JPH08258105A - Molding quality discriminating method for injection molding machine - Google Patents

Molding quality discriminating method for injection molding machine

Info

Publication number
JPH08258105A
JPH08258105A JP6548395A JP6548395A JPH08258105A JP H08258105 A JPH08258105 A JP H08258105A JP 6548395 A JP6548395 A JP 6548395A JP 6548395 A JP6548395 A JP 6548395A JP H08258105 A JPH08258105 A JP H08258105A
Authority
JP
Japan
Prior art keywords
molding
condition
quality
product
defective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6548395A
Other languages
Japanese (ja)
Inventor
Toyoaki Ueno
豊明 上野
Masayuki Tsuruta
将之 鶴田
Shozo Fujii
昌造 藤井
Masahiro Kami
昌弘 紙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP6548395A priority Critical patent/JPH08258105A/en
Publication of JPH08258105A publication Critical patent/JPH08258105A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a method for discriminating the molding quality of an injection molding machine in which a defective product generated due to the certain disturbance during operation is automatically discovered and excluded from the products. CONSTITUTION: The method for discriminating the molding quality of an injection molding machine comprises the steps of selecting molding conditions for forming a non-defective product by a condition generating molding test as a reference non-defective product molding condition, forming a plurality of molding condition patterns in which at least one condition set values are varied in each pattern, and forming a population made only the molding condition pattern for forming a non-defective product as the result of discriminating the quality of the molding by executing a trial test for the patterns. The method further comprises the steps of obtaining the molding condition patterns of the upper and lower limit values from it, setting the intermediate value of the upper and lower limit values as the molding conditions at the time of real operation, selecting a physical amount for exerting influence on the propriety of the quality from a plurality of physical amounts at the trial molding test, setting the non-defective product molding range, and then regarding the molding at the time when the physical amount exceeds the non-defective product molding range at the time of the real operation as the defective product.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、プラスチック製品を成
形する射出成形機の成形品品質判定方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molded product quality judgment method for an injection molding machine for molding a plastic product.

【0002】[0002]

【従来の技術】従来、溶融樹脂の射出成形においては、
横軸を射出スクリュの位置または時間とし、縦軸を射出
スクリュの前進速度または圧力とし、高速で金型キャビ
ティ内へ溶融した樹脂を充填する充填工程と、溶融樹脂
の充填後に金型キャビティ内の樹脂に圧力を加えて成形
する保圧工程によって射出制御され、多くの場合、充填
工程は油圧回路の圧力調整弁を高圧に設定し、射出開始
からの経過時間または射出スクリュの前進位置を基準に
速度を複数段に変化させるように流量制御弁の開度を時
間経過とともに、あるいは射出スクリュのストローク位
置に応じて変化させるように設定し、該流量制御弁の調
整により射出シリンダのピストン、すなわち、射出スク
リュの射出速度を制御し、キャビティ内の樹脂が空気を
巻き込まない程度に高速で溶融樹脂をキャビティ内へ充
填するものとし、溶融樹脂がキャビティ内に充填された
後は流量制御弁を比較的小さい開度に固定し、圧力調整
弁により油圧を調整する保圧工程とし、この保圧工程は
時間経過に応じてキャビティ内に充填された溶融樹脂に
所定の圧力を加え得るように圧力調整弁の開度を変化さ
せ、キャビティ内で溶融樹脂が冷却されることにより樹
脂が収縮し、製品の形状や寸法がキャビティ形状の寸法
に対して誤差を生じさせることのないように防止すると
ともに製品内部に大きな残留応力が生じないようにして
いる。
2. Description of the Related Art Conventionally, in injection molding of molten resin,
The horizontal axis is the position or time of the injection screw, the vertical axis is the forward speed or pressure of the injection screw, and the filling step of filling the molten resin into the mold cavity at high speed, and the filling cavity inside the mold cavity after the molten resin is filled. Injection control is performed by a pressure-holding process that applies pressure to the resin, and in many cases, the filling process sets the pressure adjustment valve of the hydraulic circuit to high pressure, and based on the elapsed time from the start of injection or the forward position of the injection screw. The opening of the flow control valve is set to change over time so as to change the speed in multiple stages, or is set to change according to the stroke position of the injection screw, and by adjusting the flow control valve, the piston of the injection cylinder, that is, The injection speed of the injection screw is controlled to fill the molten resin into the cavity at a high speed so that the resin in the cavity does not entrap air. After the molten resin is filled in the cavity, the flow control valve is fixed to a relatively small opening, and the pressure control valve adjusts the hydraulic pressure to perform a pressure-holding process. The opening of the pressure control valve is changed so that a predetermined pressure can be applied to the filled molten resin, and the molten resin cools in the cavity, causing the resin to shrink, and the shape and dimensions of the product are the dimensions of the cavity shape. The error is prevented from occurring and a large residual stress is not generated inside the product.

【0003】図10は、溶融樹脂が射出成形機20のス
クリュヘッド前部22よりノズル部4を経由して金型1
0a、10bで形成されるキャビティ8へ射出充填され
る直前の状態を示しており、この後、射出工程に入り、
射出シリンダ16のヘッド側16aより作動油が射出シ
リンダ16内へ入りスクリュ1を前進させて、ノズル部
4の溶融樹脂をキャビティ8内へ移送させる。キャビテ
ィ8内に溶融樹脂が充満された後に保圧工程へ入り、樹
脂の冷却固化に伴う収縮分が補充されつつ、スクリュヘ
ッド前部22の樹脂に圧力が加えられる。このような射
出工程と保圧工程にそれぞれどのような樹脂流入速度パ
ターンや圧力パターンで溶融樹脂を射出充填していくの
かということに、金型内で成形される樹脂成形品の品質
の良否が依存しており、一般的には、前述したように、
例えば射出工程では、図11に示すように、スクリュ位
置とスクリュ前進速度との関係で設定し、保圧工程で
は、図12に示すように、経過時間と保圧力(油圧力ま
たは樹脂圧力)との関係で設定するようにしている。
In FIG. 10, the molten resin is injected from the screw head front portion 22 of the injection molding machine 20 through the nozzle portion 4 into the mold 1.
It shows a state immediately before injection filling into the cavity 8 formed by 0a and 10b. After that, the injection process is started,
Hydraulic oil enters the injection cylinder 16 from the head side 16a of the injection cylinder 16 and advances the screw 1 to transfer the molten resin of the nozzle portion 4 into the cavity 8. After the cavity 8 is filled with the molten resin, a pressure-holding step is performed, and a pressure is applied to the resin in the front portion 22 of the screw head while supplementing the contraction amount due to the cooling and solidification of the resin. What kind of resin inflow velocity pattern and pressure pattern should be used to inject and fill the molten resin in such an injection process and a pressure-holding process, respectively, depends on the quality of the resin molded product molded in the mold. It depends, and in general, as mentioned above,
For example, in the injection process, as shown in FIG. 11, the screw position and the screw advancing speed are set, and in the pressure holding process, as shown in FIG. 12, the elapsed time and the holding pressure (oil pressure or resin pressure) are set. I am trying to set it in relation to.

【0004】そして、このような速度パターンや圧力パ
ターンを決定するに当って、オペレータは良品を再現性
よく安定的に得ることのできる成形条件を把握しようと
して、種々の成形条件の色々な組み合わせを実施してト
ライアル・アンド・エラーにより望ましい結果を得よう
としてきた。また、最近ではこうした試行錯誤法ととも
に、コンピュータ技術を駆使した樹脂の金型内流動解析
に関するシミュレーション法により、望ましい成形条件
をある程度の精度で把握するような試みも実施されつつ
ある。一方、射出成形機で成形する場所の環境が変わっ
たり、稼動中に外乱が加わったりすると成形品の品質が
変化して不良品を発生することがあり、このため成形後
の成形品を検査する品質検査工程を設けて、成形品品質
の合否を判定していた。
In determining such a velocity pattern or pressure pattern, the operator tries to grasp the molding conditions under which a good product can be stably obtained with good reproducibility, and various combinations of various molding conditions are used. I have been trying to get the desired result by trial and error. In addition to these trial-and-error methods, recently, an attempt is being made to grasp desirable molding conditions with a certain degree of accuracy by a simulation method for in-mold flow analysis of resin making full use of computer technology. On the other hand, if the environment of the injection molding machine changes, or if disturbance is applied during operation, the quality of the molded product may change and defective products may be generated. Therefore, inspect the molded product after molding. A quality inspection process was provided to determine whether the quality of the molded product was acceptable.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、数回の
試打ちなどの試行錯誤の中から得られたいくつかの良品
成形条件は、例えば、図13や図14に示すように、良
品成形範囲の上限値と下限値との間に挟まれた範囲の中
のひとつの良品成形パターンに過ぎず、もしこの良品成
形パターンが良品成形条件の範囲の上限値もしくは下限
値に近いものであった場合には、各種の成形条件に及ぼ
す何らかの環境変化や外乱があった場合には、容易にこ
の範囲から逸脱して良品成形条件でなくなる惧れがあ
り、このような場合には予定通りの良品の形成が阻害さ
れるという難点が生じることになり、結果的に不良品を
成形してしまうことになる。また、出荷製品中に不良品
が混入しないように、成形後に品質検査工程を設けねば
ならず、生産性の悪化やコストの増加を招いていた。
However, some of the good product molding conditions obtained from trial and error such as several times of trial hitting are, for example, as shown in FIG. 13 and FIG. It is only one non-defective molding pattern in the range sandwiched between the upper and lower limits, and if this non-defective molding pattern is close to the upper or lower limit of the range of non-defective molding conditions. If there is any environmental change or disturbance that affects various molding conditions, there is a possibility that it will easily deviate from this range and it will not be a good product molding condition.In such a case, formation of a good product as planned However, there is a problem in that the product is impeded, resulting in the molding of a defective product. In addition, a quality inspection process must be provided after molding so as to prevent defective products from being mixed in the shipped products, resulting in deterioration of productivity and increase in cost.

【0006】[0006]

【課題を解決するための手段】以上のような課題を解決
して、多少の外乱が生じても不良品が出ないように実成
形運転における良品成形の最適成形条件を設定し、か
つ、成形品品質を判定するため、本発明においては、加
熱あるいは加圧手段により流動性をもたせた樹脂材料を
略密閉状の金型キャビティ内に流動圧入して成形品を繰
り返し生産する射出成形機の成形品品質判定方法であっ
て、あらかじめ実成形運転に先立って実施される条件出
し成形テストにより良品が形成される成形条件を1個あ
るいは複数個選択して基準良品成形条件とするととも
に、該1個あるいは複数個の基準良品成形条件の各々に
ついてそれぞれ少なくとも1個以上の条件設定値を変化
させた複数個の成形条件パターンを作成し、作成された
すべての成形条件パターンについて試打ち成形テストを
実施して成形品の品質判定をした結果良品が形成される
成形条件パターンのみからなる母集団を形成し、該母集
団の中から上限値の成形条件パターンと下限値の成形条
件パターンを求め、前記上限値と下限値の成形条件パタ
ーンの中間値の成形条件パターンを実操業運転時の成形
条件とするとともに、前記成形条件パターンの試打ち成
形テストの際にテスト条件に係る複数個の物理量を測定
し、前記品質判定した結果と照合して品質の良否に影響
を及ぼす物理量を選択したうえ該物理量の良品成形範囲
を設定した後、実操業運転時に前記選択された物理量が
該良品成形範囲を逸脱したショットにおける成形品を不
良成形品と見做すこととした。また、第2の発明におい
ては、条件出し成形テストに代えて、CAE技術に基づ
いて少なくとも1個以上の基準良品成形条件を設定する
こととした。
[Means for Solving the Problems] By solving the above problems, optimum molding conditions for molding good products in actual molding operation are set so that defective products do not appear even if some disturbance occurs, and In order to determine product quality, in the present invention, molding of an injection molding machine for repeatedly producing molded products by fluid-pressing a resin material having fluidity by heating or pressurizing means into a substantially closed mold cavity A method for determining product quality, in which one or more molding conditions for forming a non-defective product are selected as a reference non-defective product molding condition by a conditional molding test that is performed prior to the actual molding operation. Alternatively, a plurality of molding condition patterns in which at least one condition setting value is changed for each of a plurality of standard conforming molding conditions are created, and all the created molding condition patterns are created. A molding group consisting of only molding condition patterns is formed in which a good product is formed as a result of the quality test of the molded product by performing a trial molding test, and the molding condition pattern of the upper limit value and the lower limit value are formed from the population. Of the molding condition pattern of the upper limit value and the lower limit value, and the molding condition pattern of the intermediate value of the molding condition pattern of the upper limit value and the lower limit value as the molding condition during the actual operation, and the test condition at the time of the trial molding test of the molding condition pattern. After measuring a plurality of physical quantities relating to the above, selecting a physical quantity that influences the quality of the quality by collating it with the quality judgment result, and setting a non-defective molding range of the physical quantity, and then selecting the actual quantity during the actual operation. A molded product in a shot in which a physical quantity deviates from the molding range of the good product is regarded as a defective molded product. Further, in the second invention, instead of the conditional molding test, at least one standard conforming product molding condition is set based on the CAE technique.

【0007】[0007]

【作用】本発明においては、あらかじめ実成形運転に先
立って行われる条件出しやCAE技術によるシミュレー
ション手法により、良品が形成される成形条件を1つま
たは複数個把握し、これを基準良品成形条件としたう
え、これをベースにそれぞれ条件設定値を少しずつ変化
させた複数個の成形条件パターンを作成する。そして、
その各々について試打ち成形テストを実施して品質判定
を行い、このうち良品が形成される成形条件パターンの
みを取り上げた母集団の中から、条件設定値の上限値と
なる成形条件パターンと下限値となる成形条件パターン
を求める。そして、この2つの上限値、下限値の条件値
の中間値を採る成形条件パターンを実操業運転時の成形
条件とする。一方、前記複数個の成形条件パターンで試
打ち成形テストを実施する際、複数の物理量を測定して
おき、品質判定の結果と照合して品質に影響を及ぼす物
理量を1個または複数個選択し、その良品範囲値を決定
しておく。前記の方法で得られた成形条件で実操業運転
を行えば、実操業時にまぎれ込む環境変化に対しても不
良品とはなりにくく、また品質に影響する物理量を監視
しておけば、もし急激な外乱が入り不良品の発生が避け
られない場合でも自動的に品質判定を行い、良品の中か
らは不良品が除外される。
In the present invention, one or a plurality of molding conditions for forming a good product are grasped by the condition setting performed prior to the actual molding operation or the simulation method by the CAE technique, and this is used as the standard good product molding condition. In addition, based on this, a plurality of molding condition patterns in which the condition setting values are slightly changed are created. And
For each of them, a trial molding test is performed to determine the quality, and from among the population that picks up only the molding condition patterns that form good products, the molding condition pattern and the lower limit value that are the upper limit of the condition setting value A molding condition pattern that satisfies Then, a molding condition pattern that takes an intermediate value between these two upper limit values and lower limit condition values is used as the molding condition during actual operation. On the other hand, when carrying out the trial molding test with the plurality of molding condition patterns, a plurality of physical quantities are measured, and one or a plurality of physical quantities that affect the quality are selected by collating with the quality judgment result. , The value range of the non-defective product is determined. If the actual operation is carried out under the molding conditions obtained by the above method, it will not be a defective product even if the environmental changes mixed up during the actual operation make it difficult to monitor the physical quantity that affects the quality. Even if such disturbances occur and the occurrence of defective products cannot be avoided, the quality is automatically judged and defective products are excluded from the good products.

【0008】[0008]

【実施例】以下、図面に基づいて本発明の実施例の詳細
について説明する。図1〜図9は本発明の実施例に係
り、図1は射出工程における最適成形条件の説明図、図
2は保圧工程における最適成形条件の説明図、図3は射
出工程における成形条件パターン設定の説明図、図4は
保圧工程における成形条件パターン設定の説明図、図5
は最適成形条件の設定手順を示すフローチャート、図6
〜図8は測定物理量と品質ならびに良品範囲の相関を示
す説明図、図9は選択された物理量の良品範囲と成形品
良否との相関を示す説明図である。
Embodiments of the present invention will be described below in detail with reference to the drawings. 1 to 9 relate to an embodiment of the present invention, FIG. 1 is an explanatory view of optimum molding conditions in an injection process, FIG. 2 is an explanatory view of optimum molding conditions in a pressure holding process, and FIG. 3 is a molding condition pattern in an injection process. 5 is an explanatory view of setting, FIG. 4 is an explanatory view of molding condition pattern setting in the pressure holding step, and FIG.
6 is a flowchart showing a procedure for setting optimum molding conditions, FIG.
8 is an explanatory diagram showing the correlation between the measured physical quantity, quality and the non-defective product range, and FIG. 9 is an explanatory diagram showing the correlation between the non-defective product range of the selected physical quantity and the quality of the molded product.

【0009】本発明の目的は、実操業運転において生じ
る不測の環境変化や外乱に遭遇しても、誤りなく確実に
不良品を出すことなく継続的に良品を成形することので
きる信頼性の高い最適成形条件を把握することである。
また、急激な外乱が入り不良品を形成することが避けら
れなかった場合でも、自動的にそれを不合格品と判定し
排除することができる。すなわち、良品成形率をきわめ
て高くし、なおかつ、品質判定も自動的に行うことがで
きることを意図している。以下、その詳細な手順につい
て説明する。
The object of the present invention is to provide a highly reliable product which is capable of continuously molding a non-defective product without error even if an unexpected environmental change or disturbance that occurs during actual operation is encountered, without fail. Understanding the optimum molding conditions.
Further, even when it is unavoidable that a defective product is formed due to a sudden disturbance, it can be automatically judged as a rejected product and eliminated. That is, it is intended that the molding rate of non-defective products can be made extremely high and the quality judgment can be automatically performed. The detailed procedure will be described below.

【0010】図5は、最適成形条件を設定し、実操業運
転中不合格品を自動判定する手順を示すフローチャート
であり、実操業運転に先立ってまず良品を成形できる成
形条件(これを基準良品成形条件と言う)を1個または
複数個設定する。この基準良品成形条件は過去の成形実
績データや経験に基づいて条件出し成形を実施して確認
するか、もしくはCAE技術を応用した金型内樹脂流れ
の流動解析シミュレーション手法を駆使して決定する。
このような第1段階の作業を終えた後、この複数個の基
準良品成形条件の各々についてそれぞれ射出工程と保圧
工程に分けて基準良品成形条件を中心として、その前後
にスクリュ位置、射出速度、時間、保圧圧力といった条
件設定を少しずつ変化させた成形条件パターンを複数個
設定する。図3、図4はそれぞれ射出工程、保圧工程に
おいて設定された成形条件パターンの実施例を示したも
のである。
FIG. 5 is a flow chart showing a procedure for automatically determining rejected products during actual operation by setting optimum molding conditions. Molding conditions for forming a good product first before the actual operation (this is a standard conforming product). One or more molding conditions are set. The standard non-defective molding conditions are determined by performing conditional molding based on past molding performance data and experience, or by making full use of a flow analysis simulation method of resin flow in a mold to which CAE technology is applied.
After finishing the work of the first stage, each of the plurality of standard conforming product molding conditions is divided into an injection process and a pressure-holding process, and the standard conforming product molding condition is centered around the screw position and the injection speed. , A plurality of molding condition patterns in which condition settings such as time, holding pressure, etc. are gradually changed are set. 3 and 4 show examples of molding condition patterns set in the injection process and the pressure holding process, respectively.

【0011】このようにして得られた複数個の成形条件
パターンに対して、どの条件が良品を成形できるかどう
かを確認するために、次の段階では、実際にその各々の
成形条件パターン毎に成形テストを実施し、良品を成形
できた条件と不良品の成形品を生じた条件とを分別する
品質判定作業を実施する。以上の結果、不良品を生じた
成形条件パターンを除外し残りの良品を確実に成形でき
る成形条件パターンのみの母集団が確定し、この母集団
の情報に基づいて良品成形条件範囲が定まるとともに、
その範囲の中から上限値となる成形条件と下限値となる
成形条件が決定される。図1、図2はそれぞれ射出工
程、保圧工程における良品成形範囲とその上限値、下限
値を示した実例である。以上のようにして、良品成形範
囲および上限値、下限値の成形条件が確定したので、実
際に採用する最適成形条件の決定を行うが、本発明では
最適成形条件は図1、図2に示したそれぞれ中間値に相
当する条件(中間値条件)を最適成形条件に選定する。
In order to confirm which condition can mold a non-defective product among the plurality of molding condition patterns thus obtained, in the next step, each molding condition pattern is actually A molding test is carried out, and a quality judgment work is carried out to distinguish between conditions under which a good product was molded and conditions under which a defective molded product was produced. As a result of the above, the population of only molding condition patterns that can reliably mold the remaining good products by excluding the molding condition patterns that caused defective products is determined, and the good product molding condition range is determined based on the information of this population,
From the range, the molding conditions having the upper limit and the molding conditions having the lower limit are determined. FIG. 1 and FIG. 2 are actual examples showing a non-defective molding range and its upper limit and lower limit in the injection process and the pressure holding process, respectively. As described above, since the molding conditions for the non-defective molding range and the upper limit value and the lower limit value are determined, the optimum molding conditions to be actually adopted are determined. In the present invention, the optimum molding conditions are shown in FIGS. 1 and 2. The conditions corresponding to the intermediate values (intermediate value conditions) are selected as the optimum molding conditions.

【0012】一方複数個の成形条件パターンで成形する
際、各種センサーで成形中の複数の物理量を測定してお
き、品質判定結果と照合し、品質に影響を及ぼす物理量
を1個または複数個選択し、その良品範囲を決定する。
図6は測定する物理量がスクリュ最前進位置である例で
あり、各々の成形パターンで合格品や不合格品が形成さ
れている。この値が10mmから20mmの範囲で良品
が形成されているので、スクリュ最前進位置は品質に影
響を及ぼす物理量と判断し、その物理量を品質判定の物
理量に選択してその良品範囲値は10mmから20mm
と決定される。図7は測定する物理量が「充填完了時の
樹脂温度」で、各々の成形パターンでの品質結果を照合
した例であるが、この物理量は成形品質と相関がないの
で成形品質に影響は及ぼさないものと判断される。ま
た、図8は測定される物理量が「樹脂圧のスクリュ位置
での積分値」の例であるが、これは成形品の品質に影響
する物理量に選択され、良品範囲は750から800k
gf/cm2 ・mmとなる。
On the other hand, when molding with a plurality of molding condition patterns, a plurality of physical quantities during molding are measured by various sensors, and the quality judgment results are collated to select one or a plurality of physical quantities that affect quality. Then, determine the range of non-defective products.
FIG. 6 is an example in which the physical quantity to be measured is the most advanced position of the screw, and acceptable products and rejected products are formed in each molding pattern. Since good products are formed in the range of 10 mm to 20 mm, the most advanced position of the screw is judged to be a physical quantity that affects quality, and the physical quantity is selected as a physical quantity for quality judgment, and the good product range value is from 10 mm. 20 mm
Is determined. FIG. 7 shows an example in which the physical quantity to be measured is the “resin temperature at the time of completion of filling” and the quality results for each molding pattern are compared, but this physical quantity has no correlation with the molding quality, so it does not affect the molding quality. Judged as something. Further, FIG. 8 shows an example of the measured physical quantity being the “integral value at the screw position of the resin pressure”, but this is selected as the physical quantity that affects the quality of the molded product, and the non-defective product range is 750 to 800 k.
It becomes gf / cm 2 · mm.

【0013】以上述べたように、複数個の成形テストで
最適成形条件、品質に影響を及ぼす物理量とその良品範
囲を求めた後、実操業運転に入るが、中間値条件を最適
成形条件としたため、環境の変化や予想外の外乱に対し
ても依然として良品成形範囲を逸脱することなく成形が
可能であるし、また、図9に示すように品質に影響を及
ぼす物理量を常に監視しているため、どうしても避けら
れない急激な外乱により不良品が発生しても、その不良
品発生の状態を検知して不合格品として排除することが
できる。この発明の方法で成形品を成形することによ
り、良品率は格段と高くなり、なおかつ、品質検査工程
を設けなくても不良品は除外できる。なお、本発明は射
出成形機に応用したものであるが、金属材料を成形加工
するダイカストマシンやスクイズキャストマシンに適用
してもよいことは勿論である。
As described above, after the optimum molding conditions, the physical quantity that influences the quality and the non-defective product range are obtained by a plurality of molding tests, the actual operation is started, but the intermediate value condition is set as the optimum molding condition. However, it is possible to perform molding without deviating from the molding range of non-defective products against environmental changes and unexpected disturbances, and as shown in FIG. 9, the physical quantity affecting quality is constantly monitored. Even if a defective product is generated due to a sudden disturbance that cannot be avoided, the defective product generation state can be detected and rejected as a rejected product. By molding the molded product by the method of the present invention, the non-defective product rate is remarkably increased, and the defective product can be excluded without providing the quality inspection process. Although the present invention is applied to the injection molding machine, it is needless to say that the present invention may be applied to a die casting machine or a squeeze casting machine for molding a metal material.

【0014】従来、不良品が操業中に発生した場合に
は、オペレータはマシンの操作を停止し、その原因の把
握や対策案、すなわち、新しい条件設定の準備に追わ
れ、生産性を著しく阻害していたが、本発明では最も不
良品を起こしにくい成形条件で操業を継続しており、こ
のような煩雑なトラブルに巻き込まれることがほとんど
ない。また成形中の状態(物理量)を常に監視している
ため、もし急激な外乱により不良品が発生しても、それ
を自動判定し除外することができる。したがって、成形
後の品質検査工程が不要となり生産コストが大きく削減
できる。
Conventionally, when a defective product is generated during operation, the operator stops the operation of the machine and is obsessed with grasping the cause and preparing a countermeasure, that is, preparing for a new condition setting, which significantly impairs the productivity. However, in the present invention, the operation is continued under the molding condition that is most unlikely to cause defective products, and such troubles are rarely involved. Further, since the state (physical quantity) during molding is constantly monitored, even if a defective product occurs due to a sudden disturbance, it can be automatically judged and excluded. Therefore, the quality inspection process after molding is unnecessary, and the production cost can be greatly reduced.

【0015】[0015]

【発明の効果】以上説明したように、本発明の射出成形
機の成形品品質判定方法によれば、不良品を発生するこ
とが極力少なく、安定連続的に良品を継続して生産で
き、かつ不良品が発生した場合でも自動的に判定、除外
してくれるので、生産性が向上するとともに、メンテナ
ンス性、運転操作性も格段に改善され、成形後の品質検
査工程も削除することができる。
As described above, according to the method for judging the quality of a molded product of an injection molding machine of the present invention, the number of defective products is minimized, and a good product can be continuously produced continuously in a stable manner. Even if a defective product is generated, it is automatically judged and excluded, so that productivity is improved, maintenance property and driving operability are significantly improved, and the quality inspection step after molding can be eliminated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る射出工程における最適成
形条件の説明図である。
FIG. 1 is an explanatory diagram of optimum molding conditions in an injection process according to an embodiment of the present invention.

【図2】本発明の実施例に係る保圧工程における最適成
形条件の説明図である。
FIG. 2 is an explanatory diagram of optimum molding conditions in a pressure holding step according to an example of the present invention.

【図3】本発明の実施例に係る射出工程における成形条
件パターン設定の説明図である。
FIG. 3 is an explanatory diagram of molding condition pattern setting in an injection process according to the embodiment of the present invention.

【図4】本発明の実施例に係る保圧工程における成形条
件パターン設定の説明図である。
FIG. 4 is an explanatory diagram of molding condition pattern setting in the pressure holding step according to the embodiment of the present invention.

【図5】本発明の実施例に係る最適成形条件の設定手順
を示すフローチャートである。
FIG. 5 is a flowchart showing a procedure for setting optimum molding conditions according to the embodiment of the present invention.

【図6】本発明の実施例に係る測定物理量と良品範囲の
相関を示す説明図である。
FIG. 6 is an explanatory diagram showing a correlation between a measured physical quantity and a non-defective product range according to an example of the present invention.

【図7】本発明の実施例に係る測定物理量と成形品良否
の相関を示す説明図である。
FIG. 7 is an explanatory diagram showing the correlation between the measured physical quantity and the quality of the molded product according to the example of the present invention.

【図8】本発明の実施例に係る測定物理量と良品範囲の
相関を示す説明図である。
FIG. 8 is an explanatory diagram showing a correlation between a measured physical quantity and a non-defective product range according to an example of the present invention.

【図9】本発明の実施例に係る選択された物理量の良品
範囲と成形品良否との相関を示す説明図である。
FIG. 9 is an explanatory diagram showing the correlation between the non-defective product range of the selected physical quantity and the quality of the molded product according to the embodiment of the present invention.

【図10】従来の射出成形機の全体構成図である。FIG. 10 is an overall configuration diagram of a conventional injection molding machine.

【図11】従来の射出工程の成形条件の実施例である。FIG. 11 is an example of molding conditions in a conventional injection process.

【図12】従来の保圧工程の成形条件の実施例である。FIG. 12 is an example of molding conditions in a conventional pressure-holding process.

【図13】従来の射出工程の成形条件の説明図である。FIG. 13 is an explanatory diagram of molding conditions in a conventional injection process.

【図14】従来の保圧工程の成形条件の説明図である。FIG. 14 is an explanatory diagram of molding conditions in a conventional pressure holding process.

【符号の説明】[Explanation of symbols]

1 スクリュ 2 チェック弁 3 バレル 4 ノズル(ノズル部) 8 キャビティ 10a 固定金型 10b 可動金型 12 ホッパ 14 ピストン 16 射出シリンダ 16a ヘッド側 18 スクリュヘッド 20 射出成形機 22 スクリュヘッド前部 A 基準良品成形条件 B 成形条件パターン L 下限値条件 S 良品成形範囲 T 最適成形条件 U 上限値条件 1 screw 2 check valve 3 barrel 4 nozzle (nozzle part) 8 cavity 10a fixed mold 10b movable mold 12 hopper 14 piston 16 injection cylinder 16a head side 18 screw head 20 injection molding machine 22 screw head front A standard good product molding conditions B Molding condition pattern L Lower limit condition S Non-defective molding range T Optimal molding condition U Upper limit condition

フロントページの続き (72)発明者 紙 昌弘 山口県宇部市大字小串字沖の山1980番地 宇部興産株式会社宇部機械製作所内Front page continued (72) Inventor Masahiro Ushi Machine Works, Ube Machinery Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 加熱あるいは加圧手段により流動性をも
たせた樹脂材料を略密閉状の金型キャビティ内に流動圧
入して成形品を繰り返し生産する射出成形機の成形品品
質判定方法であって、あらかじめ実成形運転に先立って
実施される条件出し成形テストにより良品が形成される
成形条件を1個あるいは複数個選択して基準良品成形条
件とするとともに、該1個あるいは複数個の基準良品成
形条件の各々についてそれぞれ少なくとも1個以上の条
件設定値を変化させた複数個の成形条件パターンを作成
し、作成されたすべての成形条件パターンについて試打
ち成形テストを実施して成形品の品質判定をした結果良
品が形成される成形条件パターンのみからなる母集団を
形成し、該母集団の中から上限値の成形条件パターンと
下限値の成形条件パターンを求め、前記上限値と下限値
の成形条件パターンの中間値の成形条件パターンを実操
業運転時の成形条件とするとともに、前記成形条件パタ
ーンの試打ち成形テストの際にテスト条件に係る複数個
の物理量を測定し、前記品質判定した結果と照合して品
質の良否に影響を及ぼす物理量を選択したうえ該物理量
の良品成形範囲を設定した後、実操業運転時に前記選択
された物理量が該良品成形範囲を逸脱したショットにお
ける成形品を不良成形品と見做す射出成形機の成形品品
質判定方法。
1. A method for determining the quality of a molded product of an injection molding machine, wherein a resin material fluidized by heating or pressurizing means is flow-pressed into a substantially closed mold cavity to repeatedly produce a molded product. By selecting one or more molding conditions for forming a non-defective product by a conditional molding test that is carried out in advance prior to the actual molding operation, and setting the standard non-defective product molding condition, the one or more standard non-defective product molding Create a plurality of molding condition patterns in which at least one condition setting value is changed for each condition, and perform a trial punch molding test for all the created molding condition patterns to judge the quality of the molded product. As a result, a population consisting of only the molding condition patterns in which non-defective products are formed is formed. A turn is obtained, and a molding condition pattern of an intermediate value of the molding condition patterns of the upper limit value and the lower limit value is used as a molding condition during actual operation, and a plurality of test conditions relating to the test-forming molding test of the molding condition pattern are performed. After measuring the physical quantity of each piece, selecting the physical quantity that influences the quality of the quality by collating it with the quality judgment result, and setting the non-defective molding range of the physical quantity, and then selecting the physical quantity during actual operation. A method for determining the quality of a molded product in an injection molding machine, in which a molded product in a shot that deviates from the good product molding range is regarded as a defective molded product.
【請求項2】 条件出し成形テストに代えて、CAE技
術に基づいて少なくとも1個以上の基準良品成形条件を
設定する請求項1記載の射出成形機の成形品品質判定方
法。
2. The molded product quality judgment method for an injection molding machine according to claim 1, wherein at least one standard conforming product molding condition is set based on the CAE technique instead of the conditional molding test.
JP6548395A 1995-03-24 1995-03-24 Molding quality discriminating method for injection molding machine Pending JPH08258105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6548395A JPH08258105A (en) 1995-03-24 1995-03-24 Molding quality discriminating method for injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6548395A JPH08258105A (en) 1995-03-24 1995-03-24 Molding quality discriminating method for injection molding machine

Publications (1)

Publication Number Publication Date
JPH08258105A true JPH08258105A (en) 1996-10-08

Family

ID=13288395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6548395A Pending JPH08258105A (en) 1995-03-24 1995-03-24 Molding quality discriminating method for injection molding machine

Country Status (1)

Country Link
JP (1) JPH08258105A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018122508A (en) * 2017-01-31 2018-08-09 住友重機械工業株式会社 Molding condition management device and injection molding machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018122508A (en) * 2017-01-31 2018-08-09 住友重機械工業株式会社 Molding condition management device and injection molding machine

Similar Documents

Publication Publication Date Title
KR960013063B1 (en) Optimum molding condition setting system for injection molding machine
US5900259A (en) Molding condition optimizing system for injection molding machine
US11766818B2 (en) Systems and approaches for autotuning an injection molding machine
US6258303B1 (en) Apparatus and method of monitoring injection molding operation wherein sprue gate closing point of time is indicated together with displayed parameter waveforms
JP7047073B2 (en) Systems and methods for automatic tuning of PID control in injection molding machines
US10836088B2 (en) Method for reproducing injection molded parts of quality and injection molding unit for performing the method
EP3849772B1 (en) Methods for controlling injection molding processes based on actual plastic melt pressure or cavity pressure
EP3632650B1 (en) Injection molding system and injection molding method
JPH05507659A (en) Injection molding machine control method and device
JPH08281756A (en) Operation control method for injection molding machine
JP3395589B2 (en) Injection molding machine molding condition setting method
JP3412419B2 (en) Method for optimizing molding conditions of injection molding machine
JPH08258105A (en) Molding quality discriminating method for injection molding machine
JP3395542B2 (en) Injection molding machine molding condition setting method
DE102009037697B4 (en) Mold closing control device and mold closing control method
JPH08230006A (en) Method for setting molding condition in injection molder
CN113524605A (en) Method and device for setting technological parameters of injection molding machine
JPH0653380B2 (en) How to set molding conditions for injection molding machine
JPH08174609A (en) Method for controlling speed of injection molding machine
CN114290631B (en) Injection molding test process and investigation method for automobile bumper
US20060110489A1 (en) Apparatus for measuring separation of mold parts
JPH07241892A (en) Setting method for dwelling and dwell time of injection molding machine
US20210107195A1 (en) Procedure for determining real molding fronts and aligning simulations
JPH0976320A (en) Automatic setting method for injection molding speed condition of injection mold machine
JP2023151551A (en) Display device for injection molding, injection molding machine, and control device for injection molding