JPH08281756A - Operation control method for injection molding machine - Google Patents

Operation control method for injection molding machine

Info

Publication number
JPH08281756A
JPH08281756A JP9251095A JP9251095A JPH08281756A JP H08281756 A JPH08281756 A JP H08281756A JP 9251095 A JP9251095 A JP 9251095A JP 9251095 A JP9251095 A JP 9251095A JP H08281756 A JPH08281756 A JP H08281756A
Authority
JP
Japan
Prior art keywords
molding
condition
physical quantity
conditions
molding condition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9251095A
Other languages
Japanese (ja)
Inventor
Toyoaki Ueno
豊明 上野
Shozo Fujii
昌造 藤井
Masayuki Tsuruta
将之 鶴田
Masahiro Kami
昌弘 紙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP9251095A priority Critical patent/JPH08281756A/en
Publication of JPH08281756A publication Critical patent/JPH08281756A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To prevent the generation of a defective product accompanied by a change of environment by setting a condition having the intermediate value of the population in a trial molding test of a reference good product molding condition pattern to a molding condition and altering the molding condition when the physical quantity thereof is ready to deviate from a good product molding range so that the physical quantity becomes the center of the good product molding range. CONSTITUTION: An injection process and a dwelling process are separately provided with respect to each of reference good product molding conditions A and a plurality of molding condition patterns B changed in the setting of a screw position, an injection speed, an injection time or dwelling pressure little by little are set before and behind each of the reference good product molding conditions A. Next, a molding test is conducted at every molding condition patterns B and conditions generating good and bad products are classified to establish the popullation of good product molding patterns. The molding conditions of upper and lower limit values are determined from a good product molding condition range on the basis of the data thereof and the intermediate value thereof is selected as the optimum molding condition. The molding condition is altered on the basis of the physical quantity exerting effect on quality among the values measured during molding by various sensors to obtain a good product range.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、プラスチック製品を成
形する射出成形機の運転制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operation control method for an injection molding machine for molding a plastic product.

【0002】[0002]

【従来の技術】従来、溶融樹脂の射出成形においては、
横軸を射出スクリュの位置または時間とし、縦軸を射出
スクリュの前進速度または圧力とし、高速で金型キャビ
ティ内へ溶融した樹脂を充填する充填工程と、溶融樹脂
の充填後に金型キャビティ内の樹脂に圧力を加えて成形
する保圧工程によって射出制御され、多くの場合、充填
工程は油圧回路の圧力調整弁を高圧に設定し、射出開始
からの経過時間または射出スクリュの前進位置を基準に
速度を複数段に変化させるように流量制御弁の開度を時
間経過とともに、あるいは射出スクリュのストローク位
置に応じて変化させるように設定し、該流量制御弁の調
整により射出シリンダのピストン、すなわち、射出スク
リュの射出速度を制御し、キャビティ内の樹脂が空気を
巻き込まない程度に高速で溶融樹脂をキャビティ内へ充
填するものとし、溶融樹脂がキャビティ内に充填された
後は流量制御弁を比較的小さい開度に固定し、圧力調整
弁により油圧を調整する保圧工程とし、この保圧工程は
時間経過に応じてキャビティ内に充填された溶融樹脂に
所定の圧力を加え得るように圧力調整弁の開度を変化さ
せ、キャビティ内で溶融樹脂が冷却されることにより樹
脂が収縮し、製品の形状や寸法がキャビティ形状の寸法
に対して誤差を生じさせることのないように防止すると
ともに製品内部に大きな残留応力が生じないようにして
いる。
2. Description of the Related Art Conventionally, in injection molding of molten resin,
The horizontal axis is the position or time of the injection screw, the vertical axis is the forward speed or pressure of the injection screw, and the filling step of filling the molten resin into the mold cavity at high speed, and the filling cavity inside the mold cavity after the molten resin is filled. Injection control is performed by a pressure-holding process that applies pressure to the resin, and in many cases, the filling process sets the pressure adjustment valve of the hydraulic circuit to high pressure, and based on the elapsed time from the start of injection or the forward position of the injection screw. The opening of the flow control valve is set to change over time so as to change the speed in multiple stages, or is set to change according to the stroke position of the injection screw, and by adjusting the flow control valve, the piston of the injection cylinder, that is, The injection speed of the injection screw is controlled to fill the molten resin into the cavity at a high speed so that the resin in the cavity does not entrap air. After the molten resin is filled in the cavity, the flow control valve is fixed to a relatively small opening, and the pressure control valve adjusts the hydraulic pressure to perform a pressure-holding process. The opening of the pressure control valve is changed so that a predetermined pressure can be applied to the filled molten resin, and the molten resin cools in the cavity, causing the resin to shrink, and the shape and dimensions of the product are the dimensions of the cavity shape. The error is prevented from occurring and a large residual stress is not generated inside the product.

【0003】図10は、溶融樹脂が射出成形機20のス
クリュヘッド前部22よりノズル部4を経由して金型1
0a、10bで形成されるキャビティ8へ射出充填され
る直前の状態を示しており、この後、射出工程に入り、
射出シリンダ16のヘッド側16aより作動油が射出シ
リンダ16内へ入りスクリュ1を前進させて、ノズル部
4の溶融樹脂をキャビティ8内へ移送させる。キャビテ
ィ8内に溶融樹脂が充満された後に保圧工程へ入り、樹
脂の冷却固化に伴う収縮分が補充されつつ、スクリュヘ
ッド前部22の樹脂に圧力が加えられる。このような射
出工程と保圧工程にそれぞれどのような樹脂流入速度パ
ターンや圧力パターンで溶融樹脂を射出充填していくの
かということに、金型内で成形される樹脂成形品の品質
の良否が依存しており、一般的には、前述したように、
例えば射出工程では、図13に示すように、スクリュ位
置とスクリュ前進速度との関係で設定し、保圧工程で
は、図14に示すように、経過時間と保圧力(油圧力ま
たは樹脂圧力)との関係で設定するようにしている。
In FIG. 10, the molten resin is injected from the screw head front portion 22 of the injection molding machine 20 through the nozzle portion 4 into the mold 1.
It shows a state immediately before injection filling into the cavity 8 formed by 0a and 10b. After that, the injection process is started,
Hydraulic oil enters the injection cylinder 16 from the head side 16a of the injection cylinder 16 and advances the screw 1 to transfer the molten resin of the nozzle portion 4 into the cavity 8. After the cavity 8 is filled with the molten resin, a pressure-holding step is performed, and a pressure is applied to the resin in the front portion 22 of the screw head while supplementing the contraction amount due to the cooling and solidification of the resin. What kind of resin inflow velocity pattern and pressure pattern should be used to inject and fill the molten resin in such an injection process and a pressure-holding process, respectively, depends on the quality of the resin molded product molded in the mold. It depends, and in general, as mentioned above,
For example, in the injection process, as shown in FIG. 13, the screw position and the screw advancing speed are set, and in the pressure holding process, as shown in FIG. 14, the elapsed time and the holding pressure (oil pressure or resin pressure) are set. I am trying to set it in relation to.

【0004】そして、このような速度パターンや圧力パ
ターンを決定するに当って、オペレータは良品を再現性
よく安定的に得ることのできる成形条件を把握しようと
して、種々の成形条件の色々な組み合わせを実施してト
ライアル・アンド・エラーにより望ましい結果を得よう
としてきた。また、最近ではこうした試行錯誤法ととも
に、コンピュータ技術を駆使した樹脂の金型内流動解析
に関するシミュレーション法により、望ましい成形条件
をある程度の精度で把握するような試みも実施されつつ
ある。一方、射出成形機で成形する場所の環境(外気
温)や機械の状態(摩擦係数など)や樹脂の状態(溶融
粘度など)が変化すると、同じ条件で成形していても不
良品を発生することになり、このため成形後の成形品を
検査する品質検査工程を設けて成形品品質の合否を判定
し、不良品が出始めると成形を停止しもう一度成形条件
出しを行なっていた。
In determining such a velocity pattern or pressure pattern, the operator tries to grasp the molding conditions under which a good product can be stably obtained with good reproducibility, and various combinations of various molding conditions are used. I have been trying to get the desired result by trial and error. In addition to these trial-and-error methods, recently, an attempt is being made to grasp desirable molding conditions with a certain degree of accuracy by a simulation method for in-mold flow analysis of resin making full use of computer technology. On the other hand, if the environment (outside air temperature) of the place where the molding is performed with the injection molding machine, the state of the machine (friction coefficient, etc.) or the state of the resin (melt viscosity, etc.) changes, defective products will occur even if molding is performed under the same conditions. Therefore, a quality inspection step for inspecting the molded product after molding is provided to judge whether the quality of the molded product is acceptable or not. When defective products start to appear, the molding is stopped and the molding conditions are set again.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、数回の
試し打ちなどの試行錯誤の中から得られたいくつかの良
品成形条件は、例えば、図15や図16に示すように、
良品成形範囲の上限値と下限値との間に挟まれた範囲の
中のひとつの良品成形条件パターンに過ぎず、もしこの
良品成形条件パターンが良品成形条件の範囲の上限値も
しくは下限値に近いものであった場合には、各種の成形
条件に及ぼす何らかの環境変化や外乱があった場合に
は、容易にこの範囲から逸脱して良品成形条件でなくな
る惧れがあり、このような場合には予定通りの良品の形
成が阻害されるという難点が生じることになり、結果的
に不良品を成形してしまうことになる。また、環境や機
械の状態の変化や樹脂の状態の変化が大きい場合は不良
品の発生が避けられないため、成形後に品質検査工程を
設け品質の合否を判定し、不良品が続いて成形される場
合は成形を停止しもう一度条件出しを行なわねばなら
ず、生産性の悪化やコストの増加を招いていた。
However, some non-defective molding conditions obtained from trial and error such as several trial shots are as shown in FIG. 15 and FIG.
It is only one non-defective molding condition pattern within the range sandwiched between the upper and lower limits of the non-defective molding range, and if this non-defective molding condition pattern is close to the upper or lower limit of the non-defective molding condition range. However, if there is any environmental change or disturbance that affects various molding conditions, there is a risk that it will easily deviate from this range and become non-defective molding conditions. The drawback is that the formation of non-defective products as planned is hindered, resulting in the molding of defective products. Also, if there are large changes in the environment or machine conditions or resin conditions, it is inevitable that defective products will occur.Therefore, a quality inspection process is provided after molding to determine whether the quality is acceptable or not, and defective products are subsequently molded. In that case, the molding must be stopped and the conditions must be set again, resulting in a deterioration in productivity and an increase in cost.

【0006】[0006]

【課題を解決するための手段】以上のような課題を解決
して、多少の環境変化が生じても不良品が出ないように
実成形運転における良品成形の最適成形条件を設定し、
かつ、環境変化が大きくて不良品の発生が避けられない
場合は成形条件を自動的に修正するため、本発明におい
ては、加熱あるいは加圧手段により流動性をもたせた樹
脂材料を略密閉状の金型キャビティ内に流動圧入して成
形品を繰り返し生産する射出成形機の運転制御方法であ
って、あらかじめ実成形運転に先立って実施される条件
出し成形テストのうち良品が形成される成形条件を1個
あるいは複数個選択して基準良品成形条件とするととも
に、該1個あるいは該複数個の基準良品成形条件の各々
についてそれぞれ少なくとも1個以上の条件設定値を変
化させた複数個の成形条件パターンを作成し、作成され
たすべての成形条件パターンについて試打ち成形テスト
を実施して成形品の品質判定を行なった結果良品が形成
される成形条件パターンのみからなる母集団を形成し、
該母集団の中から上限値の成形条件パターンと下限値の
成形条件パターンを求め、前記上限値と下限値の成形条
件パターンの中間値の成形条件パターンを実操業運転時
の成形条件とするとともに、前記成形条件パターンの試
打ち成形テストの際にテスト条件に係る複数個の物理量
を測定し、前記品質判定した結果と照合して品質の良否
に影響を及ぼす物理量を選択したうえ該物理量の良品成
形範囲を設定するとともに、前記選択された物理量と成
形条件との関係を算出した後、実操業運転時に前記選択
された物理量が該良品成形範囲を逸脱しそうになったと
き、前記選択された物理量と成形条件との関係より該物
理量が良品成形範囲の中央となるよう成形条件を変更す
る構成とした。また、第2の発明では、条件出し成形テ
ストに代えて、CAE技術に基づいて少なくとも1個以
上の基準良品成形条件を設定することとした。
[Means for Solving the Problems] By solving the above problems, the optimum molding conditions for non-defective molding in actual molding operation are set so that defective products do not appear even if some environmental changes occur,
In addition, in order to automatically correct the molding conditions when the occurrence of defective products is unavoidable due to a large environmental change, in the present invention, a resin material that has fluidity by heating or pressurizing means is substantially sealed. This is an operation control method for an injection molding machine that repeatedly press-molds into a mold cavity to repeatedly produce molded products, and sets the molding conditions for forming a non-defective product in the conditional molding test that is performed prior to the actual molding operation. A plurality of molding condition patterns in which one or more are selected as standard conforming product molding conditions and at least one or more condition setting values are changed for each of the one or more standard conforming product molding conditions. A molding condition pattern that a good product is formed as a result of performing a trial shot molding test on all the created molding condition patterns and judging the quality of the molded product. To form a population consisting of only over emissions,
A molding condition pattern of the upper limit value and a molding condition pattern of the lower limit value is obtained from the population, and the molding condition pattern of the intermediate value of the molding condition pattern of the upper limit value and the lower limit value is used as the molding condition during actual operation. , A plurality of physical quantities related to the test conditions are measured during the trial molding test of the molding condition pattern, and the physical quantity that influences the quality of the quality is selected by collating it with the result of the quality judgment, and the good product of the physical quantity is selected. After setting the molding range and calculating the relationship between the selected physical quantity and the molding condition, when the selected physical quantity is likely to deviate from the non-defective molding range during actual operation, the selected physical quantity Based on the relationship between the molding conditions and the molding conditions, the molding conditions were changed so that the physical quantity was in the center of the good product molding range. Further, in the second invention, instead of the conditional molding test, at least one standard conforming product molding condition is set based on the CAE technique.

【0007】[0007]

【作用】本発明においては、あらかじめ実成形運転に先
立って行なわれる条件出しやCAE技術によるシミュレ
ーション手法により、良品が形成される成形条件を1つ
または複数個把握し、これを基準良品成形条件としたう
え、これをベースにそれぞれ条件設定値を少しずつ変化
させた複数個の成形条件パターンを作成する。そして、
その各々について試打ち成形テストを実施して品質判定
を行ない、このうち良品が形成される成形条件パターン
のみを取り上げた母集団の中から条件設定値の上限値と
なる成形条件パターンと下限値となる成形条件パターン
を求める。そして、この2つの上限値、下限値の条件値
の中間値を採る成形条件パターンを実操業運転時の成形
条件とする。一方、前記複数個の成形条件パターンで試
打ち成形テストを実施する際、複数の物理量を測定して
おき、品質判定の結果と照合して品質に影響を及ぼす物
理量を1個または複数個選択し、その良品範囲値を決定
した上、物理量と成形条件との関係を算出しておく。前
記の方法で得られた成形条件で実操業運転を行なえば、
実操業時にまぎれ込む環境変化に対しても不良品とはな
りにくく、また品質に影響する物理量を監視しておけ
ば、環境変化が大きく該物理量が良品範囲から逸脱しそ
うになった場合でも前記の方法で得た物理量と成形条件
の関係より物理量が良品範囲の中央に来るよう成形条件
を修正すれば不良品の発生を防止できる。
In the present invention, one or a plurality of molding conditions for forming a good product are grasped by the condition setting performed prior to the actual molding operation or the simulation method by the CAE technique, and this is used as the standard good product molding condition. In addition, based on this, a plurality of molding condition patterns in which the condition setting values are slightly changed are created. And
A quality test is performed by performing a trial molding test for each of them, and the molding condition pattern and the lower limit value that become the upper limit value of the condition setting value from the population that picks up only the molding condition pattern that forms a good product Then, the molding condition pattern is obtained. Then, a molding condition pattern that takes an intermediate value between these two upper limit values and lower limit condition values is used as the molding condition during actual operation. On the other hand, when carrying out the trial molding test with the plurality of molding condition patterns, a plurality of physical quantities are measured, and one or a plurality of physical quantities that affect the quality are selected by collating with the quality judgment result. After determining the non-defective product range value, the relationship between the physical quantity and the molding condition is calculated. If the actual operation is performed under the molding conditions obtained by the above method,
It is unlikely that the product will be defective even if it changes due to environmental changes that occur during actual operation, and if physical quantities that affect quality are monitored, even if the physical changes tend to deviate from the good product range, From the relationship between the physical quantity obtained by the method and the molding condition, if the molding condition is corrected so that the physical quantity is in the center of the non-defective product range, the occurrence of defective products can be prevented.

【0008】[0008]

【実施例】以下、図面に基づいて本発明の実施例の詳細
について説明する。図1〜図11は本発明の実施例に係
り、図1は射出工程における最適成形条件の説明図、図
2は保圧工程における最適成形条件の説明図、図3は射
出工程における成形条件パターン設定の説明図、図4は
保圧工程における成形条件パターン設定の説明図、図5
は最適成形条件の設定手順と制御方法を示すフローチャ
ート、図6〜図8は測定物理量と品質ならびに良品の相
関を示す説明図、図9〜図10は選択された物理量と成
形条件の相関を示す説明図、図11は選択された物理量
の変化に対応し成形条件を変更することを示す説明図で
ある。
Embodiments of the present invention will be described below in detail with reference to the drawings. 1 to 11 relate to an embodiment of the present invention, FIG. 1 is an explanatory view of optimum molding conditions in an injection process, FIG. 2 is an explanatory view of optimum molding conditions in a pressure holding process, and FIG. 3 is a molding condition pattern in an injection process. 5 is an explanatory view of setting, FIG. 4 is an explanatory view of molding condition pattern setting in the pressure holding step,
6 is a flow chart showing the setting procedure and control method of the optimum molding conditions, FIGS. 6 to 8 are explanatory diagrams showing the correlation between the measured physical quantity and quality and the good product, and FIGS. 9 to 10 show the correlation between the selected physical quantity and the molding condition. FIG. 11 is an explanatory diagram showing that the molding condition is changed in response to the change in the selected physical quantity.

【0009】本発明の目的は、実操業運転において生じ
る不測の環境変化や外乱に遭遇しても、誤りなく確実に
不良品を出すことなく継続的に良品を成形することので
きる信頼性の高い最適成形条件を把握して運転制御する
ことである。また、環境の変化が大きく不良品の発生が
避けられなくなった場合でも、自動的にそれを感知し適
切に成形条件を修正して良品を成形し続けることであ
る。すなわち、良品成形率をきわめて高くし、なおか
つ、環境の変化に合わせて成形条件を修正することがで
きることを意図している。以下その詳細な手順について
説明する。
The object of the present invention is to provide a highly reliable product which is capable of continuously molding a non-defective product without error even if an unexpected environmental change or disturbance that occurs during actual operation is encountered, without fail. It is to grasp the optimum molding conditions and control the operation. Further, even when the environment changes greatly and the occurrence of defective products cannot be avoided, it is necessary to automatically detect it and appropriately correct the molding conditions to continue molding good products. That is, it is intended that the molding rate of non-defective products can be made extremely high, and the molding conditions can be modified according to changes in the environment. The detailed procedure will be described below.

【0010】図5は、最適成形条件を設定し、実操業運
転中環境変化に合わせて成形条件を自動修正する手順を
示すフローチャートであり、実操業運転に先立ってまず
良品を成形できる成形条件(これを基準良品成形条件と
言う)を1個または複数個設定する。この基準良品成形
条件は過去の成形実績データや経験に基づいて条件出し
成形テストを実施して確認するか、もしくは、CAE技
術を応用した金型内樹脂流れの流動解析シミュレーショ
ン手法を駆使して決定する。
FIG. 5 is a flow chart showing a procedure for setting the optimum molding conditions and automatically correcting the molding conditions in accordance with the environmental change during the actual operating operation. This is referred to as a standard conforming product molding condition) and one or more of them are set. The standard non-defective molding conditions are determined by performing conditional molding tests based on past molding performance data and experience, or by making full use of the CAE technology-based resin flow simulation simulation method. To do.

【0011】このような第1段階の作業を終えた後、こ
の複数個の基準良品成形条件の各々についてそれぞれ射
出工程と保圧工程に分けて基準良品成形条件を中心とし
て、その前後にスクリュ位置、射出速度、時間、保圧圧
力といった条件設定を少しずつ変化させた成形条件パタ
ーンを複数個設定する。図3、図4はそれぞれ射出工
程、保圧工程において設定された成形条件パターンの実
施例を示したものである。
After the first stage work is completed, each of the plurality of standard conforming product molding conditions is divided into an injection process and a pressure-holding process, with the standard conforming product molding condition as the center, and the screw positions before and after that. A plurality of molding condition patterns are set by gradually changing the condition settings such as injection speed, time, and holding pressure. 3 and 4 show examples of molding condition patterns set in the injection process and the pressure holding process, respectively.

【0012】このようにして得られた複数個の成形条件
パターンに対して、どの条件が良品を成形できるかどう
かを確認するために、次の段階では、実際にその各々の
成形条件パターン毎に成形テストを実施し、良品を成形
できた条件と不良品の成形品を生じた条件とを分別する
品質判定作業を実施する。以上の結果、不良品を生じた
成形条件パターンを除外し残りの良品を確実に成形でき
る成形条件パターンのみの母集団が確定し、この母集団
の情報に基づいて良品成形条件範囲が定まるとともに、
その範囲の中から上限値となる成形条件と下限値となる
成形条件が決定される。図1、図2はそれぞれ射出工
程、保圧工程における良品成形範囲とその上限値、下限
値を示した実例である。
In order to confirm which condition can mold a non-defective product with respect to the plurality of molding condition patterns thus obtained, in the next step, each molding condition pattern is actually A molding test is carried out, and a quality judgment work is carried out to distinguish between conditions under which a good product was molded and conditions under which a defective molded product was produced. As a result of the above, the population of only molding condition patterns that can reliably mold the remaining good products by excluding the molding condition patterns that caused defective products is determined, and the good product molding condition range is determined based on the information of this population,
From the range, the molding conditions having the upper limit and the molding conditions having the lower limit are determined. FIG. 1 and FIG. 2 are actual examples showing a non-defective molding range and its upper limit and lower limit in the injection process and the pressure holding process, respectively.

【0013】以上のようにして、良品成形範囲および上
限値、下限値の成形条件が確定したので、実際に採用す
る最適成形条件の決定を行なうが、本発明では最適成形
条件は図1、図2に示したそれぞれ中間値に相当する条
件(中間値条件)を最適成形条件に選定する。
As described above, since the molding conditions for the non-defective molding range and the upper and lower limits are determined, the optimum molding conditions to be actually adopted are determined. In the present invention, the optimum molding conditions are shown in FIG. The conditions (intermediate value conditions) corresponding to the intermediate values shown in 2 are selected as the optimum molding conditions.

【0014】一方、複数個の成形条件パターンで成形す
る際、各種センサーで成形中の複数の物理量を測定して
おき、品質判定結果と照合し、品質に影響を及ぼす物理
量を1個または複数個選択し、その良品範囲を決定す
る。図6は測定する物理量がスクリュ最前進位置である
例であり、各々の成形条件パターンで合格品や不合格品
が形成されている。この値が10mmから20mmの範
囲で良品が形成されているので、スクリュ最前進位置は
品質に影響を及ぼす物理量と判断し、その物理量を品質
判定の物理量に選択してその良品範囲値は10mmから
20mmと決定される。図7は測定する物理量が「充填
完了時の樹脂温度」で、各々の成形条件パターンでの品
質結果を照合した例であるが、この物理量は成形品質と
相関がないので成形品質に影響は及ぼさないものと判断
される。また、図8は測定される物理量が「樹脂圧のス
クリュ位置での積分値」の例であるが、これは成形品の
品質に影響する物理量に選択され、良品範囲は750か
ら800kgf/cm2 ・mmとなる。
On the other hand, when molding with a plurality of molding condition patterns, a plurality of physical quantities during molding are measured by various sensors, and the quality judgment result is collated with one or a plurality of physical quantities that affect quality. Select and determine the good product range. FIG. 6 is an example in which the physical quantity to be measured is the most advanced position of the screw, and acceptable products and rejected products are formed in each molding condition pattern. Since good products are formed in the range of 10 mm to 20 mm, the most advanced position of the screw is judged to be a physical quantity that affects quality, and the physical quantity is selected as a physical quantity for quality judgment, and the good product range value is from 10 mm. It is determined to be 20 mm. Fig. 7 shows an example in which the physical quantity to be measured is the "resin temperature at the time of completion of filling" and the quality results for each molding condition pattern are collated. However, since this physical quantity has no correlation with the molding quality, it does not affect the molding quality. It is judged not to exist. In addition, FIG. 8 shows an example of the measured physical quantity being the “integral value at the screw position of the resin pressure”. This is selected as the physical quantity that affects the quality of the molded product, and the non-defective product range is 750 to 800 kgf / cm 2.・ It becomes mm.

【0015】次に、成形品の品質に影響する物理量に選
択されたものについては成形条件との関係を求める。図
9は物理量がスクリュ最前進位置で成形条件が保圧力の
時間積分値である例であるが、保圧力の時間積分値(成
形条件)を100kgf/cm2 ・sec大きくすれば
スクリュ最前進位置(物理量)が5mm小さくなる関係
になっている。また、図10では平均射出速度(成形条
件)を2mm/sec大きくすれば、樹脂圧のスクリュ
位置での積分値(物理量)は20kgf/cm 2 ・mm
大きくなることが分かる。
Next, a physical quantity that affects the quality of the molded product is selected.
Regarding the selected one, the relationship with the molding conditions is obtained. Figure
In No. 9, the physical quantity is the most advanced position of the screw and the molding condition is the holding pressure.
This is an example of a time integrated value.
Shape condition) 100 kgf / cm2・ If you increase sec
The relationship that the screw most advanced position (physical quantity) is reduced by 5 mm
It has become. Moreover, in FIG.
2 mm / sec), the resin pressure screw
Integrated value (physical quantity) at the position is 20 kgf / cm 2・ Mm
You can see it grows.

【0016】以上述べたように、複数個の成形テストで
最適成形条件、品質に影響を及ぼす物理量とその良品範
囲、該物理量と成形条件の関係を求めた後、実操業運転
に入るが、中間値条件を最適成形条件としたため、少々
の環境の変化や予想外の外乱に対しても依然として良品
成形範囲を逸脱することなく成形が可能である。また、
運転中に品質に影響を及ぼす物理量を監視しておけば、
図11が示すように、環境の変化が大きく物理量(スク
リュ最前進位置)が良品成形範囲から上方へ逸脱しそう
になっても、先に求めた物理量と成形条件の関係より成
形条件を修正(保圧を下げる)してやれば、不良品の発
生を逸れることができ、環境に適応して良品を継続して
成形できる。この発明の方法で成形品を成形することに
より、良品率は格段と高くなり、なおかつ、大きな環境
変化にも適応できるので、安定した良品成形が可能とな
る。なお、本発明は射出成形機に応用したものである
が、金属材料を成形加工するダイカストマシンやスクイ
ズキャストマシンに適用してもよいことは勿論である。
As described above, after the optimum molding conditions, the physical quantity that affects the quality and the range of non-defective products, and the relationship between the physical quantity and the molding conditions are obtained by a plurality of molding tests, the actual operation is started. Since the value condition is set to the optimum molding condition, molding can be performed without deviating from the molding range of a good product even with a slight change in environment or unexpected disturbance. Also,
If you monitor physical quantities that affect quality during operation,
As shown in FIG. 11, even if the physical quantity (the screw most advanced position) is likely to deviate upward from the good product molding range due to a large change in environment, the molding condition is corrected (maintained) based on the previously obtained relationship between the physical quantity and the molding condition. By lowering the pressure), the generation of defective products can be avoided, and good products can be continuously molded in conformity with the environment. By molding a molded product by the method of the present invention, the rate of non-defective products is remarkably increased, and since it is possible to adapt to large environmental changes, stable non-defective product molding is possible. Although the present invention is applied to the injection molding machine, it is needless to say that the present invention may be applied to a die casting machine or a squeeze casting machine for molding a metal material.

【0017】従来、不良品が操業中に発生した場合に
は、オペレータはマシンの操作を停止し、その原因の把
握や対策案、すなわち、新しい条件設定の準備に追わ
れ、生産性を著しく阻害していたが、本発明では最も不
良品を起こしにくい成形条件で操業し、なおかつ、大き
な環境変化により不良品が発生しそうになった場合に
は、自動的に成形条件を修正するため安定、かつ、継続
的に良品成形が行なわれ、生産コストを大きく削減でき
る。
Conventionally, when a defective product is generated during operation, the operator stops the operation of the machine and is obsessed with grasping the cause and preparing a countermeasure, that is, preparing for new condition setting, which significantly impairs productivity. However, in the present invention, the operation is performed under the molding conditions that are most unlikely to cause defective products, and when a defective product is likely to occur due to a large environmental change, stable molding conditions are automatically corrected, and The continuous production of non-defective products can greatly reduce the production cost.

【0018】[0018]

【発明の効果】以上説明したように、本発明の射出成形
機の運転制御方法によれば、最も安定した成形条件で成
形し、なおかつ、環境の変化にも適応できるので生産性
が向上するとともに、成形後の品質検査工程も削除する
ことができる。
As described above, according to the operation control method for the injection molding machine of the present invention, the molding can be performed under the most stable molding conditions and can be adapted to the changes in the environment, so that the productivity is improved. The quality inspection process after molding can also be deleted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る射出工程における最適成
形条件の説明図である。
FIG. 1 is an explanatory diagram of optimum molding conditions in an injection process according to an embodiment of the present invention.

【図2】本発明の実施例に係る保圧工程における最適成
形条件の説明図である。
FIG. 2 is an explanatory diagram of optimum molding conditions in a pressure holding step according to an example of the present invention.

【図3】本発明の実施例に係る射出工程における成形条
件パターン設定の説明図である。
FIG. 3 is an explanatory diagram of molding condition pattern setting in an injection process according to the embodiment of the present invention.

【図4】本発明の実施例に係る保圧工程における成形条
件パターン設定の説明図である。
FIG. 4 is an explanatory diagram of molding condition pattern setting in the pressure holding step according to the embodiment of the present invention.

【図5】本発明の実施例に係る最適成形条件の設定手
順、制御方法を示すフローチャートである。
FIG. 5 is a flowchart showing a setting procedure and a control method of optimum molding conditions according to the embodiment of the present invention.

【図6】本発明の実施例に係る測定物理量と良品範囲の
相関を示す説明図である。
FIG. 6 is an explanatory diagram showing a correlation between a measured physical quantity and a non-defective product range according to an example of the present invention.

【図7】本発明の実施例に係る測定物理量と成形品良否
の相関を示す説明図である。
FIG. 7 is an explanatory diagram showing the correlation between the measured physical quantity and the quality of the molded product according to the example of the present invention.

【図8】本発明の実施例に係る測定物理量と良品範囲の
相関を示す説明図である。
FIG. 8 is an explanatory diagram showing a correlation between a measured physical quantity and a non-defective product range according to an example of the present invention.

【図9】本発明の実施例に係る選択された物理量と成形
条件との相関を示す説明図である。
FIG. 9 is an explanatory diagram showing a correlation between selected physical quantities and molding conditions according to the embodiment of the present invention.

【図10】本発明の実施例に係る選択された物理量と成
形条件との相関を示す説明図である。
FIG. 10 is an explanatory diagram showing a correlation between a selected physical quantity and molding conditions according to the embodiment of the present invention.

【図11】本発明の実施例に係る選択された物理量の実
操業運転における変化とそれに対応して成形条件を変更
することを示す説明図である。
FIG. 11 is an explanatory diagram showing a change in the actual operation of the selected physical quantity according to the embodiment of the present invention and the corresponding change of the molding condition.

【図12】従来の射出成形機の全体構成図である。FIG. 12 is an overall configuration diagram of a conventional injection molding machine.

【図13】従来の射出工程の成形条件の実施例である。FIG. 13 is an example of molding conditions in a conventional injection process.

【図14】従来の保圧工程の成形条件の実施例である。FIG. 14 is an example of molding conditions in a conventional pressure-holding process.

【図15】従来の射出工程の成形条件の説明図である。FIG. 15 is an explanatory diagram of molding conditions in a conventional injection process.

【図16】従来の保圧工程の成形条件の説明図である。FIG. 16 is an explanatory diagram of molding conditions in a conventional pressure holding step.

【符号の説明】[Explanation of symbols]

1 スクリュ 2 チェック弁 3 バレル 4 ノズル 8 キャビティ 10a 固定金型 10b 可動金型 12 ホッパ 14 ピストン 16 射出シリンダ 16a ヘッド側 18 スクリュヘッド 20 射出成形機 22 スクリュヘッド前部 A 基準良品成形条件 B 成形条件パターン L 下限値条件 S 良品成形範囲 T 最適成形条件 U 上限値条件 1 screw 2 check valve 3 barrel 4 nozzle 8 cavity 10a fixed mold 10b movable mold 12 hopper 14 piston 16 injection cylinder 16a head side 18 screw head 20 injection molding machine 22 screw head front A standard good product molding condition B molding condition pattern L Lower limit condition S Good product forming range T Optimal forming condition U Upper limit condition

───────────────────────────────────────────────────── フロントページの続き (72)発明者 紙 昌弘 山口県宇部市大字小串字沖の山1980番地 宇部興産株式会社宇部機械製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masahiro Paper 1980, Okiyama, Ogushi, Ube, Yamaguchi Prefecture Ube Machinery Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 加熱あるいは加圧手段により流動性をも
たせた樹脂材料を略密閉状の金型キャビティ内に流動圧
入して成形品を繰り返し生産する射出成形機の運転制御
方法であって、あらかじめ実成形運転に先立って実施さ
れる条件出し成形テストのうち良品が形成される成形条
件を1個あるいは複数個選択して基準良品成形条件とす
るとともに、該1個あるいは該複数個の基準良品成形条
件の各々についてそれぞれ少なくとも1個以上の条件設
定値を変化させた複数個の成形条件パターンを作成し、
作成されたすべての成形条件パターンについて試打ち成
形テストを実施して成形品の品質判定を行なった結果良
品が形成される成形条件パターンのみからなる母集団を
形成し、該母集団の中から上限値の成形条件パターンと
下限値の成形条件パターンを求め、前記上限値と下限値
の成形条件パターンの中間値の成形条件パターンを実操
業運転時の成形条件とするとともに、前記成形条件パタ
ーンの試打ち成形テストの際にテスト条件に係る複数個
の物理量を測定し、前記品質判定した結果と照合して品
質の良否に影響を及ぼす物理量を選択したうえ該物理量
の良品成形範囲を設定するとともに、前記選択された物
理量と成形条件との関係を算出した後、実操業運転時に
前記選択された物理量が該良品成形範囲を逸脱しそうに
なったとき、前記選択された物理量と成形条件との関係
より該物理量が良品成形範囲の中央となるよう成形条件
を変更することを特徴とする射出成形機の運転制御方
法。
1. An operation control method for an injection molding machine, wherein a resin material fluidized by heating or pressurizing means is flow-pressed into a substantially closed mold cavity to repeatedly produce a molded product, which comprises: One or more molding conditions for forming a non-defective product are selected as standard non-defective product molding conditions from the conditional molding test performed prior to the actual molding operation, and one or more standard non-defective product moldings are performed. Create a plurality of molding condition patterns in which at least one condition setting value is changed for each condition,
A molding test is performed on all the created molding condition patterns to determine the quality of the molded product. As a result, a good product is formed. A population consisting of only the molding condition patterns is formed, and the upper limit is selected from the population. The molding condition pattern of the value and the molding condition pattern of the lower limit value is obtained, and the molding condition pattern of the intermediate value of the molding condition pattern of the upper limit value and the lower limit value is used as the molding condition during the actual operation, and the molding condition pattern is tested. A plurality of physical quantities related to the test conditions are measured during the punching molding test, and the physical quantity that affects the quality of the quality by comparing with the result of the quality judgment is selected and the molding range of the good quantity of the physical quantity is set. After calculating the relationship between the selected physical quantity and the molding conditions, when the selected physical quantity is about to deviate from the non-defective molding range during actual operation, the -Option physical quantity and the operation control method of an injection molding machine to which the physical quantity from the relation between the molding conditions and changing the molding conditions such as the center of non-defective molded range.
【請求項2】 条件出し成形テストに代えて、CAE技
術に基づいて少なくとも1個以上の基準良品成形条件を
設定する請求項1記載の射出成形機の運転制御方法。
2. The operation control method for an injection molding machine according to claim 1, wherein at least one reference non-defective molding condition is set based on the CAE technique instead of the conditional molding test.
JP9251095A 1995-04-18 1995-04-18 Operation control method for injection molding machine Pending JPH08281756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9251095A JPH08281756A (en) 1995-04-18 1995-04-18 Operation control method for injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9251095A JPH08281756A (en) 1995-04-18 1995-04-18 Operation control method for injection molding machine

Publications (1)

Publication Number Publication Date
JPH08281756A true JPH08281756A (en) 1996-10-29

Family

ID=14056318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9251095A Pending JPH08281756A (en) 1995-04-18 1995-04-18 Operation control method for injection molding machine

Country Status (1)

Country Link
JP (1) JPH08281756A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013086358A (en) * 2011-10-18 2013-05-13 Fanuc Ltd Molding monitoring device of injection molding machine
CN108700870A (en) * 2016-02-22 2018-10-23 基斯特勒控股公司 Method for executing periodical production technology
JP2020146929A (en) * 2019-03-14 2020-09-17 宇部興産機械株式会社 Injection molding machine and quality determination method of molded product
JP2020535990A (en) * 2017-10-05 2020-12-10 アイエムフラックス インコーポレイテッド Real-time material and speed control in molding system
WO2024024101A1 (en) * 2022-07-29 2024-02-01 ファナック株式会社 Permissible range setting device, injection molding machine, and permissible range setting method
WO2024024084A1 (en) * 2022-07-29 2024-02-01 ファナック株式会社 Allowable range setting device, injection molding machine, and allowable range setting method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013086358A (en) * 2011-10-18 2013-05-13 Fanuc Ltd Molding monitoring device of injection molding machine
CN108700870A (en) * 2016-02-22 2018-10-23 基斯特勒控股公司 Method for executing periodical production technology
JP2019507035A (en) * 2016-02-22 2019-03-14 キストラー ホールディング アクチエンゲゼルシャフト Method for carrying out the cyclic production process
US10960591B2 (en) 2016-02-22 2021-03-30 Kistler Holding Ag Method for performing a cyclic production process
US11623378B2 (en) 2017-06-29 2023-04-11 iMFLUX Inc. Real time material and velocity control in a molding system
JP2020535990A (en) * 2017-10-05 2020-12-10 アイエムフラックス インコーポレイテッド Real-time material and speed control in molding system
JP2020146929A (en) * 2019-03-14 2020-09-17 宇部興産機械株式会社 Injection molding machine and quality determination method of molded product
WO2024024101A1 (en) * 2022-07-29 2024-02-01 ファナック株式会社 Permissible range setting device, injection molding machine, and permissible range setting method
WO2024024084A1 (en) * 2022-07-29 2024-02-01 ファナック株式会社 Allowable range setting device, injection molding machine, and allowable range setting method

Similar Documents

Publication Publication Date Title
US5900259A (en) Molding condition optimizing system for injection molding machine
KR960013063B1 (en) Optimum molding condition setting system for injection molding machine
US7431870B2 (en) Automated molding technology for thermoplastic injection molding
US6258303B1 (en) Apparatus and method of monitoring injection molding operation wherein sprue gate closing point of time is indicated together with displayed parameter waveforms
US5556582A (en) Injection molding gate flow control
US11766818B2 (en) Systems and approaches for autotuning an injection molding machine
US6600961B2 (en) Intelligent control method for injection machine
US10836088B2 (en) Method for reproducing injection molded parts of quality and injection molding unit for performing the method
EP3849772B1 (en) Methods for controlling injection molding processes based on actual plastic melt pressure or cavity pressure
JPH05507659A (en) Injection molding machine control method and device
JPH08281756A (en) Operation control method for injection molding machine
JP3395589B2 (en) Injection molding machine molding condition setting method
JP3412419B2 (en) Method for optimizing molding conditions of injection molding machine
US20230041317A1 (en) Systems and approaches for controlling an injection molding machine
JPH08258105A (en) Molding quality discriminating method for injection molding machine
JP3395542B2 (en) Injection molding machine molding condition setting method
JPH08174609A (en) Method for controlling speed of injection molding machine
JPH08230006A (en) Method for setting molding condition in injection molder
JPH0976320A (en) Automatic setting method for injection molding speed condition of injection mold machine
JPH07241892A (en) Setting method for dwelling and dwell time of injection molding machine
JP2739752B2 (en) Speed control method of injection molding machine
JP2739753B2 (en) Speed control method of injection molding machine
JP2739751B2 (en) Speed control method of injection molding machine
JPH07100875A (en) Speed controlling method for injection molding machine
JPH07232356A (en) Method for setting injection condition in injection molder