JPS62279918A - Control of injection molding machine - Google Patents

Control of injection molding machine

Info

Publication number
JPS62279918A
JPS62279918A JP12414986A JP12414986A JPS62279918A JP S62279918 A JPS62279918 A JP S62279918A JP 12414986 A JP12414986 A JP 12414986A JP 12414986 A JP12414986 A JP 12414986A JP S62279918 A JPS62279918 A JP S62279918A
Authority
JP
Japan
Prior art keywords
limit value
range
correction
monitoring range
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12414986A
Other languages
Japanese (ja)
Other versions
JPH0481931B2 (en
Inventor
Masaaki Miyahara
正昭 宮原
Kiyoshi Miyahara
潔 宮原
Takaisa Yamazaki
貴勇 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Plastic Industrial Co Ltd
Original Assignee
Nissei Plastic Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Plastic Industrial Co Ltd filed Critical Nissei Plastic Industrial Co Ltd
Priority to JP12414986A priority Critical patent/JPS62279918A/en
Publication of JPS62279918A publication Critical patent/JPS62279918A/en
Publication of JPH0481931B2 publication Critical patent/JPH0481931B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve productivity, molding quality and reliability by automating stably control corresponding to mold quality, by correcting a controlled variable discriminating non-defective articles from defective articles through a monitoring range and making a physical quantity variable through an allowable range whose width is narrower than that of the monitoring range. CONSTITUTION:A monitoring range is provided to a physical quantity affecting directly to molding quality. When a measured value is between the upper limit value and lower limit value it is treated as normal and on the other hand, when the same exceeds the upper limit value or less than the lower limit value it is treated as abnormal. An allowable range(m) whose width is narrower than that of a monitoring range M is provided on the inside of the monitoring range M further. When the most advanced position of a screw is changed also by changing molding surroundings such as raising of an oil temperature while automatic operation is continued, the value exceeds the upper limit value SU as per P40 of a drawing and that the number of times of the excesses last continuously more than two times, correction is performed so as to make dwell force (controlled variable) in the next cycle small by issuing corrective instructions and making a control device (hydraulic circuit) variable. The correction is performed similarly also when the value does not arrive at the lower limit value SL and the number of times of unarrivals are continued three times.

Description

【発明の詳細な説明】 2、発明の詳細な説明 〔産業上の利用分野〕 本発明は合成樹脂等の成形に利用される射出成形機の制
御方法に関する。
Detailed Description of the Invention 2. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method of controlling an injection molding machine used for molding synthetic resin or the like.

〔従来の技術〕[Conventional technology]

従来、射出成形機の制御方法、特に成形品の成形品質に
関係する情報に基づいて制御量を補正する方法は次のよ
うに行われる。
Conventionally, a method of controlling an injection molding machine, particularly a method of correcting a control amount based on information related to the molding quality of a molded product, is performed as follows.

まず、成形品質に直接的に影響を与える、スクリュ最前
進位置、射出速度、射出圧力、全型内樹脂圧力、保圧力
、射出時間、保圧切換時間、計量時間、計I停止位置、
スクリュ回転速度、樹脂温度等の物理量に対し、成形品
質のモニター範囲である上限値と下限値を設定する。
First, the most advanced screw position, injection speed, injection pressure, total resin pressure in the mold, holding pressure, injection time, holding pressure switching time, metering time, total I stop position, which directly affects molding quality,
Upper and lower limit values are set for physical quantities such as screw rotation speed and resin temperature, which are monitoring ranges for molding quality.

そして、成形サイクル中における当該物理量を実測する
とともに、この実測値と前S己上限値又は下限値を比較
し、実測値が前記モニター範囲外であれば不良品と判定
し、他方モニター・範囲内であれば良品として判定する
。これにより、不良品の場合には運転を停止して警報を
発したり、或は成形品排除装置を作動させ、この後、不
良品が径時変化する外乱等に基つく場合はオペレータに
よって前記物理@(例えば、スクリュ最前進位置)を可
変する制@量(例えば、保圧力)を再設定する。なお、
このような方法を採用する理由は、物理量と制御量の相
関関係に依存する。即ち、一般的に物理量と、この物理
量を可変する制御量において略100パーセント相関か
存在するもの、例えば、位置(物理量)に対してその位
置を決定するモータの回転角度(制御■)等はフィード
バック制御方式、ンーケンス制御方式等によって容易、
かつ確実に制御できるが、成形品の良品、不良品のよう
に一定の幅をもつもの、或は相関はあるか明確でないも
のなどはこのような方式の制御を行うことができず、オ
ペレータの勘に頼って人為的に操作設定せざるを得ない
のが実情である。
Then, while actually measuring the physical quantity during the molding cycle, this actual measurement value is compared with the previous S upper limit value or lower limit value, and if the actual measurement value is outside the monitor range, it is determined to be a defective product, and if the other value is within the monitor range. If so, it is determined to be a good product. As a result, in the case of a defective product, the operation is stopped and an alarm is issued, or a molded product removal device is activated.After this, if the defective product is caused by a disturbance that changes over time, the operator can remove the physical The control amount (for example, holding force) that changes the @ (for example, the most forward position of the screw) is reset. In addition,
The reason for adopting such a method depends on the correlation between the physical quantity and the controlled quantity. In other words, in general, there is a nearly 100% correlation between a physical quantity and a controlled quantity that changes this physical quantity, such as the rotation angle (control ■) of a motor that determines the position (physical quantity), etc. Easily controlled by control system, sequence control system, etc.
However, this type of control cannot be used for molded products that have a certain range of good and defective products, or for products that are not clearly correlated or not, and require operator control. The reality is that we have no choice but to rely on intuition and manually set the operations.

〔発明か解決しようとする間m点〕[M points while trying to invent or solve]

このように、上述した従来の制御方法は結局不良条件の
検出から成形品の良否判別を行うのみであり、この域を
出ない。したがって、制御自体は上述のように人為的に
行わなければならず、きわめて非能率的である。このf
、−f不良品か発生するとこの時点で運転が停止し、オ
ペレータか再設定して運転を再開するまで生産か中止す
る等、生産性に大きく影響したり、或は成形品排除装置
を作動させても不良品を排除するのみで、異常状態のま
ま運転が続行する不具合を生じる。また、制御量がばら
つき、成形品質の均一性に悪影響を与える等、高度の自
動化、高品質化が要請される射出成形機にとって大きな
障害となっていた。
As described above, the conventional control method described above ultimately only determines the quality of the molded product from the detection of defective conditions, and does not go beyond this. Therefore, the control itself must be performed manually as described above, which is extremely inefficient. This f
, -f If a defective product occurs, the operation will stop at this point, and production will be stopped until the operator resets the settings and restarts the operation, which will greatly affect productivity, or the molded product removal device will be activated. However, if the system only eliminates defective products, it may cause a problem where operation continues in an abnormal state. In addition, the control amount varies, which adversely affects the uniformity of molding quality, which has been a major obstacle for injection molding machines that require a high degree of automation and high quality.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上述した従来技術に存在する諸問題を解決した
射出成形機における制御方法の提供を目的とするもので
、以下に示す方法によって達成される。
The present invention aims to provide a control method for an injection molding machine that solves the problems existing in the prior art described above, and is achieved by the method shown below.

即ち、本発明に係る射出成形機の制御方法は、まず、成
形品質に影響する物理量(例えば、スクリュ最前進位置
)に対し良品と不良品を判別するモニター範囲(M)を
設定する。他方、このモニター範囲(M)の内側には当
該モニター範囲(’d)よりも挟い許容範囲(m)を設
定する。そして、上記物理量の実測値か当該許容範囲(
m)から外れたとき、次サイクルにて上S己物理量を可
変する制御手段の制@量(例えば、保圧力)を補正する
ようにした。なお、補正は上記実測値が許容範囲(m)
から連続して複数回外れたときに行なわれるようにする
とともに、−回の補正動作による補正量を予め設定する
ことができる。
That is, in the method for controlling an injection molding machine according to the present invention, first, a monitoring range (M) for determining good products and defective products is set for a physical quantity that affects molding quality (for example, the most advanced position of a screw). On the other hand, inside this monitor range (M), a tolerance range (m) is set that is smaller than the monitor range ('d). Then, either the actual measured value of the above physical quantity or the permissible range (
m), the control amount (for example, holding force) of the control means for varying the upper S physical quantity is corrected in the next cycle. In addition, the above actual measured value is within the allowable range (m) for correction.
It is possible to perform the correction when the correction operation is deviated a plurality of times in succession, and to preset the amount of correction by the negative correction operation.

〔作  用〕[For production]

次に、本発明の作用について説明する。 Next, the operation of the present invention will be explained.

本発明に係る制御方法はモニター範囲(M)によって良
品と不良品を判別する。他方、このモニター範囲(M)
よりも幅の挟い許容範囲(m)によって許容するか、補
正するかを判別する。そして、前記物理量の実測値が許
容範囲(m)から外れたときは補正を行う。この補正は
当該物理量を可変する制御量を増減し、次サイクルにお
いて実測値が許容範囲(の)内に入るように是正する。
The control method according to the present invention discriminates between non-defective products and defective products based on the monitor range (M). On the other hand, this monitor range (M)
It is determined whether to allow or correct it based on the width tolerance range (m). Then, when the actual measured value of the physical quantity deviates from the allowable range (m), correction is performed. This correction increases or decreases the control amount that changes the physical quantity, and corrects the actual measured value so that it falls within the allowable range in the next cycle.

なお、実測値が許容範囲(ffl)内にある場合には許
容し、補正は行わない。
Note that if the actual measurement value is within the allowable range (ffl), it is accepted and no correction is made.

〔実 施 例〕〔Example〕

以下には本発明に係る好適な実施例を図面に基づいて詳
細に説明する。第1図は本発明方法を実施する射出成形
機におけるスクリュ最前進位置を示す図、第2図は第1
図におけるスクリュの府道回数と最前進位置の関係を示
す図である。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. Fig. 1 is a diagram showing the most advanced position of the screw in an injection molding machine that implements the method of the present invention, and Fig.
It is a figure which shows the relationship between the prefectural number of times of a screw, and the most advanced position in a figure.

一般に、インラインスクリュ式射出成形機においては成
形品質に直接的に影響を及ぼす物理量として、スクリュ
最前進位置、射出速度、射出圧力、全型内樹脂圧力、保
圧力、射出時間、保圧切換時間、計量時間、計量停止位
置、スクリュ回転速度、樹脂温度等がある。通常これら
の物理量に対しては所定のセンサ等で実測値を得、予め
設定したモニター範囲、つまり、上限値と下限値の間に
当該実測値が入っていれば正常(良品)、他方、上限値
を越え、又は下限値未満であれば異常(不良品)として
処理している。
In general, in an in-line screw injection molding machine, physical quantities that directly affect molding quality include the screw's most forward position, injection speed, injection pressure, total resin pressure in the mold, holding pressure, injection time, holding pressure switching time, Measurement time, measurement stop position, screw rotation speed, resin temperature, etc. Normally, actual measured values for these physical quantities are obtained using a predetermined sensor, etc., and if the actual measured value falls between the preset monitoring range, that is, the upper limit value and lower limit value, it is normal (good product). If it exceeds the value or is less than the lower limit value, it is treated as an abnormality (defective product).

例えば、実施例では代表的な物理量としてスクリュ最前
進位置(Pl)〜(P5)を例示するが、このスクリュ
最前進位置と成形品質、或は保圧力との間には深い関連
がある。つまり、成形中の射出工程では型締めされた金
型に第1図のような射出装置(2)のノズル(3)か当
接し、不図示の射出シリンダへの圧油供給によって射出
ピストンに一体に連結したスクリュ(4)が曲進する。
For example, in the examples, screw most advanced positions (Pl) to (P5) are illustrated as representative physical quantities, but there is a deep relationship between this screw most advanced position and molding quality or holding force. In other words, in the injection process during molding, the nozzle (3) of the injection device (2) as shown in Figure 1 comes into contact with the clamped mold, and is integrated into the injection piston by supplying pressure oil to the injection cylinder (not shown). The screw (4) connected to moves forward.

そして、このスクリュ(4)前方に計量蓄積された溶融
樹脂材料をノズル(3)から射出させ、金型内に充填さ
せる。したがって、当該スクリュ(4)の最府道位置(
PI)〜(P5)によって充填量が変化し、上限値(B
U)と下限値(BL)で規定したモニター範囲(M)内
であれば良品となるが、この範囲(M)から外れる場合
、例えば手萌の位置(Pl)の場合には充填不足不良と
なり、成形品にいわゆるヒケ、ショートか生じるととも
に、行過ぎた位置(P5)の場合には過充填不良となり
、成形品に異常な内部応力か生じたり、パリか発生する
。この場合、スクリュ最前進位置を可変する制御手段に
よってスクリュ(4)の保圧力(制御量)を大きくする
とスクリュ最前進位置は前方へ移行し、逆に小さくする
と後方へ移行する。
Then, the molten resin material measured and accumulated in front of the screw (4) is injected from the nozzle (3) and filled into the mold. Therefore, the highest position of the screw (4) (
The filling amount changes depending on PI) to (P5), and the upper limit (B
If it is within the monitoring range (M) defined by U) and the lower limit value (BL), it will be a good product, but if it is outside this range (M), for example in the hand moe position (Pl), it will be defective due to insufficient filling. , so-called sink marks and short circuits occur in the molded product, and if the molded product is located at an excessive position (P5), overfilling becomes defective, and abnormal internal stress or flaking occurs in the molded product. In this case, when the holding force (control amount) of the screw (4) is increased by the control means for varying the screw most advanced position, the screw most advanced position shifts to the front, and conversely, when it is decreased, the screw most advanced position shifts to the rear.

本発明では当該モニター範囲(M)の内側に、さらにモ
ニター範囲(M)の幅より挟い許容範囲(m)を設定す
る。この許容範囲(1)の幅を規制する上限値(SU)
と下限値(SL)、それに許容範囲(m)全体の位置(
モニター範囲の中央に限られない)は成形品の種類等に
応じて任意に設定できる。なお、許容範囲(m)の幅は
狭くするほど均一の成形品を得ることができ、また、後
述する補正回数が頻繁に行われることになる。
In the present invention, inside the monitor range (M), a permissible range (m) that is smaller than the width of the monitor range (M) is further set. Upper limit value (SU) that regulates the width of this tolerance range (1)
and the lower limit value (SL), and the position of the entire tolerance range (m) (
(not limited to the center of the monitor range) can be set arbitrarily depending on the type of molded product, etc. Note that the narrower the width of the tolerance range (m), the more uniform the molded product can be obtained, and the more frequently the correction described below will be performed.

このように、許容範囲(m)を設定することによって、
次のように制御される。
In this way, by setting the tolerance range (m),
It is controlled as follows.

第2図において黒点はスクリュ最前進位置をプロットし
たものであり、スクリュの位置をポテン戸ヨメータ等の
位置センサによって検出した実測値である。
In FIG. 2, the black dots are plotted at the most advanced position of the screw, and are actual measured values of the screw position detected by a position sensor such as a potentiometer.

今、スクリュ最前進位置が当該許容範囲(1)内にある
場合には全くの正常であり、そのままの状態で運転が継
続される。
If the screw most forward position is within the permissible range (1), it is completely normal and the operation continues in that state.

一方、最適な成形条件を設定したにも拘わらず自動運転
を継続している間に油温が上昇する等、成形環境が変化
してスクリュ最前進位置も変移し、第2図の(P2O)
のように上限値(SU)を越え、しかもこの越えた回数
が連続して3回以上続いたときは補正指令を発し、制御
手段(油圧回路等)を可変して次サイクルにおける保圧
力(制御量)を小さくするように補正する。なお、この
場合、補正量、つまり、−回の補正で保圧力を小さくす
る幅は予め設定し、許容範囲(m)に入るまで複数回補
正動作を繰り返せばよく、比較的簡単な論理回路で構成
できる。また、外れた実測値を平均し、或は直前の大き
さを演算する等によって必要な補正量を予測し、−回の
補正で修正できるようにしてもよい。この補正は第2図
中(P2O)のように下限値(SL)に満たず、かつ満
たない回数か3回連続したときも同禄に行われ、この場
合保圧力を高くする方向へ作用する。なお、補正は実測
値が許容範囲を3回連続して外れた場合に行うようにし
たが、勿論1回或は他の任意の回数でもよい。しかし、
実施例のように複数回設定することによって補正か不要
の突発的な外乱か、補正が必要な成形環境の経時変化か
を判別し、的確な補正を行うことができる。また制御手
段の制御量として保圧力を可変する場合を示したか、本
発明ではある程度の相関があれば制御を行うことができ
るため、他の制御量、例えば計量停止位置、背圧力等を
個別、或は同時に制御することもできる。このように、
本発明は物理量と制御量がスクリュ最前進位置と保圧力
のように異なり、しかも物理量に幅(品質に対応した幅
)がある場合等に好適である。
On the other hand, even though the optimal molding conditions have been set, the molding environment changes such as the oil temperature rising while automatic operation continues, and the screw most advanced position shifts, resulting in (P2O in Figure 2)
When the upper limit (SU) is exceeded, and this exceedance continues three or more times in a row, a correction command is issued, and the control means (hydraulic circuit, etc.) is varied to adjust the holding pressure (control) in the next cycle. amount). In this case, the correction amount, that is, the range by which the holding force is reduced by - times of correction, can be set in advance, and the correction operation can be repeated multiple times until it falls within the allowable range (m), which can be done using a relatively simple logic circuit. Can be configured. Alternatively, the necessary correction amount may be predicted by averaging the actual measurement values that deviate from each other, or by calculating the previous magnitude, so that the correction can be made by -times of correction. This correction is also performed when the lower limit (SL) is not reached and the number of times or three times in a row that the lower limit value (SL) is not reached as shown in Fig. 2 (P2O), and in this case, it acts in the direction of increasing the holding force. . Note that the correction is performed when the actual measurement value falls outside the allowable range three times in a row, but of course it may be performed once or any other number of times. but,
By setting it multiple times as in the embodiment, it is possible to determine whether it is a sudden disturbance that does not require correction or a change over time in the molding environment that requires correction, and accurate correction can be performed. In addition, although we have shown the case where the holding force is varied as a control variable of the control means, in the present invention, control can be performed as long as there is a certain degree of correlation, so other control variables, such as metering stop position, back pressure, etc. Alternatively, they can be controlled simultaneously. in this way,
The present invention is suitable for cases where the physical quantity and the controlled quantity are different, such as the most advanced position of the screw and the holding force, and the physical quantity has a width (width corresponding to quality).

他方、第2図の(P41)、(P42)ノように上限値
(SU)又は下限値(SL)から1回又は2回外れた場
合であって、面記モニター範囲(M)内の場合には、成
形品は良品のf1囲であり、補正は行わず、そのまま運
転を続行する。また、(P2O)、(PIO)のように
モニター範囲(M)からも外れた場合には成形品は不良
品として処理する。
On the other hand, when the value deviates from the upper limit (SU) or lower limit (SL) once or twice, as shown in (P41) and (P42) in Figure 2, and it is within the written monitor range (M). In this case, the molded product is in the f1 range of good products, and the operation continues without any correction. Furthermore, when the values are outside the monitoring range (M), such as (P2O) and (PIO), the molded product is treated as a defective product.

以上、実施例について詳細に説明したが本発明はこのよ
うな実施例に限定されるものではない。
Although the embodiments have been described in detail above, the present invention is not limited to these embodiments.

例えば保圧力を補正するに際しスクリュ最前進位置を検
出したが、その他金型内圧を検出してもよい。さらに、
充填時間を検出して充填圧を補正する等、一般的には成
形品質に影響を及ぼす任意の物理量を検出し、この物理
量を可変するEE意制御手段の制@量を補正することが
できる。これら物理量、補正の幅等は成形品、金型等に
よって適宜選択できる。また、本発明ではある程度の相
関関係を前提とするため同時に複数の物理量を検出し、
複数の制御量を補正してもよく、これによってより高精
度の補正を行うことができる。その他細部の手法におい
て本発明の精神を逸脱しない範囲において任意に変更実
施することができる。
For example, when correcting the holding force, the most advanced position of the screw is detected, but the mold internal pressure may also be detected. moreover,
In general, it is possible to detect any physical quantity that affects molding quality, such as by detecting the filling time and correcting the filling pressure, and to correct the control amount of the EE control means that varies this physical quantity. These physical quantities, correction widths, etc. can be appropriately selected depending on the molded product, mold, etc. In addition, since the present invention assumes a certain degree of correlation, multiple physical quantities are detected simultaneously,
A plurality of control variables may be corrected, and thereby more accurate correction can be performed. Other details may be arbitrarily modified without departing from the spirit of the present invention.

〔発明の効果〕〔Effect of the invention〕

このように本発明に係る射出成形機の制御方法は成形品
質に影響する物理量に対し、従来のモニター節用の他に
さらに許容範囲を新たに創設し、この許容範囲から外れ
たときに補正を行うようにしたため、次のような著効を
得る。
In this way, the injection molding machine control method according to the present invention creates a new tolerance range in addition to the conventional monitoring section for physical quantities that affect molding quality, and makes corrections when the physical quantities deviate from this tolerance range. By doing so, we obtain the following effects:

■長時間の無人運転中に実測値が許容範囲から外れても
自動修正され、成形機の停止、不良品の継続成形を防止
でき、従来においてフィードバック制御等ができなかっ
た成形品質に対応した制御も安定に自動化でき、生産性
向上を達成できる。
■ Even if the actual measured value falls outside of the allowable range during long periods of unattended operation, it is automatically corrected, preventing the molding machine from stopping and continuing molding of defective products, and supports molding quality that was not possible with feedback control in the past. can also be stably automated and improve productivity.

■成形品質は常に許容範囲内に維持できるため成形品質
の均一性を高めることかできるとともに、成形品質の自
由度、つまり品質を厳しくするか、緩くするかの設定も
容易に行うことかできる。
■Since the molding quality can always be maintained within the allowable range, it is possible to improve the uniformity of the molding quality, and it is also possible to easily set the degree of freedom in the molding quality, that is, whether to make the quality strict or lenient.

■最適な実施形態によって一回の補正動作による補正量
を予め設定すれば複雑な演算処理等は不要となり、簡単
な論理回路等で実施できる。したがって、故障を生じな
い信頼性の高いシステム、更にはコストアップを生じな
い安価なシステムを構成できる。
(2) If the correction amount for one correction operation is set in advance according to the optimal embodiment, complicated arithmetic processing and the like are not necessary, and the correction can be implemented using a simple logic circuit or the like. Therefore, it is possible to construct a highly reliable system that does not cause failures, and furthermore, an inexpensive system that does not increase costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図1本発明方法を実施する射出成形機におけるスク
リュの最前進位置を示す図、 第2図:第1図におけるスクリュの前進回数と最前進位
置の関係を示す図。 尚図面中、 (M):モニター範囲      (m):許容範囲特
許出願人  日精樹脂工業株式会社 代理人弁理士 下  1)   及 第1図 P5  P4 P3 P2  P1 スクリュ位置 第2図 スクリュ而進回数
FIG. 1: A diagram showing the most advanced position of the screw in an injection molding machine implementing the method of the present invention. FIG. 2: A diagram showing the relationship between the number of advances of the screw and the most advanced position in FIG. In the drawings, (M): Monitoring range (m): Permissible range Patent applicant Nissei Jushi Kogyo Co., Ltd., agent Patent attorney 1) and Figure 1 P5 P4 P3 P2 P1 Screw position Figure 2 Number of screw advances

Claims (1)

【特許請求の範囲】 〔1〕成形品質に影響する物理量に対し良品と不良品を
判別するモニター範囲を設定するとともに、このモニタ
ー範囲の内側に当該モニター範囲よりも幅の挟い許容範
囲を設定し、前記物理量の実測値が前記許容範囲から外
れたとき、次サイクルにて前記物理量を可変する制御手
段の制御量を補正することを特徴とする射出成形機の制
御方法。 〔2〕前記実測値が前記許容範囲から連続して複数回外
れたときに前記補正を行うことを特徴とする特許請求の
範囲第1項記載の射出成形機の制御方法。 〔3〕前記補正は一回の補正動作による補正量が予め設
定されていることを特徴とする特許請求の範囲第1項記
載の射出成形機の制御方法。
[Claims] [1] A monitor range is set for determining good products and defective products for physical quantities that affect molding quality, and a tolerance range is set inside this monitor range that is wider than the monitor range. A method for controlling an injection molding machine, comprising: correcting a control amount of a control means for varying the physical quantity in the next cycle when the measured value of the physical quantity deviates from the allowable range. [2] The method for controlling an injection molding machine according to claim 1, wherein the correction is performed when the measured value deviates from the allowable range a plurality of times in succession. [3] The method for controlling an injection molding machine according to claim 1, wherein the correction amount for one correction operation is set in advance.
JP12414986A 1986-05-29 1986-05-29 Control of injection molding machine Granted JPS62279918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12414986A JPS62279918A (en) 1986-05-29 1986-05-29 Control of injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12414986A JPS62279918A (en) 1986-05-29 1986-05-29 Control of injection molding machine

Publications (2)

Publication Number Publication Date
JPS62279918A true JPS62279918A (en) 1987-12-04
JPH0481931B2 JPH0481931B2 (en) 1992-12-25

Family

ID=14878147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12414986A Granted JPS62279918A (en) 1986-05-29 1986-05-29 Control of injection molding machine

Country Status (1)

Country Link
JP (1) JPS62279918A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310823A (en) * 1989-06-09 1991-01-18 Sumitomo Heavy Ind Ltd Monitoring device for injection molding machine
JPH03266621A (en) * 1990-03-16 1991-11-27 Toyo Mach & Metal Co Ltd Injection molding machine
US5200126A (en) * 1990-11-29 1993-04-06 Eastman Kodak Company Method and apparatus for monitoring the stability of the injection molding process by measurement of screw return time
JP2010228303A (en) * 2009-03-27 2010-10-14 Nissei Plastics Ind Co Controller of injection molding machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310823A (en) * 1989-06-09 1991-01-18 Sumitomo Heavy Ind Ltd Monitoring device for injection molding machine
JPH03266621A (en) * 1990-03-16 1991-11-27 Toyo Mach & Metal Co Ltd Injection molding machine
US5200126A (en) * 1990-11-29 1993-04-06 Eastman Kodak Company Method and apparatus for monitoring the stability of the injection molding process by measurement of screw return time
JP2010228303A (en) * 2009-03-27 2010-10-14 Nissei Plastics Ind Co Controller of injection molding machine

Also Published As

Publication number Publication date
JPH0481931B2 (en) 1992-12-25

Similar Documents

Publication Publication Date Title
EP0455820B1 (en) Method of correcting defective molding in injection molding machine
JPS62279918A (en) Control of injection molding machine
JP2017209880A (en) Setting support method of injection molding machine
JPS62279917A (en) Control of injection molding machine
JPS5851126A (en) Method of controlling mold gate balance and apparatus therefor
JPH074841B2 (en) Drive system abnormality detection device for injection molding machine
JP4127339B2 (en) Injection molding method and injection molding apparatus
JP3897397B2 (en) Injection speed control device for injection molding machine
JPH02128822A (en) Method and apparatus for setting optimum monitor tolerant value of injection molding machine
JPS6382725A (en) Control of injection molding machine
JPH0653380B2 (en) How to set molding conditions for injection molding machine
JPH08281756A (en) Operation control method for injection molding machine
JPH07102593B2 (en) Injection control method of injection molding machine
JPS604017A (en) Setting of operating condition of injection molding machine
JP2021070210A (en) Control device, injection molding machine, and control method
JP2003251672A (en) Supercritical fluid injecting apparatus
JPS6382722A (en) Control of injection of injection molding machine
JPH09216266A (en) Control of injection molding machine
JPH0494914A (en) Control method for vent type injection molding machine
JP2598687Y2 (en) Inspection equipment for injection molding machines
JPH04173316A (en) Non-defective molded product distinguishing method for injection molding machine
JPS63209919A (en) Method for molding of injection molder
JP2785085B2 (en) Injection abnormality detection method and apparatus for injection molding machine
JPH06229790A (en) Abnormality diagnostic method for sensor
JP3457839B2 (en) Injection speed control device for injection molding machine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term