JPS62279808A - Membrane distiller - Google Patents

Membrane distiller

Info

Publication number
JPS62279808A
JPS62279808A JP12026886A JP12026886A JPS62279808A JP S62279808 A JPS62279808 A JP S62279808A JP 12026886 A JP12026886 A JP 12026886A JP 12026886 A JP12026886 A JP 12026886A JP S62279808 A JPS62279808 A JP S62279808A
Authority
JP
Japan
Prior art keywords
membrane
hydrophobic porous
liquid
porous membrane
stretching method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12026886A
Other languages
Japanese (ja)
Other versions
JPH07100133B2 (en
Inventor
Makio Tamura
真紀夫 田村
Kakichi Ito
伊藤 嘉吉
Kiyotaka Sakai
清孝 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP12026886A priority Critical patent/JPH07100133B2/en
Publication of JPS62279808A publication Critical patent/JPS62279808A/en
Publication of JPH07100133B2 publication Critical patent/JPH07100133B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enhance thermal efficiency and to reduce distillation cost by using a hydrophobic porous membrane produced by a biaxial stretching method. CONSTITUTION:A hydrophobic porous membrane 2 produced by a biaxial stretching method wherein the membrane is formed by stretching and extending tetrafluoroethylene or the like i.e. in the vertical direction together with the right and left direction is fitted to the inside of a housing 1 made of acrylic resin. Liquid to be treated which is incorporated in a conical beaker 5A set in a heating tank 4 heated by a heater 3 is circulated to one side comparted by the hydrophobic porous membrane 2 incorporated in the housing 1 and pure water which is absorbing liquid incorporated in a beaker 5B set in a cooling tank 8 cooled by a cooler 7 is circulated to the other side comparted by the membrane 2 and water content incorporated in the liquid to be treated is evaporated via the membrane 2 and the vapor is directly absorbed by the absorbing liquid.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〈産業上の利用分野〉 本発明はアルコールの濃縮、海水の淡水化、蒸留水の製
造、不揮発物質の濃縮等の用途に用いられる膜蒸留装置
に関するものである。
[Detailed Description of the Invention] 3. Detailed Description of the Invention <Industrial Application Field> The present invention is a membrane distillation system used for the concentration of alcohol, desalination of seawater, production of distilled water, concentration of non-volatile substances, etc. It is related to the device.

〈従来の技術〉 四弗化エチレン、ポリプロピレン、ポリ弗化ビニリデン
、ポリエチレン等の疎水性材質を膜状とし、当該膜に微
細孔を有した、いわゆる疎水性多孔質膜は、液を通過さ
せず、しかも蒸気等の気体を通過させる性質を有してい
るため、レインコート、あるいはスキー、ゴルフ等のス
ポーツウェアーや帽子の素材に、さらに当該膜の微細孔
を液中に存在する微粒子を除去するために利用する精密
濾過膜として現在用いられている。
<Prior art> So-called hydrophobic porous membranes, which are made of hydrophobic materials such as tetrafluoroethylene, polypropylene, polyvinylidene fluoride, and polyethylene, and have micropores in them, do not allow liquid to pass through. Furthermore, because it has the property of allowing gases such as steam to pass through, it is used as a material for raincoats, sportswear such as skiing, golf, etc., and hats, and the fine pores of the film can be used to remove particulates present in the liquid. It is currently used as a precision filtration membrane for this purpose.

また近年になって当該疎水性多孔質膜を膜蒸留装置に用
いることが提案されている。
Furthermore, in recent years, it has been proposed to use the hydrophobic porous membrane in a membrane distillation apparatus.

すなわち疎水性多孔質膜の一方の側に被処理液を接触せ
しめ、被処理液中に存在する異種類の液体あるいは同種
類の液体を当該膜を介して蒸発せしめ、当該膜の他方の
側に移動した蒸気を冷却して液体を得るもので、アルコ
ールの濃縮、海水の淡水化、蒸留水の製造などに用いる
ものである。
In other words, a liquid to be treated is brought into contact with one side of a hydrophobic porous membrane, and a different type of liquid or the same type of liquid present in the liquid to be treated is evaporated through the membrane, and the liquid is brought into contact with the other side of the membrane. It cools the transferred vapor to obtain a liquid, which is used for concentrating alcohol, desalinating seawater, producing distilled water, etc.

従来から提案されている膜蒸留装置は大別して直接法と
間接法がある。
Membrane distillation apparatuses that have been proposed so far can be roughly divided into direct methods and indirect methods.

すなわち直接法とは当該疎水性多孔質膜で区画した一方
の側に、被処理液を当該膜と接触させながら通すととも
に、他方の側に被処理液から蒸発せんとする液体の蒸気
圧より低い吸収液を当該膜に接触させながら通し、当該
膜と被処理液との接触面から蒸発した蒸気を当該膜の微
細孔を透過させて、吸収液表面で凝縮、吸収させる方法
である。
In other words, in the direct method, the liquid to be treated is passed through one side partitioned by the hydrophobic porous membrane while being in contact with the membrane, and the vapor pressure lower than the vapor pressure of the liquid to be evaporated from the liquid to be treated is passed through the other side. In this method, an absorption liquid is passed through the membrane while being in contact with the membrane, and vapor evaporated from the contact surface between the membrane and the liquid to be treated is passed through the fine pores of the membrane, and is condensed and absorbed on the surface of the absorption liquid.

また間接法とは当該疎水性多孔質膜で区画した一方の側
に、被処理液を当該膜と接触させながら通し、他方の側
に空間部を介して冷却面を配置し、当該膜から透過する
蒸気を当該空間部で拡散させ、次いで前記冷却面で凝縮
させて液化するものである。
In addition, the indirect method means that the liquid to be treated passes through one side partitioned by the hydrophobic porous membrane while being in contact with the membrane, and a cooling surface is placed on the other side through a space, and the liquid permeates through the membrane. The vapor is diffused in the space, and then condensed and liquefied on the cooling surface.

〈発明が解決しようとする問題点〉 膜蒸留装置の概要は上述したものであり、疎水性多孔質
膜で区画した一方の側の液体と他方の側の吸収液あるい
は気体等の流体との間の蒸気圧に差をつけるために、一
般的には当該膜で区画した一方の側に通す被処理液の温
度を他方の側に通す流体より高くする必要がある。した
がってこのような温度差を生じせしめて膜蒸留を行うと
、蒸気圧差による蒸気の移動とともに、温度差に基づく
熱の移動も生ずる。ここで前者の蒸気の移動による熱移
動を蒸発潜熱および後者の温度差に基づく熱移動を伝導
熱と呼ぶが、この蒸発潜熱と伝導熱の総和が膜を介して
移動する熱移動となる。
<Problems to be Solved by the Invention> The outline of the membrane distillation apparatus is as described above. In order to create a difference in the vapor pressure of the membrane, it is generally necessary to make the temperature of the liquid to be treated passing through one side of the membrane higher than that of the fluid passing through the other side. Therefore, when membrane distillation is performed while creating such a temperature difference, not only vapor movement occurs due to the vapor pressure difference, but also heat movement occurs due to the temperature difference. Here, the former heat transfer due to the movement of vapor is called evaporation latent heat, and the latter heat transfer based on the temperature difference is called conduction heat, and the sum of the evaporation latent heat and conduction heat is the heat transfer through the membrane.

膜蒸留装置の目的は蒸気の移動であり、前記熱移動の総
和の内、蒸発潜熱の分が蒸気の移動に要した熱量であり
、したがって熱移動の総和の内、蒸発潜熱の割合が大き
い程、膜蒸留装置における熱効率が高いということが言
える。
The purpose of a membrane distillation apparatus is the movement of steam, and of the total heat transfer, the latent heat of vaporization is the amount of heat required for the movement of vapor. Therefore, the larger the proportion of the latent heat of vaporization is, , it can be said that the thermal efficiency in the membrane distillation apparatus is high.

換言すれば膜蒸留装置においては、伝導熱をより小さく
、かつ蒸発潜熱をより大きくとれる疎水性多孔質膜を用
いることが有利である。
In other words, in a membrane distillation apparatus, it is advantageous to use a hydrophobic porous membrane that can reduce conductive heat and increase latent heat of vaporization.

本発明者はこの点に鑑みて膜蒸留装置に用いる最適な疎
水性多孔質膜を見出すべく種々の当該膜を用いて試行錯
誤的に実験を行った結果、当該膜の材質あるいは膜厚等
が等しくとも、その製法の違いにより熱効率がかなり異
なり、車軸延伸法で製造された疎水性多孔質膜より複軸
延伸法で製造された当該膜の方が全くの例外なくその熱
効率が良いことを知見した。
In view of this, the present inventor conducted trial-and-error experiments using various membranes in order to find the most suitable hydrophobic porous membrane for use in a membrane distillation apparatus, and as a result, the material and thickness of the membrane were found to be Even if they are the same, the thermal efficiency varies considerably depending on the manufacturing method, and it was found that the thermal efficiency of the membrane manufactured by the biaxial stretching method is better than that of the hydrophobic porous membrane manufactured by the axle stretching method, without exception. did.

〈問題点を解決するための手段〉 本発明は上述した知見に基づいてなされたちので、複軸
延伸法で製造された気体は通すが液体は通さない性質を
有する疎水性多孔質膜を用いたことを特徴とする膜蒸留
装置に関するものである。
<Means for Solving the Problems> The present invention has been made based on the above-mentioned knowledge, and therefore, a hydrophobic porous membrane manufactured by a biaxial stretching method that allows gas to pass through but not liquid to pass therethrough is used. The present invention relates to a membrane distillation apparatus characterized by the following.

く作用〉 以下に本発明の詳細な説明する。Effect〉 The present invention will be explained in detail below.

当該疎水性多孔質膜を製造する場合、たとえば平膜を製
造する時は、四弗化エチレン、ポリプロピレン、ポリ弗
化ビニリデン、ポリエチレン等の疎水性合成樹脂材料を
可塑性状態として左右方向のみに延伸させて当該材料を
展延することにより膜を形成させる車軸延伸法と、当該
材料を可塑性状態として左右方向とともにたとえば上下
方向にも延伸させて展延することにより膜を形成させる
複軸延伸法とがある。
When manufacturing the hydrophobic porous membrane, for example, when manufacturing a flat membrane, a hydrophobic synthetic resin material such as tetrafluoroethylene, polypropylene, polyvinylidene fluoride, polyethylene, etc. is made into a plastic state and stretched only in the left and right direction. an axle stretching method in which a film is formed by spreading the material, and a biaxial stretching method in which a film is formed by stretching the material in a plastic state not only in the horizontal direction but also in the vertical direction, for example. be.

またチューブ状の疎水性多孔質膜を製造する際にも、前
記材料をリング状ノズルから押し出して、当該ノズルの
流出方向のみから引っ張りながら形成させる車軸延伸法
と、当該ノズルの流出口に、その底辺の円周がノズルの
径より大きい円錐状のスペーサーを末広がりになるよう
に配し、ノズルから流出するチューブの内部から当該ス
ペーサーで管内面を押し広げるようにしながら、流出方
向から引っ張って形成させる複軸延伸法がある。
In addition, when producing a tubular hydrophobic porous membrane, there is an axle stretching method in which the material is extruded from a ring-shaped nozzle and formed while being pulled only from the outflow direction of the nozzle. Arrange a conical spacer whose bottom circumference is larger than the diameter of the nozzle so that it widens toward the end, and pull it from the direction of flow while pushing the inner surface of the tube wider with the spacer from inside the tube flowing out from the nozzle. There is a biaxial stretching method.

本発明者等は当初これらの製法の相違に関しては全く無
関係に、四弗化エチレン、ポリプロピレン、ポリ弗化ビ
ニリデン、ポリエチレン等の材質の相違あるいは膜厚の
相違あるいは平膜、チューブ状等の膜形状の相違等によ
る各種の疎水性多孔質膜の膜蒸留における熱効率の違い
を研究していたが、材質、膜厚、膜形状が全く等しいに
もかかわらず熱効率の優れているグループと熱効率の劣
っているグループの二つのグループに分けられることが
判明した。
Initially, the inventors of the present invention had no connection whatsoever with the differences in these manufacturing methods, and considered the differences in the materials such as tetrafluoroethylene, polypropylene, polyvinylidene fluoride, and polyethylene, the differences in film thickness, and the film shapes such as flat films and tubes. I was researching the differences in thermal efficiency in membrane distillation of various hydrophobic porous membranes due to differences in membrane distillation, but I found that there are two groups with superior thermal efficiency and one with inferior thermal efficiency, despite having exactly the same material, membrane thickness, and membrane shape. It turns out that there are two groups:

そしてその相違点を詳細に調査したところ、熱効率の優
れているグループは例外なく複軸延伸法により製造され
た疎水性多孔質膜であり、また熱効率の劣っているグル
ープは例外な(車軸延伸法により製造された疎水性多孔
質膜であることを捜 −し当てた。
When we investigated the differences in detail, we found that the group with superior thermal efficiency was without exception hydrophobic porous membranes produced by biaxial stretching, and the group with poor thermal efficiency was the exception (axle stretching). It was discovered that the membrane was a hydrophobic porous membrane manufactured by.

複軸延伸法で製造された疎水性多孔質膜の方が、車軸延
伸法で製造された当該膜より、いかなる理由によってそ
の熱効率がよいのか今のところ明らかではないが、車軸
延伸法で製造された疎水性多孔質膜の膜面に形成される
微細孔は、左右のみから延伸されるため孔と言うより、
左右の延伸方向に延びたたとえば短径が1μm前後、長
径が15μm以上の細長いスリッド状を呈しており、一
方複軸延伸法で製造された疎水性多孔質膜の微細孔は、
左右方向と、たとえばこれと直角に交互する上下方向か
らも延伸されるので、孔の左右径と上下径とがたとえば
直径0.02μm〜10μmのほぼ等しい円形状を呈し
ており、あるいはこのような微細孔の形状の相違に遠因
があるのではないかと考えられる。
It is currently unclear why the hydrophobic porous membrane produced by the biaxial stretching method has better thermal efficiency than the membrane produced by the axle stretching method, but The micropores formed on the membrane surface of the hydrophobic porous membrane are not called pores because they extend only from the left and right sides.
For example, the micropores of the hydrophobic porous membrane produced by the biaxial stretching method have an elongated slid shape with a short axis of about 1 μm and a long axis of 15 μm or more, extending in the left and right stretching directions.
Since the hole extends from the left and right direction and also from the top and bottom directions alternating at right angles to this direction, the hole has a circular shape in which the left and right diameters and the top and bottom diameters are approximately equal in diameter, for example, from 0.02 μm to 10 μm. It is thought that the underlying cause may be the difference in the shape of the micropores.

いずれにしてもその理由は明らかではないが、車軸延伸
法で製造された疎水性多孔質膜と複軸延伸法で製造され
た疎水性多孔質膜との熱効率を比較すると、前者より後
者の方が明らかに熱効率が高いので、膜蒸留装置に用い
る疎水性多孔質膜としては複軸延伸法で製造されたもの
を使用した方が数段と有利である。
In any case, the reason is not clear, but when comparing the thermal efficiency of a hydrophobic porous membrane manufactured by the axle stretching method and a hydrophobic porous membrane manufactured by the biaxial stretching method, the latter is superior to the former. Since the thermal efficiency is clearly high, it is much more advantageous to use a hydrophobic porous membrane manufactured by a biaxial stretching method for use in a membrane distillation apparatus.

従来から疎水性多孔質膜を用いる膜蒸留装置に関して、
種々の論文が掲載されているが、本発明のごとく当該膜
の製造法の相違によってその熱効率が相違することなど
は一切記載されておらず、本発明は全く新しい知見に基
づくものである。
Regarding membrane distillation equipment that conventionally uses hydrophobic porous membranes,
Although various papers have been published, there is no mention that the thermal efficiency of the membrane varies depending on the method of manufacturing the membrane, as in the present invention, and the present invention is based on completely new knowledge.

本発明に用いる疎水性多孔質膜としては、前述したごと
く左右方向と当該左右方向の軸方向と角度を異にする、
たとえば直行する上下方向のごとく、少なくとも二輪方
向の複数方向から延伸された膜であれば、平膜状、さら
に前述したスペーサーを介して延伸したチューブ状、お
よび複軸延伸法にて製造した平膜を袋状としてさらに渦
巻状に形成したスパイラル状、あるいは当該平膜の両端
を接合して得たチューブ状または管状などあらゆる形状
のものが使用できる。また膜面に有する微細孔としては
左右径と上下径とがほぼ等しい、直径0.02μm〜1
0μmのものを使用することが望ましい。
As mentioned above, the hydrophobic porous membrane used in the present invention has different axial directions and angles in the left-right direction and the left-right direction.
For example, if the film is stretched in multiple directions, such as orthogonal up and down directions, at least in the direction of two wheels, it can be in the form of a flat film, furthermore, it can be in the form of a tube stretched through the aforementioned spacer, or a flat film produced by a biaxial stretching method. Any shape can be used, such as a spiral shape formed into a bag shape and further formed into a spiral shape, or a tube shape or tube shape obtained by joining both ends of the flat membrane. In addition, the fine pores on the membrane surface have a diameter of 0.02 μm to 1
It is desirable to use one with a diameter of 0 μm.

なお材質としては疎水性物質であって、かつ可塑性状態
で延伸できるものであれば、どんなものでも使用できる
が、疎水性が強くかつ延伸しやすいものとして四弗化エ
チレン、ポリプロピレン、ポリ弗化ビニリデン、ポリエ
チレンから選択される、いずれか一種が好ましく、また
四種の肉量も疎水性の大きいものとして四弗化エチレン
が挙げられる。
Any material can be used as long as it is a hydrophobic substance and can be stretched in a plastic state, but ethylene tetrafluoride, polypropylene, and polyvinylidene fluoride are highly hydrophobic and easy to stretch. Preferably, one selected from polyethylene and polyethylene is preferred, and tetrafluoroethylene is one of the four types having a large hydrophobicity.

また本発明における膜蒸留装置は前記した複軸延伸法で
製造された疎水性多孔質膜を装着するもので、当該膜で
区画した一方の側に、被処理液を当該膜と接触させなが
ら通すとともに、他方の側に被処理液から蒸発せんとす
る液体の蒸気圧より低い吸収液を当該膜に接触させなが
ら通す直接法や、あるいは他方の側に空間部を介して冷
却面を配置した間接法として用いることができ、海水の
淡水化や脱塩水(蒸留水)の製造、不揮発性液体の濃縮
、揮発性液体の濃縮、血液からの除水等、種々の用途に
用いることができる。
Furthermore, the membrane distillation apparatus of the present invention is equipped with a hydrophobic porous membrane manufactured by the above-mentioned biaxial stretching method, and the liquid to be treated is passed through one side partitioned by the membrane while being in contact with the membrane. In addition, there is a direct method in which an absorbing liquid with a lower vapor pressure than the liquid to be evaporated from the liquid to be evaporated is passed through the membrane on the other side while in contact with the membrane, or an indirect method in which a cooling surface is placed on the other side through a space. It can be used for various purposes such as desalination of seawater, production of demineralized water (distilled water), concentration of non-volatile liquids, concentration of volatile liquids, and removal of water from blood.

く効果〉 以上説明したごとく、本発明の膜蒸留装置は、疎水性多
孔質膜の内、特定の方゛法で製造された熱効率の高い疎
水性多孔質膜を用いるので、その蒸留コストを大幅に低
減させることができ、産業に稗益するところが大きい。
Effects> As explained above, the membrane distillation apparatus of the present invention uses a hydrophobic porous membrane with high thermal efficiency manufactured by a specific method among hydrophobic porous membranes, so the distillation cost can be significantly reduced. This is a great benefit to industry.

以下に本発明の効果をより明確とするために実施例を説
明する。
Examples will be described below to make the effects of the present invention more clear.

〈実施例〉 第1図に示したような膜蒸留装置の実験装置を用いて、
以下のような実験を行った。
<Example> Using the experimental apparatus of a membrane distillation apparatus as shown in Fig. 1,
The following experiment was conducted.

当該実験装置は厚み約20mのアクリル樹脂で製作した
ハウジング1内に疎水性多孔質膜2を装着し、ヒータ3
により一定の温度に加温した加温槽4内に載置したコニ
カルビーク5A内の彼処EI液をポンプ6Aを用いて、
ハウジング1内の疎水性多孔質膜2で区画した一方の側
に循環し、また冷却器7により一定の温度に冷却した冷
却槽8内に載置したコニカルビーカ5B内の吸収液でア
ル純水をポンプ6Bを用いて、ハウジング1内の疎水性
多孔質膜2で区画した他方の側に循環し、当該温度差に
より被処理液中の水分を疎水性多孔質膜2を介して蒸発
せしめ、当該蒸気を吸収液で直接吸収させるものである
The experimental device has a hydrophobic porous membrane 2 installed in a housing 1 made of acrylic resin with a thickness of approximately 20 m, and a heater 3.
Using the pump 6A, the EI liquid in the conical beak 5A placed in the heating tank 4 heated to a constant temperature is
Al-pure water is circulated through one side of the housing 1 partitioned by the hydrophobic porous membrane 2, and the absorption liquid in the conical beaker 5B placed in the cooling tank 8 cooled to a constant temperature by the cooler 7 is used. is circulated to the other side of the housing 1 partitioned by the hydrophobic porous membrane 2 using the pump 6B, and the water in the liquid to be treated is evaporated via the hydrophobic porous membrane 2 due to the temperature difference, The vapor is directly absorbed by the absorption liquid.

なおコニカルビーカ5A、5B共に密栓をし、コニカル
ビー力5A側には空気抜き管9Aを付設するとともに、
コニカルビー力5Bには吸収1である純水を満杯にし、
膜蒸留により増加する水分はバイパス管10よりオーバ
ーフローさせ、当8亥オーバーフロー水を電子天秤11
上に載置したコニカルビー力5Cに受け、一定時間毎の
増加重量をマイクロコンピュータ12で記録できるよう
に構成しである。なおコニカルビー力5Cも密栓しであ
るが、空気抜き管9Bを付設しである。また13.14
.15.16は温度計である。
In addition, both conical beakers 5A and 5B are tightly plugged, and an air vent pipe 9A is attached to the conical beaker 5A side.
Conical Ruby Force 5B is filled with pure water which is Absorption 1,
The water increased by membrane distillation overflows from the bypass pipe 10, and the overflow water is transferred to the electronic balance 11.
The structure is such that a microcomputer 12 can record the increase in weight at regular intervals due to the conical ruby force 5C placed above. Note that the conical ruby 5C is also sealed, but an air vent pipe 9B is attached. Also 13.14
.. 15.16 is a thermometer.

図示したような実験装置のハウジング1内に車軸延伸法
により製造された短径1μm、長径15μmのスリット
状の微細孔を有する疎水性多孔質膜と、複軸延伸法(左
右方向に延伸するとともに、当該左右方向の軸方向と直
角に交わる上下方向の二軸により延伸して製造したもの
)により製造された直径0.8μmの円形の微細孔を有
する他は全く同じ疎水性多孔質膜を装着し、両製造法の
相違による熱効率を比較し、その結果を第1表および第
2表に示した。なお実験に用いた疎水性多孔質膜は四弗
化エチレン製であり、有効面積が75cI+1のもので
膜厚がそれぞれ150μmのものと100μmの二種類
について行い、第1表は膜厚が150μmの結果を、第
2表は膜厚が100μmの結果を示す。また被処理液お
よび吸収液の流量はともに1.51/分とした。
A hydrophobic porous membrane having slit-like micropores with a short diameter of 1 μm and a long diameter of 15 μm manufactured by the axle stretching method is housed in the housing 1 of the experimental apparatus as shown in the figure, and a hydrophobic porous membrane having slit-like micropores with a short diameter of 1 μm and a long diameter of 15 μm manufactured by the axle stretching method and a biaxial stretching method (stretched in the left-right direction The same hydrophobic porous membrane except that it has circular micropores with a diameter of 0.8 μm manufactured by stretching with two axes in the vertical direction perpendicular to the left-right axis direction is attached. The thermal efficiency was compared between the two manufacturing methods, and the results are shown in Tables 1 and 2. The hydrophobic porous membrane used in the experiment was made of tetrafluoroethylene, with an effective area of 75 cI+1, and two types of membrane thickness, 150 μm and 100 μm, respectively. Table 2 shows the results when the film thickness was 100 μm. Further, the flow rates of both the liquid to be treated and the absorption liquid were 1.51/min.

なお被処理液としては5000g/6の食塩溶液を用い
たが、コニカルビー力5Cに受けた蒸留水中には塩分の
増加は全くなかった。
Although a 5000 g/6 salt solution was used as the liquid to be treated, there was no increase in salt content at all in the distilled water subjected to the conical Ruby force of 5C.

第2表(膜厚100μm) なお熱効率は各点の温度とコニカルビー力5Cで受けた
蒸留水の流量が一定の値となる、いわゆる定常状態とな
った時の各点の温度およびコニカルビー力5Cで受ける
蒸留水の流量(膜透過流速)を用いて被処理液側あるい
は吸収液側の両者から算出できる。
Table 2 (film thickness 100 μm) Thermal efficiency is the temperature at each point and the conical Ruby force when the flow rate of distilled water received by the temperature at each point and the conical Ruby force of 5C becomes a constant value, a so-called steady state. It can be calculated from both the treated liquid side and the absorption liquid side using the flow rate (membrane permeation flow rate) of distilled water received at 5C.

たとえば第1表の車軸延伸法により製造された疎水性多
孔質膜の被処理液入口温度42.1℃、被処理液出口温
度40.2℃2m透過流速0.19i/イ・dayO値
を用いて被処理液側から算出される熱効率は以下の通り
である。
For example, using the treated liquid inlet temperature of 42.1°C and the treated liquid outlet temperature of 40.2°C and 2 m permeation flow rate of 0.19 i/day O value of the hydrophobic porous membrane manufactured by the axle stretching method shown in Table 1. The thermal efficiency calculated from the treated liquid side is as follows.

熱効率’−(42,1−40,2)Xl、51/分XI
Kcaj!/’C =2.85Kcal/分 膜透過流速は0.19n(/rrldayであり、これ
を有効膜面積75cdおよび分光たりの流量に換算する
と、0.99mj!/分となり、したがって定数である
蒸発潜熱570Kcaj2/mJを用いて、蒸発潜熱量
を算出すると、 =0.55Kcal/分 −19,3% 以上のような算出法により算出した両者の疎水性多孔質
膜の各膜厚の各温度における熱効率(被処理液側からの
計算値と吸収液側からの計算値の平均値)を第1表、第
2表に示したが、複軸延伸法により製造された疎水性多
孔質膜の方が車軸延伸法により製造されたそれより、い
ずれも40〜60%程度熱効率が増加己でいることが示
されている。
Thermal efficiency'-(42,1-40,2)Xl, 51/minXI
Kcaj! /'C = 2.85 Kcal/minute The membrane permeation flow rate is 0.19 n(/rrlday, and when converted to an effective membrane area of 75 cd and a flow rate per spectral spectrum, it is 0.99 mj!/min, and therefore the evaporation rate is a constant. When the latent heat of vaporization is calculated using the latent heat of 570 Kcaj2/mJ, it is: =0.55 Kcal/min - 19.3% At each temperature for each film thickness of both hydrophobic porous membranes calculated by the above calculation method The thermal efficiency (the average value of the calculated value from the treated liquid side and the calculated value from the absorption liquid side) is shown in Tables 1 and 2, but the hydrophobic porous membrane manufactured by the biaxial stretching method However, it has been shown that the thermal efficiency of these materials is approximately 40 to 60% higher than that produced by the axle stretching method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例に用いた膜蒸留装置の実験装置のフロー
を示す説明図である。 1・・・ハウジング    2・・・疎水性多孔質膜3
・・・ヒータ      4・・・加温槽5・・・コニ
カルビーカ  6・・・ポンプ7・・・冷却器    
  8・・・冷却槽9・・・空気抜き管   1o・・
・バイパス管11・・・電子天秤 12・・・マイクロコンピュータ 13〜16・・・温度計
FIG. 1 is an explanatory diagram showing the flow of the experimental apparatus of the membrane distillation apparatus used in the examples. 1...Housing 2...Hydrophobic porous membrane 3
... Heater 4 ... Heating tank 5 ... Conical beaker 6 ... Pump 7 ... Cooler
8...Cooling tank 9...Air vent pipe 1o...
・Bypass pipe 11...Electronic balance 12...Microcomputer 13-16...Thermometer

Claims (1)

【特許請求の範囲】 1、複軸延伸法により製造された、気体は通すが液体は
通さない性質を有する疎水性多孔質膜を用いたことを特
徴とする膜蒸留装置。 2、疎水性多孔質膜の材質が四弗化エチレン、ポリプロ
ピレン、ポリ弗化ビニリデン、ポリエチレンから選択さ
れるいずれか一種である特許請求の範囲第1項記載の膜
蒸留装置。
[Scope of Claims] 1. A membrane distillation device characterized by using a hydrophobic porous membrane manufactured by a biaxial stretching method that allows gas to pass through but not liquid. 2. The membrane distillation apparatus according to claim 1, wherein the hydrophobic porous membrane is made of one selected from tetrafluoroethylene, polypropylene, polyvinylidene fluoride, and polyethylene.
JP12026886A 1986-05-27 1986-05-27 Membrane distillation device Expired - Fee Related JPH07100133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12026886A JPH07100133B2 (en) 1986-05-27 1986-05-27 Membrane distillation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12026886A JPH07100133B2 (en) 1986-05-27 1986-05-27 Membrane distillation device

Publications (2)

Publication Number Publication Date
JPS62279808A true JPS62279808A (en) 1987-12-04
JPH07100133B2 JPH07100133B2 (en) 1995-11-01

Family

ID=14782011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12026886A Expired - Fee Related JPH07100133B2 (en) 1986-05-27 1986-05-27 Membrane distillation device

Country Status (1)

Country Link
JP (1) JPH07100133B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020111158A1 (en) * 2018-11-27 2020-06-04 旭化成株式会社 Membrane distillation module and membrane distillation apparatus
US11339062B2 (en) 2012-06-11 2022-05-24 Compass Minerals Ogden Inc. Methods for sustainable membrane distillation concentration of hyper saline streams

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11339062B2 (en) 2012-06-11 2022-05-24 Compass Minerals Ogden Inc. Methods for sustainable membrane distillation concentration of hyper saline streams
WO2020111158A1 (en) * 2018-11-27 2020-06-04 旭化成株式会社 Membrane distillation module and membrane distillation apparatus

Also Published As

Publication number Publication date
JPH07100133B2 (en) 1995-11-01

Similar Documents

Publication Publication Date Title
US4781837A (en) Method of performing osmetic distillation
Khayet et al. Theoretical and experimental studies on desalination using the sweeping gas membrane distillation method
KR101505208B1 (en) Membrane distillation method for the purification of a liquid
US4268279A (en) Gas transfer process with hollow fiber membrane
US4620900A (en) Thermopervaporation apparatus
US3878054A (en) Distillation apparatus and process
Cheng et al. Enhanced air gap membrane desalination by novel finned tubular membrane modules
KR20160055212A (en) Systems including a condensing apparatus such as a bubble column condenser
Zou et al. Submerged vacuum membrane distillation crystallization (S-VMDC) with turbulent intensification for the concentration of NaCl solution
GB2025256A (en) A Gas Transfer Process Using a Hollow Fiber Membrane
Ohta et al. Experiments on sea water desalination by membrane distillation
US4778569A (en) Method of separation of liquid mixture of solution by porous separating wall
JPS62279808A (en) Membrane distiller
Bryk et al. Membrane distillation
JPS60147201A (en) Treatment of aqueous solution containing volatile substance
Van Gassel et al. An energy-efficient membrane distillation process
JPS63197502A (en) Production of volatile organic liquid concentrate
JPS60501746A (en) Thermal thin film distillation system
JPH0347521A (en) Separation membrane and usage thereof
KR101576804B1 (en) Hollow fiber module with multiple cooling channels for air gap membrane distillation and apparatus and method for air gap membrane distillation using the same
JPS60203173A (en) Concentration of fruit juice
JPS60241906A (en) Concentrating method of nonaqueous solution containing oil-soluble substance
JP2022146345A (en) Raw material liquid concentration system and method
JPS62227492A (en) Method and apparatus for making pure water
JPH01199602A (en) Membrane demister

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees