JPS61111326A - Novel polymer and its production - Google Patents

Novel polymer and its production

Info

Publication number
JPS61111326A
JPS61111326A JP18318585A JP18318585A JPS61111326A JP S61111326 A JPS61111326 A JP S61111326A JP 18318585 A JP18318585 A JP 18318585A JP 18318585 A JP18318585 A JP 18318585A JP S61111326 A JPS61111326 A JP S61111326A
Authority
JP
Japan
Prior art keywords
acid
catalyst
lactic acid
polymer
glycolic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18318585A
Other languages
Japanese (ja)
Other versions
JPH0610252B2 (en
Inventor
Mikiaki Tanaka
田中 幹晃
Tairyo Ogawa
泰亮 小川
Tsutomu Miyagawa
力 宮川
Toshio Watanabe
俊雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Takeda Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd, Takeda Chemical Industries Ltd filed Critical Wako Pure Chemical Industries Ltd
Priority to JP60183185A priority Critical patent/JPH0610252B2/en
Publication of JPS61111326A publication Critical patent/JPS61111326A/en
Publication of JPH0610252B2 publication Critical patent/JPH0610252B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Abstract

PURPOSE:To obtain the titled colorless or substantially white polymer having a high MW and a small dispersion and containing no polymerization catalyst, by polycondensing lactic acid and/or glycolic acid in the presence of an inorganic solid acid catalyst. CONSTITUTION:Lactic acid and/or glycolic acid which are selected according to the purpose of use are polycondensed at 100-150 deg.C and a pressure of 350-30mmHg for at least 2hr in the absence of any catalyst to obtain a low- molecular (co)polymer of a MW of 2,000-4,000. Lactic acid and/or glycolic acid selected according to the purpose from among lactic acid (a highly concentrated aqueous solution), glycolic acid (an aqueous solution) and said (co)polymer are polyconensed at 150-250 deg.C and a pressure of 30-1mmHg for at least 10hr in the presence of 0.5-30wt% inorganic solid acid catalyst (e.g., acid clay) in, optionally, solvent (e.g., water) to obtain a (co)polymer of lactic acid and/or glycolic acid of a weight-average MW >=about 5,000 and a dispersion of about 1.5-2.

Description

【発明の詳細な説明】 本発明は、乳酸の重合体若しくはグリコール酸の重合体
又は乳酸とグリコール酸との共重合体(以下、これらを
ポリ乳酸類と総称する。)、及びその製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a polymer of lactic acid, a polymer of glycolic acid, or a copolymer of lactic acid and glycolic acid (hereinafter collectively referred to as polylactic acids), and a method for producing the same. .

近年、プラスチック公害を緩和するための易分解性高分
子として、また、生体吸収性医薬製剤用高分子としてな
ど1分解性高分子が少なからず注目されている。
In recent years, monodegradable polymers have attracted considerable attention as easily degradable polymers for alleviating plastic pollution and as polymers for bioabsorbable pharmaceutical preparations.

上記の如さ目的の為のものとして、特開昭56−459
20号公報に、乳酸とグリコール酸とを強酸性イオン交
換樹脂の存在下で重合させる方法が開示されており、そ
れによると、am平均分子量が約s、ooo乃至35.
Gooの実質的に重合触′媒を含有していない重合体が
得られるとされている。
For the purpose mentioned above, Japanese Patent Application Laid-Open No. 56-459
No. 20 discloses a method of polymerizing lactic acid and glycolic acid in the presence of a strongly acidic ion exchange resin, and according to the method, the am average molecular weight is about s, ooo to 35.
It is said that a polymer substantially free of polymerization catalyst can be obtained.

しかしながら、上記方法で製造された重合体は1分子量
分散度が3前後或いはそれ以上と太きく、使用に際し、
溶解性、その他の面に於て要因が複雑になり、コントロ
ールに多大の問題があるので、生体吸収性医薬製剤用高
分子として用いる場合などにはあまり好ましいとはいえ
ない、しかもこの方法では、重合触媒として用いられる
強醜性イオン交換樹脂が加熱重縮合反応時に熱によって
劣化し、得られる重合体中に溶は込んで、それが重合体
の着色となって現われる。更にまた。一旦着色した重合
体からそのような着色を除去するのは難しく、完全に除
去するのは実際上不可能である、かかる着色は商品価値
を落すのみならず、それが不純物に起因するものである
以上好ましくない状態であることはいうを俟たない。
However, the polymer produced by the above method has a large molecular weight dispersity of around 3 or more, and when used,
Factors related to solubility and other aspects are complicated, and there are many problems in control, so this method is not very desirable when used as a polymer for bioabsorbable pharmaceutical preparations.Moreover, this method The strongly ugly ion exchange resin used as a polymerization catalyst is degraded by heat during the heated polycondensation reaction, and dissolved into the resulting polymer, which appears as coloration of the polymer. Yet again. It is difficult to remove such coloring from a polymer once it has been colored, and it is practically impossible to completely remove it.Such coloring not only reduces commercial value, but is also caused by impurities. Needless to say, this is an unfavorable situation.

かかる状況に鑑み、本発明者らは、ポリ乳酸類の有効で
且つ上記の如き欠点のない製造法について鋭意研究を重
ねた結果、乳酸及び/又はグリコール酸を無機固体酸触
媒の存在下に重縮合反応させることにより、重量平均分
子量が約5,000以上と大きく、分散度が約1.5〜
2と小さい、且つ重合触媒を全く含有していない、若し
くは実質的に含有していない、無色乃至殆ど白色のポリ
乳酸類が得られることを見出し、これに基づいて更に研
究した結果、本発明を完成した。
In view of this situation, the present inventors have conducted intensive research on a production method for polylactic acids that is effective and does not have the drawbacks mentioned above. By carrying out a condensation reaction, the weight average molecular weight is as large as about 5,000 or more, and the degree of dispersion is about 1.5 to
It was discovered that colorless to almost white polylactic acids having a small size of 2 and containing no or substantially no polymerization catalyst can be obtained. Based on this, further research was conducted, and the present invention was completed. completed.

本発明は、(1)乳酸及び/又はグリコール酸から成り
、重量平均分子量約5,000以上、分散度約1.5〜
2である、乳酸若しくはグリコール酸の重合体又はそれ
らの共重合体、及び(2)乳酸及び/又はグリコール酸
を重縮合させて高分子重合体を1         製
造するに際し、触媒として無機固体酸触媒を用いること
を特徴とする。乳酸若しくはグリコール酸の重合体又は
それらの共重合体の製造法である。
The present invention consists of (1) lactic acid and/or glycolic acid, has a weight average molecular weight of about 5,000 or more, and has a dispersity of about 1.5 to
(2) A polymer of lactic acid or glycolic acid or a copolymer thereof, and (2) Polycondensation of lactic acid and/or glycolic acid to produce a high molecular weight polymer. It is characterized by the use of This is a method for producing a polymer of lactic acid or glycolic acid or a copolymer thereof.

本発明のポリ乳酸類の製造法に於て、原料として用いる
乳酸としては通常各種濃度の乳酸水溶液が任意に選ばれ
るが、作業性の点からいえば乳酸濃度は高い方が良く、
85%以上が望ましい、また、入手可能ならば水溶液と
してではなく乳酸そのちのを用いた方が良いことはいう
までもない。
In the method for producing polylactic acids of the present invention, lactic acid aqueous solutions of various concentrations are usually arbitrarily selected as the lactic acid used as a raw material, but from the viewpoint of workability, the higher the lactic acid concentration, the better;
It goes without saying that 85% or more is desirable, and if available, it is better to use lactic acid rather than an aqueous solution.

また、グリコール酸としては1通常、結晶のものがその
まま用いられるが、水溶液として用いても一向に差し支
えない、乳酸とグリコール酸とを例えば結晶等の固体の
ものを用いる場合には、要すればこれらを溶°解する溶
媒を用いてもかまわない、該溶媒としては、例えば、水
、メタノール。
In addition, as for glycolic acid, crystalline ones are usually used as they are, but there is no problem even if they are used as an aqueous solution.When using lactic acid and glycolic acid in solid forms such as crystals, if necessary, A solvent that dissolves water may be used. Examples of the solvent include water and methanol.

エタノール、アセトンなどが挙げられる。Examples include ethanol and acetone.

本発明のポリ乳酸類の製造法において、原料として用い
られる乳酸及び/又はグリコール酸としては、それらの
低分子重合物を用いてもよいし。
In the method for producing polylactic acids of the present invention, low-molecular polymers thereof may be used as lactic acid and/or glycolic acid used as raw materials.

また、共重合体を得る場合にはそれらの低分子共   
     、重合物を用いてもよい。
In addition, when obtaining copolymers, these low-molecular copolymers
, polymers may be used.

1;に低分子を合物としては1例えば乳酸のオリゴマー
(例、ダイマー、トリマーなど)、グリコール酸のオリ
ゴマー(例、ダイマー、トリマーなど)などが挙げられ
る。
Examples of compounds containing low molecules in 1 include lactic acid oligomers (eg, dimers, trimers, etc.) and glycolic acid oligomers (eg, dimers, trimers, etc.).

また、該低分子重合物或は低分子共重合物としては、乳
酸及び/又はグリコール酸を触媒の非存在下に重縮合さ
せて得られたものが挙げられる。
Examples of the low-molecular polymer or copolymer include those obtained by polycondensing lactic acid and/or glycolic acid in the absence of a catalyst.

該低分子1合物或は低分子共重合物を製造する際の反応
温度及び反応時間としては、例えば100〜b 10時間程度1例えば、105℃/350−■H,から
 150”Q / 30mm)Igまで段階的に温度及
び減圧度を高めながら5〜6時間時間減圧熱加熱させる
ことにより水分を除去すればよい、このようにして、分
子量約2000〜4000の低分子重合物或は低分子共
重合物が容易に得られる。
The reaction temperature and reaction time when producing the low-molecular compound or low-molecular copolymer are, for example, 100 to 10 hours, e.g., 105°C/350-■H, to 150"Q/30mm. ) Water can be removed by heating under reduced pressure for 5 to 6 hours while gradually increasing the temperature and degree of vacuum to Ig. A copolymer can be easily obtained.

また、該低分子重合物或は低分子共重合物としては、y
!4触媒で行なう公知の方法で重縮合して得られたもの
でもよい、該公知方法としては1例えば1又化学雑誌第
88巻983〜98B頁(1985年)に記載された方
法、 IjIIち乳酸とグリコール酸とを゛1≦5圧下
焦触媒で202℃、6時間反応させる方法が挙げられる
。また、該公知方法としては1例えば米国特許第2.3
82.511号公報に記載された方法。
In addition, the low molecular weight polymer or low molecular weight copolymer may include y
! 4. It may be obtained by polycondensation using a known method using a catalyst, such as the method described in 1 or Kagaku Zasshi Vol. 88, pp. 983-98B (1985); and glycolic acid are reacted at 202° C. for 6 hours using a pyrocatalyst under a pressure of 1≦5. Further, as the known method, 1, for example, US Patent No. 2.3
The method described in Publication No. 82.511.

即ち、乳酪とグリコール酸とを200℃の温度で2時間
反応させ1次いで減圧下賜時間加熱を続ける方法なども
挙げらりる。
That is, a method may be mentioned in which milk and glycolic acid are reacted at a temperature of 200° C. for 2 hours, followed by lowering the pressure and continuing heating for a period of time.

本発明に係るポリ乳酸類は、乳酸単独の乳酸の重合体若
しくはグリコール酸囃独のグリコール酸の重合体、又は
乳酸とグリコール酸との任意の割合、叶ましくは乳酸的
50〜95屯ψ%及びグリコール酸約50〜5屯賃%、
より好ましくは乳酸約80〜95屯都−5反びグリコー
ル醜約40〜5重量%、更に好ましくは乳酸的60〜8
5jii1%及びグリコール成約40〜15重置%の乳
酸とグリコール酸との共重合体から成る。乳酸とグリコ
ール酸との共重合体における特に好ましい比率としては
、乳M約75±2モル%及びグリコール醜約25±2モ
ル%が挙げられる。
The polylactic acids according to the present invention are a polymer of lactic acid alone, a polymer of glycolic acid accompanied by glycolic acid, or an arbitrary ratio of lactic acid and glycolic acid, preferably 50 to 95 tons of lactic acid. % and glycolic acid about 50-5%,
More preferably about 80 to 95% lactic acid and about 40 to 5% by weight of glycol, still more preferably 60 to 8% by weight of lactic acid.
It consists of a copolymer of lactic acid and glycolic acid with 1% of glycol and 40 to 15% of glycol. Particularly preferred ratios in the copolymer of lactic acid and glycolic acid include about 75±2 mole percent milk and about 25±2 mole percent glycol.

本発明に於て用いられる無機固体酸触媒としては、例え
ば、II*性白土、活性白土、ベントナイト、カオリン
、タルク、ケイ酸アルミ、ケイ酸マグネシウム、アルミ
ナボリア、ケイ触等が挙げられる。これらは夫々単独で
も二種以上混合してでも使用でき、いずれもそのままで
、或いは要すれば金属イオン等を除く為に、例えば約5
〜20%濃度の塩酸等で洗節して用いられる。
Examples of the inorganic solid acid catalyst used in the present invention include II* clay, activated clay, bentonite, kaolin, talc, aluminum silicate, magnesium silicate, alumina boria, and silicate. These can be used alone or in a mixture of two or more, and either can be used as is, or if necessary, in order to remove metal ions, etc., for example, about 5
It is used after washing with ~20% hydrochloric acid.

本発明に於て用いられる無機固体酸触媒の量は、乳酸及
び/又はグリコール酸のm;aに対し。
The amount of inorganic solid acid catalyst used in the present invention is based on m; a of lactic acid and/or glycolic acid.

通常的0.5N30%W/W、好マシくは約1〜20%
W/r程度が、1乃至数回に分けて用いられる。該触媒
は反応系中に反応の途中で皓加してもよい。
Usually 0.5N 30% W/W, preferably about 1-20%
Approximately W/r is used in one to several times. The catalyst may be added to the reaction system during the reaction.

本発明の重縮合反応に於ける反応温度は1例えば通常的
150〜250℃であり、好ましくは約150〜200
℃である0本反応は、減圧下に行なうのが好ましく、減
圧としては例えば通常的30〜1 mmHg、好ましく
は約lO〜l msHgである0本反応1      
   の反応時間は例えば通常約10時間以上であり、
好ましくは約10〜150時間、更に好ましくは約10
〜100時間である。
The reaction temperature in the polycondensation reaction of the present invention is typically 150 to 250°C, preferably about 150 to 200°C.
℃ is preferably carried out under reduced pressure, for example, the reduced pressure is usually 30 to 1 mmHg, preferably about 10 to 1 msHg.
For example, the reaction time is usually about 10 hours or more,
Preferably about 10 to 150 hours, more preferably about 10
~100 hours.

乳酸及び/又はグリコール酸を原料物質として用いる場
合の反応条件としては1次のものが好ましい6例えば、
  100 N150℃/350〜30msHgで2時
間量E1通常は2〜lO時間程度1例えば、105”C
/ 350ms)Igから150℃730mmHgまで
段階的に温度及び減圧度を高めながら5〜6時間時間減
圧熱加熱させることにより水分を除去した後、150〜
b 間ぐらい迄でよい)脱水重縮合反応させる。
When lactic acid and/or glycolic acid is used as a raw material, primary reaction conditions are preferred6.For example,
100N 150℃/350~30msHg for 2 hours Amount E1 Usually about 2~1O hours 1 For example, 105"C
/ 350ms) After removing moisture by heating under reduced pressure for 5 to 6 hours while gradually increasing the temperature and degree of vacuum from Ig to 150℃ and 730mmHg,
b) Allow for a dehydration polycondensation reaction.

また、)、記した低分子の重合物或は共重合物を原料物
質として用いる場合の反応条件としては。
Also, the reaction conditions when using the low-molecular polymers or copolymers mentioned above as raw materials are as follows.

次のものが好ましい、即ち1例えば、150〜bらい迄
でよい)脱水ff1m合反応させる。
The following are preferred, ie, 1, for example, up to about 150 to 150 b) dehydration ff1m.

反応終γ後は、反応液を単に熱時枦遇するか、或は塩化
メチレン、ジクロルエタン、クロロホルム、アセトン等
の適当な溶媒(重合体と同量乃至10倍量程度使用)に
重合体を溶かして一過する等により、用いた固体酸触媒
を取り除けば(本発明の固体酸触媒法は通常の定性用−
紙を用いた吸引濾過等により容易に取り除くことができ
る)、前者即ち反応液をそのまま濾過した場合にはそれ
だけで、また後者即ち反応液を溶媒に溶かして濾過した
場合には、用いた溶媒を濃縮留去することにより、目的
の高分子量ポリ乳#類を容易に得ることができる。また
、要すれば、濾過した反応液を直接、或は溶媒を用いた
場合には濃縮したが液を、大量の沈澱剤中に注ぐ等常法
により分離してもよいし、更に必要であれば再沈澱等に
より精製すればよい、尚、前記イオン交換樹脂を触媒と
して用いた場合にはこのような操作を繰り返してもその
着色は容易には除去し得ない。
After the reaction is completed, the reaction solution is simply subjected to heat treatment, or the polymer is dissolved in an appropriate solvent such as methylene chloride, dichloroethane, chloroform, acetone, etc. (use the same amount to 10 times the amount of the polymer). If the solid acid catalyst used is removed by passing it through a
(can be easily removed by suction filtration using paper, etc.), in the former case, when the reaction liquid is filtered as it is, it is by itself, and in the latter case, when the reaction liquid is dissolved in a solvent and filtered, the solvent used can be removed. By concentrating and distilling off, the desired high molecular weight polymilk # can be easily obtained. If necessary, the filtered reaction solution may be separated directly, or if a solvent is used, the concentrated solution may be separated by a conventional method such as pouring into a large amount of precipitant, or if necessary. If the ion exchange resin is used as a catalyst, the coloring cannot be easily removed even if such operations are repeated.

本発明によれば、重量平均分子量約s、ooo以上(好
ましくは約5.CIQO〜3o、ooo)の高分子量ポ
リ乳酸類を得ることができ、得られた重合体は分散度が
約 1.5乃至2と小さく、また外観着色は殆ど観測さ
れず、重合触媒は全く含有していない、若しくは実質的
に含有していない。
According to the present invention, high molecular weight polylactic acids having a weight average molecular weight of about s, ooo or more (preferably about 5.CIQO to 3o, ooo) can be obtained, and the obtained polymer has a dispersity of about 1.00. It is as small as 5 to 2, and almost no coloration is observed in appearance, and it contains no or substantially no polymerization catalyst.

本発明によれば、その製造は工業的に容易に実施できる
。また、用いられる重合触媒はポリ乳酸類にも溶媒にも
溶解しないので、生成物から完全に除去することができ
る。従って、得られた重合体中への重合触媒の混入は実
質的になく、また重合体の着色も殆どない1分散度が約
1.5乃至2と小さい高分子量の重合体を容易に得るこ
とができる。
According to the present invention, its production can be easily carried out industrially. Furthermore, since the polymerization catalyst used does not dissolve in either polylactic acids or solvents, it can be completely removed from the product. Therefore, it is possible to easily obtain a high molecular weight polymer with a small dispersity of about 1.5 to 2, with substantially no polymerization catalyst mixed into the obtained polymer, and with almost no coloring of the polymer. I can do it.

本発明方法に於ては、無機固体酸触媒を用いるので、無
触媒でこれを行った場合と比べ、反応時間が短縮できる
といラメリットがある。即ち、同じ分子量の重合体或は
共重合体を得るのに本発明方法によれば無触媒で行う場
合よりも短かい反応時間でこれを得ることかでさる。
Since the method of the present invention uses an inorganic solid acid catalyst, it has the advantage that the reaction time can be shortened compared to when the reaction is carried out without a catalyst. That is, the method of the present invention allows a polymer or copolymer of the same molecular weight to be obtained in a shorter reaction time than in the case of no catalyst.

本発明の重合体或は共重合体は主に医薬品の製剤基剤と
して利用できる0例えばステロイドホルモン類、ペプチ
ドホルモン類、或は制ガン剤等を含有させ、埋込み型若
しくはマイクロカプセル型徐放性製剤として、或は制ガ
ン剤を含有した微粒を造り塞栓治療剤として有利に利用
できる。
The polymer or copolymer of the present invention can be mainly used as a pharmaceutical formulation base.For example, it can be used as an implantable or microcapsule sustained-release preparation containing steroid hormones, peptide hormones, or anticancer drugs. Alternatively, fine particles containing an anticancer agent can be produced and used advantageously as an embolism treatment agent.

以下に実験例及び実施例を挙げて本発明を更に詳細に説
明する。
The present invention will be explained in further detail by giving experimental examples and examples below.

実験例 1.  (乳酸単独重合) 85%乳酸水溶液 180g (乳酸として!、5■o
l)に無機固体酸触媒 6.8gを添加し、窒素気流下
100〜!50 ”C/350〜30am)Igで段階
的に6時間減圧加熱を行ない留出木を除去した。その後
更に固体酸触媒6.8gを追加し、175℃/6〜5厘
−Illで72時間脱水を縮合反応させた。
Experimental example 1. (Lactic acid homopolymerization) 85% lactic acid aqueous solution 180g (As lactic acid!, 5■o
6.8g of inorganic solid acid catalyst was added to 1) under a nitrogen stream for 100~! Distillate wood was removed by stepwise heating under reduced pressure for 6 hours at 50"C/350-30am) Ill. After that, 6.8g of solid acid catalyst was added, and the mixture was heated at 175°C/6-5am) for 72 hours. Dehydration was caused by a condensation reaction.

本誌による乳酸の重合体製造に於ける反応時間と到達f
fi量平均分子量との関係を表1に示す。
Reaction time and attainment f in lactic acid polymer production according to this magazine
The relationship between fi weight and average molecular weight is shown in Table 1.

また、比較のために1重合触媒として市販の強酸性イオ
ン交換樹脂であるダウエックス50W〔ダウケミカル社
製(米国)、登録商標〕を用いた場合の結果も併せて表
1に示す。
For comparison, Table 1 also shows the results obtained when DOWEX 50W (manufactured by Dow Chemical Company (USA), registered trademark), which is a commercially available strongly acidic ion exchange resin, was used as a single polymerization catalyst.

尚、本明細書に於ては、重量平均分子量及び分散度(分
散度!重量平均分子量/数平均分子量)は、分子員既知
の標準ポリスチレンを用いたゲル浸透クロブトグチフィ
ー法により測定し、求めた。
In addition, in this specification, the weight average molecular weight and dispersity (dispersity! weight average molecular weight / number average molecular weight) are measured by the gel permeation clobutythphy method using standard polystyrene with known molecular members, I asked for it.

表中、触媒添加M(1)は最初の触媒添加量を。In the table, catalyst addition M(1) is the initial amount of catalyst added.

触媒添加量(2)は水分除去後の175℃76〜5層s
)Igでの重縮合反応開始時に追加した触媒添加量を夫
々表わし1反応時間は!75℃/6〜5層■)Igでの
それを表わす、また、表中到連分子燈の下の()内の値
は分散度を表わす。
Catalyst addition amount (2) is 175℃ 76~5 layer s after moisture removal
) Represents the amount of catalyst added at the start of the polycondensation reaction with Ig, and the reaction time is! 75° C./6 to 5 layers (■) It represents that in Ig, and the value in parentheses under the molecular light in the table represents the degree of dispersion.

表1から明らかなように1本発明によれば、容易に、重
合触媒の溶存が殆どない、g11平均分子艮約s、oo
o以上の高分子量ポリ乳酸を得ることができ、得られた
重合体には殆ど着色は観測されず、分子量分散度はいず
れも2以下と小さいものが得られ、またit合反応の反
応速度も触媒の添加によって明らかに促進された。
As is clear from Table 1, according to the present invention, the polymerization catalyst can be easily dissolved, and the average molecular weight of g11 is approximately s, oo.
It is possible to obtain a high molecular weight polylactic acid having a molecular weight of more than It was clearly promoted by the addition of catalyst.

実験例 2.(乳酸・グリコール酸共近合)85%乳酸
水溶液 180g(1,5mol)とグリコール酸38
g(0,5易o1)とを混合し、これに無機固体1it
+kd8.7gを添加して、窒素気流下100〜150
℃7350〜30■■Hgで6時間減圧加熱を行ない留
出水を除去1        した、その後頁に固体酸
触媒 8.78を追加し、175℃76〜5 mmHl
で72時間脱水縮合反応させた。
Experimental example 2. (Lactic acid/glycolic acid co-composition) 85% lactic acid aqueous solution 180 g (1.5 mol) and glycolic acid 38
g (0,5o1) and add 1 liter of inorganic solid to this.
Add 8.7g of
Distilled water was removed by heating under reduced pressure at 7350°C to 30mm Hg for 6 hours, and solid acid catalyst 8.78 was added to the next page, and heated at 175°C 76 to 5 mmHl.
A dehydration condensation reaction was carried out for 72 hours.

本坊による乳酸とグリコール酸の共重合体製造に於ける
反応時間と到達風景モ均分子傷との関係をi&2に示す
The relationship between the reaction time and the uniform molecular damage achieved in the production of a copolymer of lactic acid and glycolic acid by Honbo is shown in i&2.

また、比較のために1重合触媒として強酸性イオン交換
樹脂(ダウエックス50W)を用いた場合の結果も併せ
て表2に示す。
For comparison, Table 2 also shows the results when a strongly acidic ion exchange resin (Dowex 50W) was used as the single polymerization catalyst.

以下余白       ) 表2中、触媒添加量(1)は最初の触媒添加量な、触媒
添加量(2)は水分除去後の175℃/6〜5 mmH
gでの重縮合反応開始時に追加した触媒添加量を夫々表
わし、反応時間は175℃/6〜5■+zHgでのそれ
を表わす、また、表中到達分子量の下の()内の値は分
散度を表わす。
In Table 2, the amount of catalyst added (1) is the initial amount of catalyst added, and the amount of catalyst added (2) is 175℃/6-5 mmH after moisture removal.
The amount of catalyst added at the start of the polycondensation reaction at 100 g is shown, and the reaction time is that at 175 ° C / 6 ~ 5 + zHg. In addition, the values in parentheses under the molecular weight reached in the table are the dispersion. represents degree.

表2から明らかなように1本発明によれば、容易に、重
合触媒の溶存が殆どない、重量平均分子量約5,000
以上の高分子量乳酸拳グリコール酸共重合体を得ること
ができ、得られた共重合体には殆ど着色は観測されず1
分子量分散度も全て2以下と小さいものが得られる。ま
た1重合反応の反応速度も触媒の添加によって明らかに
促進された。
As is clear from Table 2, according to the present invention, polymerization catalysts having a weight average molecular weight of about 5,000, with almost no dissolved polymerization catalyst, can easily be used.
A high molecular weight lactic acid glycolic acid copolymer with a molecular weight of
A small molecular weight dispersity of 2 or less can be obtained in all cases. Furthermore, the reaction rate of the monopolymerization reaction was clearly promoted by the addition of the catalyst.

上記の本発明の共重合体を重クロロホルム溶液として核
磁気共鳴スペクトルで、乳酸とグリコール酸との共重合
組成を分析した結果をfc工に示宸&3゜ 本発明の共重合体の共重合組成 (乳酸ニゲリコール酸) モル% (fE量%) 実施例 1゜ 温度計、コンデンサー、窒素導入管を備えた四頚フラス
コに、85%乳酸水溶液 180g及び酸性−± 13
.8.を加え、窒素気流下で、内温及び内圧をそれぞれ
105℃、 350mmH1から150℃、 30a*
Hgまで、段階的に温度及び減圧度を高めながら、  
       。
The copolymer composition of lactic acid and glycolic acid was analyzed by nuclear magnetic resonance spectroscopy using the copolymer of the present invention as a solution in deuterated chloroform, and the results were shown to the FC engineer. (Lactic acid nigericolic acid) Mol% (fE amount%) Example 1 In a four-necked flask equipped with a thermometer, a condenser, and a nitrogen inlet tube, 180 g of an 85% lactic acid aqueous solution and acidic -± 13
.. 8. was added, and the internal temperature and pressure were adjusted to 105℃ and 350mmH1 to 150℃ and 30a* under a nitrogen flow, respectively.
While gradually increasing the temperature and degree of vacuum until Hg,
.

6時間かけて減圧加熱を行ない、留出水を除去した。引
き続き内圧を3鵬mugとし、内温175℃で50時間
加熱を行なった0反応液を室温まで冷却し、塩化メチレ
ン400m1を加えて、攪拌溶解後、酸性白土をi濾過
(東洋濾紙Fk)、131を使用)して除き、炉液を濃
縮乾固して、殆ど白色の重合体 100gを得た。この
重合体の重量平均分子量及び分散度は、それぞれ22,
000及び1.75であった。
Distilled water was removed by heating under reduced pressure for 6 hours. Subsequently, the internal pressure was set to 3 Mug, and the reaction solution was heated at an internal temperature of 175°C for 50 hours, then cooled to room temperature, 400 ml of methylene chloride was added, and after stirring and dissolving, the acid clay was filtered (Toyo Roshi Fk), 131) and the filtrate was concentrated to dryness to obtain 100 g of an almost white polymer. The weight average molecular weight and dispersity of this polymer are 22 and 22, respectively.
000 and 1.75.

尚、得られた共重合体中への残存触媒については、共重
合体を白金シャーレ上にとり、炭鹸ナトリウム溶融処理
を行なった後、アルミニウム及びケイ素について、それ
ぞれアルミノン法及びモリブデンブルー法を適用して比
色定量した結果、いずれも不検出であり、触媒の混入は
認められなかった。
Regarding the residual catalyst in the obtained copolymer, the copolymer was placed on a platinum Petri dish and subjected to a sodium carbonate melting treatment, and then the aluminone method and molybdenum blue method were applied to aluminum and silicon, respectively. As a result of colorimetric determination, none were detected, and no catalyst was observed.

実施例 2゜ 触媒としてケイ酸アルミ 2?、2.を用いた以外は、
全て実施例1.と同様に反応を行ない、殆ど無色の重合
体 92.を得た。この重合体の重量平均分子量及び分
散度は、それぞれ21.900及び1.70であった。
Example 2゜Aluminum silicate as catalyst 2? , 2. Except using
All Example 1. The reaction was carried out in the same manner as 92. to produce an almost colorless polymer. I got it. The weight average molecular weight and dispersity of this polymer were 21.900 and 1.70, respectively.

触媒をカオリン又はタルクにしても同様であった・ 尚、得られた共重合体中への残存触媒については、実施
例1.と同様に残存触媒の検出を行なった結果、触媒の
混入は認められなかった。
The same result was obtained even when kaolin or talc was used as the catalyst. Regarding the residual catalyst in the obtained copolymer, see Example 1. As a result of detecting the remaining catalyst in the same manner as above, no catalyst was detected.

実施例 3゜ 実施例1.と同様に、85%乳酸水溶液180.を用い
、酸性白土の代りに活性白土6.8gを仕込み、留出水
を除去した後の加熱反応を内圧5 m+*Hg、内温1
85℃で86時間行ない、殆ど白色の重合体80gを得
た。この重合体の重量平均分子量及び分散度は、それぞ
れ29.80O及び1.85であった。    ・尚、
得られた共重合体中への残存触媒については、実施例1
.と同様に残存触媒の検出を行なった結果、触媒の混入
は認められなかった。
Example 3゜Example 1. Similarly, 85% lactic acid aqueous solution 180. , charged 6.8 g of activated clay instead of acid clay, and after removing distilled water, heated the reaction at an internal pressure of 5 m+*Hg and an internal temperature of 1.
After 86 hours at 85° C., 80 g of an almost white polymer was obtained. The weight average molecular weight and dispersity of this polymer were 29.80O and 1.85, respectively. ·still,
Regarding the residual catalyst in the obtained copolymer, see Example 1.
.. As a result of detecting the remaining catalyst in the same manner as above, no catalyst was detected.

実施例 4゜ 85%乳酸水溶液 180g、グリコール酸 38g及
び活性白土17.4gを用いた以外は、全て実施例1゜
と同様に反応を行ない、殆ど白色の共重合体122  
、gを得た。この共重合体の重量平均分子量及び分散度
は、それぞれ20,100及び1.70であった。更に
得られた共重合体を重クロロホルム溶液として核磁気共
鳴スペクトルで分析した結果、乳酸とグリコール酸との
共重合組成は?E1mo1%: 24mo1%(7L7
ilJi% : 20.331ft%) テTo ッf
=。
Example 4 The reaction was carried out in the same manner as in Example 1, except that 180 g of 85% lactic acid aqueous solution, 38 g of glycolic acid and 17.4 g of activated clay were used, and an almost white copolymer 122 was obtained.
, g was obtained. The weight average molecular weight and dispersity of this copolymer were 20, 100 and 1.70, respectively. Furthermore, as a result of analyzing the obtained copolymer as a deuterated chloroform solution by nuclear magnetic resonance spectroscopy, what is the copolymer composition of lactic acid and glycolic acid? E1mo1%: 24mo1% (7L7
ilJi%: 20.331ft%)
=.

尚、得られた共重合体中への残存触媒については実施例
1.と同様に残存触媒の検出を行なった結果、触媒の混
入は認められなかった。
Regarding the residual catalyst in the obtained copolymer, see Example 1. As a result of detecting the remaining catalyst in the same manner as above, no catalyst was detected.

実施例 5゜ 85%乳酸水溶液 191g、及びグリコール酸17.
5g及び酸性白土 8gを仕込み、留出水を除去した後
の加熱反応を内圧 3m■)Ig、内温 170℃で8
6時間行ない、殆ど白色の共重合体130gを得た。こ
の共重合体の重量平均分子量及び分散度は、それぞれ2
11,100及び1.73であり、更に、乳酸とグリコ
ール酸との共重合組成は88■01%:11ma1%(
9G、9重量%:8.1重量%)であった。
Example 5 191 g of 85% lactic acid aqueous solution, and 17 g of glycolic acid.
After charging 5 g and 8 g of acid clay and removing distilled water, the heating reaction was carried out at an internal pressure of 3 m) Ig and an internal temperature of 170°C.
After 6 hours, 130 g of an almost white copolymer was obtained. The weight average molecular weight and dispersity of this copolymer are each 2
11,100 and 1.73, and the copolymerization composition of lactic acid and glycolic acid is 88μ01%:11ma1% (
9G, 9% by weight: 8.1% by weight).

触媒をケイ酸アルミ、ベントナイト、カオリンにしても
同様の反応及び結果が得られた。
Similar reactions and results were obtained when aluminum silicate, bentonite, and kaolin were used as catalysts.

尚、得られた共重合体中への残存触媒について1   
       は、実施例1.と同様に残存触媒の検出
を行なった結果、触媒の混入は認められなかった。
Regarding the residual catalyst in the obtained copolymer, 1
Example 1. As a result of detecting the remaining catalyst in the same manner as above, no catalyst was detected.

実施例 6゜ 93%乳酸水溶液14B、及びグリコール酸 388を
用い、202℃で6時間の加熱反応を行ない、重量平均
分子量2,700、共重合組成 乳酸ニゲリコール酸+
* ?5molX : 25mallノ共重合物を得た
Example 6 Using 93% lactic acid aqueous solution 14B and glycolic acid 388, a heating reaction was carried out at 202°C for 6 hours to obtain a weight average molecular weight of 2,700 and a copolymer composition of lactic acid nigericolic acid +
*? 5molX: A 25mall copolymer was obtained.

実施例1.と同じ重合装置に、得られた共重合物100
gと酸性白土 logをとり、内圧を5 mdlgとし
、内温 180℃で50時間加熱を行なった0反応液を
室温まで冷却し、塩化メチレン 500 dを加えて、
撹拌溶解後、酸性白土を濾過(東洋濾紙N0.131を
使用)して除き、IP液を濃縮乾固して、殆ど白色の重
合体 82.を得た。この重合体の重量平均分子量及び
分散度は、それぞれ23.TOO及び1.73であり、
更に、乳酸とグリコール酸との共重合組成は?5mol
$ : 25molX (78,8重1%: 21.2
重量%)であった。
Example 1. 100% of the obtained copolymer was added to the same polymerization apparatus as
g and acid clay log were taken, the internal pressure was set to 5 mdlg, the internal temperature was heated at 180°C for 50 hours, the 0 reaction solution was cooled to room temperature, and 500 d of methylene chloride was added.
After stirring and dissolving, the acid clay was removed by filtration (using Toyo Roshi Paper No. 131), and the IP solution was concentrated to dryness to obtain an almost white polymer.82. I got it. The weight average molecular weight and dispersity of this polymer were 23. TOO and 1.73,
Furthermore, what is the copolymerization composition of lactic acid and glycolic acid? 5mol
$: 25molX (78.8 weight 1%: 21.2
weight%).

尚、得られた共重合体中°への残存触媒については、実
施例1.と同様に残存触媒の検出を行なった結果、触媒
の混入は認められなかった。
Regarding the residual catalyst in the obtained copolymer, see Example 1. As a result of detecting the remaining catalyst in the same manner as above, no catalyst was detected.

実施g47゜ 乳酸二量体(乳酸ラクテート)  l117g、グリコ
ール酸二1体(グリコール酸グリコレート) 5軸及び
酸性白土 7.5gを用いた以外は、全て実施例6、と
同様に反応を行ない、殆ど白色の共重合体98、を得た
。この共重合体の重量平均分子量及び分散度は、それぞ
れ21,000及び1.75であり、更に乳酸とグリコ
ール酸との共重合組成は511.5mol駕:40.5
so1% (84,Bji量%: 35.4重量%)テ
アツタ。
Example G47゜The reaction was carried out in the same manner as in Example 6, except that 117 g of lactic acid dimer (lactic acid lactate), 117 g of glycolic acid dimer (glycolic acid glycolate), and 7.5 g of acid clay were used. An almost white copolymer 98 was obtained. The weight average molecular weight and dispersity of this copolymer are 21,000 and 1.75, respectively, and the copolymer composition of lactic acid and glycolic acid is 511.5 mol: 40.5
so1% (84, Bji amount%: 35.4% by weight) Tea ivy.

尚、得られた共重合体中への残存触媒については、実施
例1.と同様に残存触媒の検出を行なった結果、触媒の
混入は認められなかった。
Regarding the residual catalyst in the obtained copolymer, see Example 1. As a result of detecting the remaining catalyst in the same manner as above, no catalyst was detected.

特許出願人武田薬品工業株式会社 和光純薬工業株式会社Patent applicant: Takeda Pharmaceutical Company Limited Wako Pure Chemical Industries, Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)乳酸及び/又はグリコール酸から成り、重量平均
分子量約5,000以上、分散度約1.5〜2である、
乳酸若しくはグリコール酸の重合体又はそれらの共重合
体。
(1) Consists of lactic acid and/or glycolic acid, has a weight average molecular weight of about 5,000 or more, and a dispersity of about 1.5 to 2.
Polymers of lactic acid or glycolic acid or copolymers thereof.
(2)乳酸及び/又はグリコール酸を重縮合させて高分
子重合体を製造するに際し、触媒として無機固体酸触媒
を用いることを特徴とする、乳酸若しくはグリコール酸
の重合体又はそれらの共重合体の製造法。
(2) A polymer of lactic acid or glycolic acid or a copolymer thereof, characterized in that an inorganic solid acid catalyst is used as a catalyst when manufacturing a high molecular weight polymer by polycondensing lactic acid and/or glycolic acid. manufacturing method.
JP60183185A 1985-08-21 1985-08-21 Polymer manufacturing method Expired - Lifetime JPH0610252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60183185A JPH0610252B2 (en) 1985-08-21 1985-08-21 Polymer manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60183185A JPH0610252B2 (en) 1985-08-21 1985-08-21 Polymer manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59140356A Division JPH0678425B2 (en) 1984-07-06 1984-07-06 New polymer manufacturing method

Publications (2)

Publication Number Publication Date
JPS61111326A true JPS61111326A (en) 1986-05-29
JPH0610252B2 JPH0610252B2 (en) 1994-02-09

Family

ID=16131257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60183185A Expired - Lifetime JPH0610252B2 (en) 1985-08-21 1985-08-21 Polymer manufacturing method

Country Status (1)

Country Link
JP (1) JPH0610252B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995028432A1 (en) * 1994-04-15 1995-10-26 Kyowa Hakko Kogyo Co., Ltd. Process for producing poly(hydroxy carboxylic acid)
WO1997008220A1 (en) * 1995-08-29 1997-03-06 Kyowa Hakko Kogyo Co., Ltd. Process for producing polyhydroxy carboxylic acid
WO1997031049A1 (en) * 1996-02-23 1997-08-28 Kyowa Hakko Kogyo Co., Ltd. Process for the preparation of polyhydroxycarboxylic acid
EP0816413A2 (en) * 1990-08-01 1998-01-07 Novartis AG Purified polylactide and pharmaceutical composition thereof
US7202326B2 (en) 2002-09-24 2007-04-10 Asahi Kasei Chemicals Corporation Glycolic acid copolymer and method for production thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141327A (en) * 1974-08-01 1976-04-07 Montedison Spa Gurikoorusan oyobi sonojugotainoseiho
JPS52147691A (en) * 1976-06-01 1977-12-08 American Cyanamid Co Polymerization product having bioabsorption and hydrolysis* being solid in normal state
JPS5645920A (en) * 1979-09-12 1981-04-25 Lilly Co Eli Copolymer by polymerization of glycolic acid and lactic acid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141327A (en) * 1974-08-01 1976-04-07 Montedison Spa Gurikoorusan oyobi sonojugotainoseiho
JPS52147691A (en) * 1976-06-01 1977-12-08 American Cyanamid Co Polymerization product having bioabsorption and hydrolysis* being solid in normal state
JPS5645920A (en) * 1979-09-12 1981-04-25 Lilly Co Eli Copolymer by polymerization of glycolic acid and lactic acid

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0816413A2 (en) * 1990-08-01 1998-01-07 Novartis AG Purified polylactide and pharmaceutical composition thereof
EP0816413A3 (en) * 1990-08-01 1998-11-11 Novartis AG Purified polylactide and pharmaceutical composition thereof
WO1995028432A1 (en) * 1994-04-15 1995-10-26 Kyowa Hakko Kogyo Co., Ltd. Process for producing poly(hydroxy carboxylic acid)
WO1997008220A1 (en) * 1995-08-29 1997-03-06 Kyowa Hakko Kogyo Co., Ltd. Process for producing polyhydroxy carboxylic acid
WO1997031049A1 (en) * 1996-02-23 1997-08-28 Kyowa Hakko Kogyo Co., Ltd. Process for the preparation of polyhydroxycarboxylic acid
US7202326B2 (en) 2002-09-24 2007-04-10 Asahi Kasei Chemicals Corporation Glycolic acid copolymer and method for production thereof

Also Published As

Publication number Publication date
JPH0610252B2 (en) 1994-02-09

Similar Documents

Publication Publication Date Title
EP0172636B1 (en) Method for producing a polymer or copolymer of lactic acid and/or glycolic acid
JPS6128521A (en) Novel polymer and its production
JPH08169818A (en) Sustained release microcapsule for injection
JPS63165430A (en) Production of polylactic acid and its copolymer
JPS6050372B2 (en) Method for producing poly(ester carbonate)
Katsarava et al. Hetero‐chain polymers based on natural amino acids. Synthesis of polyamides from Nα, Nε‐bis (trimethylsilyl) lysine alkyl esters
US4245086A (en) Production of N-hydroxyalkyltrimellitic acid imides polymers
JPS61111326A (en) Novel polymer and its production
US11359050B2 (en) Synthesis of tyrosine derived polyarylates
JP3168263B2 (en) Novel polymer and drug using the same
Arranz et al. Partial esterification of poly (vinyl alcohol) with acid chlorides
JPH08109250A (en) Method for purifying polyhydroxycarboxylic acid
JP4345182B2 (en) Method for producing high purity cationic polymer
JPH043763B2 (en)
JP4612239B2 (en) Process for producing bioabsorbable polyhydroxycarboxylic acid
JPH0662604B2 (en) Process for producing cyclic polyarylate oligomer
JPS633881B2 (en)
JPS63115845A (en) Manufacture of beta-oxybutyric acid and salt of same by hydrolysis of oligomer of beta-oxybutyric acid in basic medium
JPS6264823A (en) Production of polyglycolide or polylactide
JP2875644B2 (en) Separation method using optical splitting membrane
SU476284A1 (en) The method of producing sorbent
SU1387354A1 (en) Method of cyclohexane carbolic acids
SU787415A1 (en) Method of preparing water-soluble redox polymers
JPH01246293A (en) Method for purifying sugaralcohol ester of fatty acid
JPH03294250A (en) Production of diallymethylammonium chloride

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term