for purifying aliphatic polyester and aliphatic polyester purified with said method |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6114495A (en) * | 1998-04-01 | 2000-09-05 | Cargill Incorporated | Lactic acid residue containing polymer composition and product having improved stability, and method for preparation and use thereof |
IN2014DN10439A (en) * | 2006-06-28 | 2015-08-21 | Gunze Kk | |
CN101993529A (en) | 2009-08-11 | 2011-03-30 | 拜耳材料科技(中国)有限公司 | Quencher for quenching active impurities in polyester polyol and application thereof |
WO2019244875A1 (en) * | 2018-06-21 | 2019-12-26 | 帝人株式会社 | Lactic acid-glycolic acid copolymer and method for producing same |
-
1993
- 1993-03-02 JP JP04104993A patent/JP3273821B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014171011A1 (en) | 2013-04-19 | 2014-10-23 | 株式会社武蔵野化学研究所 | Method for purifying aliphatic polyester and aliphatic polyester purified with said method |
KR20150144793A (en) | 2013-04-19 | 2015-12-28 | 가부시키가이샤 무사시노카가쿠겡큐쇼 | Method for purifying aliphatic polyester and aliphatic polyester purified with said method |
US9688809B2 (en) | 2013-04-19 | 2017-06-27 | Musashino Chemical Laboratory, Ltd. | Method for purifying aliphatic polyester and aliphatic polyester purified with said method |
Also Published As
Publication number | Publication date |
---|---|
JPH06256492A (en) | 1994-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0572675B1 (en) | Polyhydroxy carboxylic acid and production thereof | |
WO2005090438A1 (en) | Process for producing aliphatic polyester reduced in residual cyclic ester content | |
JPS6128521A (en) | Novel polymer and its production | |
US5386004A (en) | Polyhydroxycarboxylic acid and purification process thereof | |
JP3273821B2 (en) | Purification method of polyhydroxycarboxylic acid | |
JP3290496B2 (en) | Thermoplastic polymer composition | |
US5264614A (en) | Recovery of polyhydroxy acids | |
JP4458422B2 (en) | Method for producing lactide | |
EP0707024B1 (en) | Purification process of polyhydroxycarboxylic acids | |
JP3184680B2 (en) | Purification method of polyhydroxycarboxylic acid | |
JP3267391B2 (en) | Degradable polymer | |
JP3319884B2 (en) | Purification method of aliphatic polyester | |
JP3162544B2 (en) | Method for producing polyhydroxycarboxylic acid | |
KR102688314B1 (en) | Improved resorbable polymer purification method | |
JP6781331B2 (en) | Method for purifying biodegradable polymers | |
JPH0940766A (en) | Method for removing catalyst from lactic acid polymer | |
JPH10168175A (en) | Purification of aliphatic polyester | |
JPH0616790A (en) | Aliphatic polyester and its production | |
JP3248595B2 (en) | Production method of aliphatic polyester | |
JP3135484B2 (en) | Method for producing polyhydroxycarboxylic acid | |
JPH07304763A (en) | Production of lactide | |
JPH1135662A (en) | Lactic acid and lactic acid oligomer and production of polylactic acid using the same | |
JPH072985A (en) | Production of poly(hydroxy carboxylic acid) | |
JPH1135663A (en) | Production of lactic acid-based polyester and lactic acid-based polyester | |
JPH07316272A (en) | Polylactic acid and/or its copolymer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |