JPS62279807A - Concentrator of liquid - Google Patents

Concentrator of liquid

Info

Publication number
JPS62279807A
JPS62279807A JP61122748A JP12274886A JPS62279807A JP S62279807 A JPS62279807 A JP S62279807A JP 61122748 A JP61122748 A JP 61122748A JP 12274886 A JP12274886 A JP 12274886A JP S62279807 A JPS62279807 A JP S62279807A
Authority
JP
Japan
Prior art keywords
membrane
liquid
treated
separation means
membrane separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61122748A
Other languages
Japanese (ja)
Other versions
JPH0698275B2 (en
Inventor
Masayuki Matsuno
松野 雅行
Toshiaki Ishizuka
石塚 俊明
Naoki Okuma
大熊 直紀
Teizo Sensei
先生 貞三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP61122748A priority Critical patent/JPH0698275B2/en
Publication of JPS62279807A publication Critical patent/JPS62279807A/en
Publication of JPH0698275B2 publication Critical patent/JPH0698275B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To reduce the pollution of a membrane surface and to effectively wash the polluted membrane surface by providing a plurality of membrane modules containing many discoid membranes to a hollow rotary shaft and independently changing over both a flowing process of liquid to be treated and a washing process of the discoid membranes. CONSTITUTION:The following a plurality of membrane separation means 20 are parallel provided in which a membrane module 36 parallel fitted with a plurality of discoid membranes 40 to a hollow rotary shaft 38 is housed in a cylindrical case 32. Liquid to be treated such as organic waste water subjected to activated sludge treatment in an aeration tank 10 is distributed and fed to the membrane separation means 20 and also the rotary shafts 38 are rotated by rotary driving sources 44. The permeation liquid permeated through the rotating discoid membranes 40 is collected in the hollow parts of the rotary shafts 38 and discharged through ducts 52. Concentrates high in the concn. of sludge are returned to the aeration tank 10 through branched pipes 26 for outflow and a conduit 22. Solid material stuck on the membrane surfaces is made easily peelable by the rotation of the membranes 40 and the pollution of the membrane surfaces is reduced. Further even when the membranes are polluted, the polluted membrane separation means 20 can be independently washed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は膜分離手段を用いた液体の濃縮装置に係り、
特に、有機性の廃水を活性汚泥処理するに際して好適な
液体の濃縮装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a liquid concentrating device using membrane separation means,
In particular, the present invention relates to a liquid concentrator suitable for treating organic wastewater with activated sludge.

気によって混合攪拌し、活性汚泥の作用によって、廃水
中の有機性物質を好気的に酸化分解処理していた。処理
を受けた廃水は浮遊する活性汚泥とともに次段の沈殿池
に送り、沈殿池の上澄水を処理水として放流する。沈殿
した活性汚泥は、その一部を前記曝気槽に返送し、曝気
槽における汚泥濃度を一定に維持するとともに、残りは
余剰汚泥として処理処分していた。曝気槽における活性
汚泥の濃度が、高濃度であればあるほどBOD負荷を高
くすることができ、廃水の処理効率が向上する。
The organic substances in the wastewater were aerobically oxidized and decomposed by the action of activated sludge. The treated wastewater is sent to the next settling tank along with the floating activated sludge, and the supernatant water from the settling tank is discharged as treated water. A portion of the precipitated activated sludge was returned to the aeration tank to maintain a constant sludge concentration in the aeration tank, and the rest was disposed of as surplus sludge. The higher the concentration of activated sludge in the aeration tank, the higher the BOD load can be, and the efficiency of wastewater treatment is improved.

しかし、次段の沈殿池においては、流入する廃水の汚泥
濃度(曝気槽における汚泥濃度とほぼ一致する。)が高
いと所定の滞留時間では汚泥が十分に沈降せず、放流す
べき上澄水に多量の汚泥が混入することとなる。このた
め、沈殿池の容量を著しく大きくするか、もしくは上澄
水を別置のろ過手段でろ過する必要が生じるが、いずれ
も装置の5000mg/を程度に維持することが一般と
されていた。
However, in the next stage settling tank, if the sludge concentration of the inflowing wastewater (which is almost the same as the sludge concentration in the aeration tank) is high, the sludge will not settle sufficiently within the specified retention time, and the supernatant water that should be discharged will A large amount of sludge will be mixed in. For this reason, it is necessary to significantly increase the capacity of the sedimentation tank or to filter the supernatant water using a separate filtration means, but in both cases it has been generally accepted that the amount of water in the apparatus should be maintained at around 5000 mg/ml.

しかし近年において、活性汚泥処理を見直す気運が高ま
り、特に膨大な敷地を必要とする沈殿池を省略する有効
な方法が模索されている。沈殿処理がなげれば、前記の
ように曝気槽の汚泥濃度を大巾に高めることができ、廃
水の処理効率を格段に向上させることができる。このよ
うな試みの一つとして、曝気槽で処理を受けた活性汚泥
が浮遊する廃水を曝気槽内で直接にろ過または膜分離し
て、透過液のみを曝気槽外へ放流することが提案されて
いる。また、他の試みとして、同様の廃水を曝気槽外で
沈殿池を経ずにろ過または膜分離によって@縮し、濃縮
水を曝気槽へ返送し、透過液を放流することも提案され
ている。しかしながら、これらの方法はいずれもろ過方
や膜面に汚泥が付着堆積して透過液量が急速に低下する
というろ過〔発明が解決しようとする問題点〕 以上に述べた有機性廃水の活性汚泥処理における技術課
題は、膜5+離手段を用いた液体の濃縮装置に共通する
課題であり、膜面の汚染を極力排除すること、汚染した
膜面を迅速かつ他の運転に支障を与えることなく洗浄す
る有効な手段が見当らないのが実情であった。
However, in recent years, there has been a growing trend to reconsider activated sludge treatment, and in particular, effective ways to omit settling tanks, which require a huge amount of land, are being sought. If the sedimentation treatment is omitted, the sludge concentration in the aeration tank can be greatly increased as described above, and the wastewater treatment efficiency can be significantly improved. As one such attempt, it has been proposed to directly filter or membrane-separate the wastewater treated in the aeration tank in which activated sludge is suspended in the aeration tank, and to discharge only the permeate to the outside of the aeration tank. ing. In addition, as another attempt, it has been proposed to condense similar wastewater outside the aeration tank by filtration or membrane separation without passing through a settling tank, return the concentrated water to the aeration tank, and discharge the permeate. . However, in all of these methods, sludge adheres and accumulates on the membrane surface, resulting in a rapid decrease in the amount of permeate (a problem that the invention seeks to solve). The technical issues in processing are common to liquid concentrators using membrane 5+ separation means, and are to eliminate contamination of the membrane surface as much as possible, and to remove the contaminated membrane surface quickly and without interfering with other operations. The reality is that no effective means of cleaning has been found.

この発明の目的は上記従来技術の問題点を解決し、膜分
離手段における膜面の汚染が少な(、汚染した膜面を効
果的に洗浄することができる膜分離手段を用いた液体の
濃縮装置を提供することにある。
The purpose of the present invention is to solve the above-mentioned problems of the prior art, and to reduce the amount of contamination of the membrane surface in the membrane separation means. Our goal is to provide the following.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、被処理液の流入口を備えた貯槽と、この貯
槽から抜き出した被処理液を複数の膜分離手段に分配す
るとともに、膜分離手段で濃縮した被処理液を前記貯槽
に返送循環する濃縮循環系とに取付けた模モジュールを
収納し、円板膜からの透過液を前記中空回転軸の中空部
を経由して装置外へ排出する構造とされ、前記膜分離手
段がそれぞれ被処理液の通液工程および円板膜の洗浄工
程を独立して切替え可能とされたことを特徴とする。
This invention includes a storage tank equipped with an inlet for the liquid to be treated, a liquid to be treated extracted from the storage tank, which is distributed to a plurality of membrane separation means, and a liquid to be treated concentrated by the membrane separation means is returned to the storage tank for circulation. The structure is such that a mock module is housed in the concentration circulation system, and the permeated liquid from the disk membrane is discharged to the outside of the apparatus via the hollow part of the hollow rotating shaft, and each of the membrane separation means to be treated is It is characterized in that the liquid passing process and the disc membrane cleaning process can be switched independently.

〔作 用〕[For production]

本発明に係る膜分離手段は、被処理液を充満させた筒状
ケース内で、多数の円板膜を並列させた中空回転軸を回
転させるものであり、円板膜からの透過液は中空回転軸
の中空部を経由して、装置外へ排出される。円板膜の表
面に付着した被処理液中の固形分は、円板膜の回転によ
って、剥離しやすくなる。このため膜面に固形物が付着
堆積して汚染されることが少ない。また、膜面における
溶質の濃度分極を抑えることができるので、透過されて
いるので、円板膜が汚染した場合でも、膜分離手段を個
別に洗浄できる。このため、装置を停止することなく濃
縮操作を連続に行うことができる。
The membrane separation means according to the present invention rotates a hollow rotating shaft in which a large number of disc membranes are arranged in parallel in a cylindrical case filled with a liquid to be treated, and the permeate from the disc membranes is passed through the hollow shaft. It is discharged outside the device via the hollow part of the rotating shaft. The solid content in the liquid to be treated that adheres to the surface of the disc membrane is easily peeled off by the rotation of the disc membrane. Therefore, the membrane surface is less likely to be contaminated by adhesion and accumulation of solid matter. Furthermore, since the concentration polarization of the solute at the membrane surface can be suppressed, the membrane separation means can be individually cleaned even if the disc membrane becomes contaminated because it is permeated. Therefore, the concentration operation can be performed continuously without stopping the apparatus.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面に基づき説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明を有機性廃水の活性汚泥処理に適用した
場合の実施例の装置系統図である。貯槽10は有機性廃
水の流入管路12と曝気手段14を備えており、曝気槽
として機能する。貯槽10には被処理液の循環用管路1
6が設げてあり、この管路16の途中に設けたポンプ1
8によって、被処理液を、複数の膜分離手段20に分配
する。
FIG. 1 is an apparatus system diagram of an embodiment in which the present invention is applied to activated sludge treatment of organic wastewater. The storage tank 10 is equipped with an organic wastewater inflow pipe 12 and an aeration means 14, and functions as an aeration tank. The storage tank 10 has a pipeline 1 for circulating the liquid to be treated.
6 is provided, and a pump 1 is provided in the middle of this pipe line 16.
8, the liquid to be treated is distributed to a plurality of membrane separation means 20.

各膜分離手段20を経た被処理液は合流したのち、管路
22から前記貯槽10に返送される。各膜分離手段20
がそれぞれ上記の通液工程を独立して操作できるように
、被処理液の流入用分岐管24膜分離手段20は、第2
図に示すように、筒状のケース320両端をフランジ3
4で閉止し、その内部に膜モジュール36を収納したも
のである。
The liquids to be treated that have passed through each membrane separation means 20 are returned to the storage tank 10 through the conduit 22 after joining together. Each membrane separation means 20
The branch pipe 24 for inflow of the liquid to be treated and the membrane separation means 20 are connected to the second
As shown in the figure, both ends of the cylindrical case 320 are connected to the flanges 3
4, and a membrane module 36 is housed inside.

膜モジュール36は中空回転軸38に多数の円板膜40
を並列して取付けた構造を基本とし、一端は前記フラン
ジ34から軸封42を介して外部の回転駆動源44に連
結されている。なお、図中、46は軸受、48は軸継手
を意味する。また、中空回転@38の他端は同じくフラ
ンジ34から軸封42を介して外部の回転式管継手50
に連結し、この管継手50は仕切弁54を備えた管路5
2に接続する。
The membrane module 36 has a plurality of disk membranes 40 on a hollow rotating shaft 38.
One end is connected to an external rotational drive source 44 via a shaft seal 42 from the flange 34. In addition, in the figure, 46 means a bearing, and 48 means a shaft coupling. Also, the other end of the hollow rotating @38 is connected to an external rotary pipe joint 50 via the shaft seal 42 from the flange 34.
This pipe joint 50 is connected to a pipe line 5 equipped with a gate valve 54.
Connect to 2.

第1図に戻って、図中、56は膜面を洗浄するだめの洗
浄液の貯槽であり、この洗浄液貯槽56の洗浄液を管路
58の途中に設はポンプ60によって、前記各膜分離手
段20に供給し、膜分離手段20を経た洗浄液を管路6
2がら洗浄液貯槽56に戻し、循環できるようにしであ
る。各膜分び流出用分岐管66にはそれぞれ切替弁68
および70が設げである。
Returning to FIG. 1, reference numeral 56 is a storage tank for cleaning liquid for cleaning the membrane surface, and the cleaning liquid in the cleaning liquid storage tank 56 is supplied to each of the membrane separation means 20 by a pump 60 in the middle of the pipe line 58. The cleaning liquid that has passed through the membrane separation means 20 is sent to the pipe 6.
2 is returned to the cleaning liquid storage tank 56 so that it can be circulated. A switching valve 68 is provided in each membrane and outflow branch pipe 66.
and 70 are the specifications.

上記の構成において、まず、流入管路12から有機性廃
水を貯槽10内に注入するとともに、種汚泥を投入して
曝気手段14によって貯槽10尚の廃水を曝気する。投
入した種汚泥は、曝気による好気条件下で、その生化学
作用によって、廃水中の有機性物質を酸化分解し、廃水
を浄化するとともに、前記有機性物質を栄養源として汚
泥が増殖する。廃水の注入を継続すると、注入量に対応
して浄化した廃水を貯槽外に排出する必要がある。
In the above configuration, first, organic wastewater is injected into the storage tank 10 from the inflow pipe 12, seed sludge is introduced, and the wastewater in the storage tank 10 is aerated by the aeration means 14. The input seed sludge oxidizes and decomposes the organic substances in the wastewater under aerobic conditions through aeration, thereby purifying the wastewater, and the sludge multiplies using the organic substances as a nutrient source. If the injection of wastewater continues, it is necessary to discharge purified wastewater out of the storage tank in proportion to the amount of injection.

このために、前記ポンプ18を稼動して被処理液を各膜
分離手段20に分配供給する。流入用分岐管24、切替
弁28を経て、各膜分離手段20に供給された被処理液
はケース32内を通過する過程で、回転する円板膜40
によって、透過液が分離され、汚泥濃度が高い濃縮され
た状態で膜分離手段から排出されることとなり、この濃
縮された前記円板膜40からの透過液は、円板膜中心の
中空回転軸の中空部に集められ、管路52から装置外へ
排出される。この透過液は前記貯槽10で浄化した廃水
を膜によって分離したものであるから十分に清澄であり
、そのまま放流するか、用水として再利用できる。以上
の被処理液の膜分離手段20への循環を繰り返すことに
より、貯槽10内被処理液の汚泥濃度は徐々に高くなる
。したがつて、被処理液である廃水中の有機性物質の酸
化分解が活発となる。すなわち、廃水の処理効率が著し
く向上する。前記膜分離手段20では、汚泥濃度が10
000〜30000η/lに達する泥状の被処理液を膜
分離することとなり、円板膜40における膜面への汚泥
の付着堆積が悪念されるが、円板膜40が回転している
ので、円板膜表面と被処理液の間には剪断力が作用し、
付着した汚泥は膜面から剥離しやすくなる。また、膜面
における溶質の濃度分極を抑えることができる。このた
め、てくると、複数の膜分離手段20の円板膜を個別に
洗浄する。この洗浄工程はまず複数の膜分離手段20の
うちのいずれか1つにおいて、前記切替弁28.30お
よび仕切弁54を閉止したのち、第2図に示した膜分離
手段20のドレン弁72とペント弁74を開放し、ケー
ス32内の被処理液をドレン弁72から排出する。その
後、ドレン弁72、ペント弁74を閉止した上で、洗浄
液貯槽56に連なる切替弁68および70を開放して、
ポンプ60を稼動し、前記ケース32内に洗浄液を循環
して行う。この洗浄液の循環によって、円板膜40の膜
面が清浄化され、所望の透過液量を回復する。次いで、
上記とは逆の順序に各切替弁を操作して、ケース32内
の洗浄液を排出したのち、被処理液の通液工程に移る。
For this purpose, the pump 18 is operated to distribute and supply the liquid to be treated to each membrane separation means 20. The liquid to be treated that is supplied to each membrane separation means 20 through the inflow branch pipe 24 and the switching valve 28 passes through the rotating disc membrane 40 while passing through the case 32.
As a result, the permeate is separated and discharged from the membrane separation means in a concentrated state with a high sludge concentration. It is collected in the hollow part of and is discharged from the apparatus through the pipe line 52. This permeated liquid is obtained by separating the wastewater purified in the storage tank 10 using a membrane, and is therefore sufficiently clear and can be discharged as is or reused as water for use. By repeating the above-described circulation of the liquid to be treated to the membrane separation means 20, the sludge concentration of the liquid to be treated in the storage tank 10 gradually increases. Therefore, the oxidative decomposition of organic substances in the wastewater, which is the liquid to be treated, becomes active. In other words, the efficiency of wastewater treatment is significantly improved. In the membrane separation means 20, the sludge concentration is 10
000 to 30,000 η/l is to be membrane-separated, and it is a shame that the sludge will adhere to the membrane surface of the disc membrane 40, but since the disc membrane 40 is rotating, , a shearing force acts between the disk membrane surface and the liquid to be treated,
The attached sludge is easily peeled off from the membrane surface. Furthermore, concentration polarization of solutes on the membrane surface can be suppressed. Therefore, the disk membranes of the plurality of membrane separation means 20 are individually cleaned. In this cleaning step, first, in any one of the plurality of membrane separation means 20, the switching valve 28, 30 and the gate valve 54 are closed, and then the drain valve 72 of the membrane separation means 20 shown in FIG. The pent valve 74 is opened, and the liquid to be treated in the case 32 is discharged from the drain valve 72. Thereafter, after closing the drain valve 72 and pent valve 74, the switching valves 68 and 70 connected to the cleaning liquid storage tank 56 are opened.
The cleaning liquid is circulated within the case 32 by operating the pump 60. Through this circulation of the cleaning liquid, the membrane surface of the disc membrane 40 is cleaned, and the desired amount of permeated liquid is restored. Then,
After the cleaning liquid in the case 32 is discharged by operating each switching valve in the reverse order to that described above, the process moves to the process of passing the liquid to be treated.

通液工程と洗浄工程の切替操作を各膜分離手段ごとに独
立して行うことにより、大多数の膜分離手段を被処理液
の通液工程として運転することができる。したがつを栄
養源として活性汚泥が必要以上に増埴する。
By performing the switching operation between the liquid passing step and the washing step independently for each membrane separation means, most of the membrane separation means can be operated as the liquid passing step for the liquid to be treated. Activated sludge grows more than necessary using the sludge as a nutrient source.

したがって、汚泥濃度が一定値以上になったときは、仕
切弁76を開放して、管路78から余剰の汚泥を引き抜
(。
Therefore, when the sludge concentration exceeds a certain value, the gate valve 76 is opened and excess sludge is drawn out from the pipe line 78.

膜分離手段では膜分離のための、駆動圧力が必要である
ので、ポンプ18の揚程を十分に高く選定するとともに
、被処理液の流出用分岐管26には、絞り弁を付設する
か、もしくは切替弁30を絞り機能を備えた弁とするこ
とによって、ケース32内の被処理液を所望の圧力範囲
に保持する。
Since the membrane separation means requires driving pressure for membrane separation, the lift of the pump 18 is selected to be sufficiently high, and the branch pipe 26 for outflowing the liquid to be treated is provided with a throttle valve or By making the switching valve 30 a valve with a throttling function, the liquid to be treated in the case 32 is maintained within a desired pressure range.

また、第2図に示す膜分離手段では流入用分岐管24か
ら流入した被処理液が、円板膜40とは十分に接触せず
に、ケース32の内面と円板膜40の外周縁との隙間を
バイパスしてケース32内を通過する欠点がある。この
欠点を解消するためには、例えば、第3図に示すように
、円板膜40を中空回転軸38に対して、鉛直ではな(
傾斜として取付ける。また、被処理液の流入口80する
円板膜40がケース32内の被処理液を攪拌するととも
に、ケース内に流入した被処理液が円板膜40の膜面に
沿って流れ易(なるので、被処理液と円板膜との接触が
十分となる。
In addition, in the membrane separation means shown in FIG. 2, the liquid to be treated that flows in from the inflow branch pipe 24 does not come into sufficient contact with the disc membrane 40, and instead contacts the inner surface of the case 32 and the outer peripheral edge of the disc membrane 40. There is a disadvantage that it passes through the case 32 by bypassing the gap between the two. In order to eliminate this drawback, for example, as shown in FIG.
Install as a slope. In addition, the disk membrane 40 serving as the inlet 80 for the liquid to be treated stirs the liquid to be treated in the case 32, and the liquid to be treated that has flowed into the case easily flows along the membrane surface of the disk membrane 40. Therefore, there is sufficient contact between the liquid to be treated and the disc membrane.

前記の欠点を解消する他の構成としては、第4図に示す
ように、ケース32に内接して被処理液の流路形成部材
84を設ける。この部材84は、筒状体86の外側に弾
性体88を全周又は部分的に取付け、また、筒状体86
の内側には中心孔を備えた円板90を円板膜40の並列
ピッチと同じピンチで並列しである。この部材84を、
円板90と円板膜40とが交互に位置するように膜モジ
ュール36と組合せたのち、ケース32の一側の開放端
(第4図において右側)から、ケース32内に挿通する
。挿通時においては、前記筒状体86の外側に取付けた
弾性体88を圧縮させつつケース32の内面と密着させ
て、ストッパ92の位置まで押し込む。部材84と膜モ
ジユール膜分離手段20に対して、被処理液を流入用分
岐管24から供給すると、被処理液は円板膜40と円板
90との隙間を蛇行してケース32を進むことになり、
被処理液と円板膜40との接触が十分となる。
As shown in FIG. 4, another configuration for solving the above-mentioned drawbacks is to provide a flow path forming member 84 for the liquid to be treated, which is inscribed in the case 32. This member 84 has an elastic body 88 attached to the outside of the cylindrical body 86 all around or partially, and
Inside the disk membrane 40, disks 90 having a center hole are arranged in parallel with the same pinch as the parallel pitch of the disk membranes 40. This member 84
After the disks 90 and the disk membranes 40 are assembled with the membrane module 36 so as to be positioned alternately, they are inserted into the case 32 from one open end of the case 32 (the right side in FIG. 4). During insertion, the elastic body 88 attached to the outside of the cylindrical body 86 is compressed, brought into close contact with the inner surface of the case 32, and pushed to the stopper 92 position. When the liquid to be treated is supplied from the inflow branch pipe 24 to the member 84 and the membrane module membrane separation means 20, the liquid to be treated meander through the gap between the disc membrane 40 and the disc 90 and advance through the case 32. become,
The contact between the liquid to be treated and the disc membrane 40 becomes sufficient.

第5図に膜分離手段20の変形例を示す。本例において
は、ケース32の断面を1′者円状とし、このケース3
2内に、2本の膜モジュール36をそれぞれの円板膜4
0が交互に噛み合うように収納する。各膜モジュールを
同方向に回転させることによって、円板膜40が交差す
る領域9.1では被処理液の潰1字が促進し、円板膜4
0と被処理液が良好に接触する。
FIG. 5 shows a modification of the membrane separation means 20. In this example, the cross section of the case 32 is made into a 1' circular shape, and this case 3
2, two membrane modules 36 are attached to each disk membrane 4.
Store them so that the 0's interlock with each other alternately. By rotating each membrane module in the same direction, collapse of the liquid to be treated is promoted in the region 9.1 where the disc membranes 40 intersect, and the disc membranes 4
0 and the liquid to be treated come into good contact.

また、円板膜40の膜面に付着した固形f+は、この領
域94で容易に剥帷するので、膜面を常に清浄して維持
できる。このだめ、前記洗浄工程の頻度を少な(できる
Further, since the solid f+ attached to the membrane surface of the disc membrane 40 is easily peeled off in this region 94, the membrane surface can be kept clean at all times. To avoid this, the frequency of the cleaning process can be reduced.

本発明て係る膜分離モジュール36は、ケース運転によ
って、円板膜40の一部が損傷するなどして、膜分離機
能が著しく低下した場合には、ケース20から抜き出し
て補修又は交換を行う。
The membrane separation module 36 according to the present invention is removed from the case 20 and repaired or replaced when the membrane separation function is significantly degraded due to damage to a part of the disk membrane 40 due to case operation.

本発明に係る洗浄工程は前記箒1図に基づいて説明した
方法に限らない。例えば、第6図に示すように模モジュ
ール36からの透過液の排出用管路52に洗浄用管路9
6を接続し、洗浄工程では、この管路96に設けた切換
弁98を開とし、膜モジュール36内に洗浄液を流すよ
うにしてもよい。
The cleaning process according to the present invention is not limited to the method explained based on the broom 1 diagram. For example, as shown in FIG.
6 may be connected, and in the cleaning process, the switching valve 98 provided in this pipe line 96 may be opened to allow the cleaning liquid to flow into the membrane module 36.

洗浄液は管路96から管路52、中空回転軸38を経て
円板膜40の内側に供給され、円板膜40の膜面を内側
から外に向けて逆洗しながら、膜面を透過する。膜面を
透過してケース32内に至った洗浄液は図示しない管路
から抜き出し、必要に応じて循環使用する。本実施例に
よれば、洗浄液ば膜面を逆洗するように作用するので、
洗浄効果がより一層向上する。洗浄工程を前記第1図で
説明した洗浄と、上記の逆洗とを組み合せて行うよ第7
図に逆洗に適した円板膜40の構成を示す。
The cleaning liquid is supplied to the inside of the disk membrane 40 from the pipe line 96 through the pipe line 52 and the hollow rotating shaft 38, and permeates through the membrane surface while backwashing the membrane surface of the disk membrane 40 from the inside to the outside. . The cleaning liquid that has passed through the membrane surface and reached the inside of the case 32 is extracted from a pipe (not shown) and is circulated and used as necessary. According to this embodiment, since the cleaning liquid acts to backwash the membrane surface,
The cleaning effect is further improved. The cleaning process is performed by combining the cleaning described in FIG. 1 and the backwashing described above.
The figure shows the configuration of a disc membrane 40 suitable for backwashing.

第7図(イ)に示すように円板膜40は多孔質性の基板
100にUF膜または逆浸透膜などの膜材1.02を張
り付けたものであり、中空回転軸38に孔げた小孔10
4に基板lOOの芯が一致するように、スペーサ106
によって位置決めされる。スペーサ106を図示しない
押圧機構によって、円板膜40とスペーサ106がOリ
ング108を介して一体に締め付ゆられ液封する。膜材
102を透過した透過液は基板100の多孔部分を経て
、中空回転軸38の小孔104から、中空回転@38の
中空部に至り、前記のように装置外に排出される。
As shown in FIG. 7(A), the disc membrane 40 is made by pasting a membrane material 1.02 such as a UF membrane or a reverse osmosis membrane on a porous substrate 100, and has a small hole in the hollow rotating shaft 38. hole 10
Spacer 106 so that the center of substrate lOO coincides with 4.
Positioned by The disc membrane 40 and the spacer 106 are tightened together via the O-ring 108 by a pressing mechanism (not shown) to form a liquid seal. The permeated liquid that has passed through the membrane material 102 passes through the porous portion of the substrate 100, reaches the small hole 104 of the hollow rotating shaft 38, reaches the hollow part of the hollow rotating shaft 38, and is discharged outside the apparatus as described above.

膜材102は必要部分のみを接着剤を用いて基板100
に張り付ける。したがって、逆圧が作用したとき、すな
わち、逆洗時には膨張して基板100から離間し、破裂
しやすい。このため、第7図(ロ)に示すように、円板
膜4oの外周に多数の微少溝iioを設け、この溝11
0を用いて膜材も膜材102の膨張を最小限に抑えるこ
とができ、破裂に至らない。前記糸112の張設に替え
て、膜材102の表面を金網で養生するようにしてもよ
い。
The film material 102 is attached to the substrate 100 using adhesive only in the necessary parts.
Paste it on. Therefore, when reverse pressure is applied, that is, during backwashing, it expands, separates from the substrate 100, and is likely to burst. For this reason, as shown in FIG.
By using 0, the expansion of the membrane material 102 can be minimized and it will not burst. Instead of stretching the threads 112, the surface of the membrane material 102 may be covered with a wire mesh.

第8図に本発明の他の実施例を示す。本実施例において
は、膜5+離手段2oが6台設置され、これら6台のう
ち、3台ずつがブロック化され、2ブロツクの膜分離系
統が構成される。各ブロックの透過液の集合管路114
にはそれぞれ透過液の流量計116と濃度計118が設
げられており、各ブロックのうち、少くとも1台の膜分
離手段が被処理液の通液工程であるときは、透過液の流
量と濃度を常時または間欠的に検出している。透過液の
Rtが膜分離手段20の運転台数に応じて、所定の基準
値以下であれば、少くとも1台の膜分離手段の透過液量
が低下したことを示すので、その膜分離手段を適宜の方
法で見つげ、図示しない洗浄系続によって、膜分離手段
ごとに個別に洗浄が、膜面の破損などによって、膜分離
機能に障害が生じたと判断できる。したがって、その膜
分離手段を適宜の方法で見つげ、その運転を停止する。
FIG. 8 shows another embodiment of the present invention. In this embodiment, six membranes 5+separating means 2o are installed, and three of these six units are divided into blocks to form a two-block membrane separation system. Collection pipe 114 for permeate of each block
are each provided with a flow meter 116 and a concentration meter 118 for the permeate, and when at least one membrane separation means in each block is in the process of passing the liquid to be treated, the flow rate of the permeate is measured. and concentration are detected constantly or intermittently. If the Rt of the permeated liquid is below a predetermined reference value depending on the number of membrane separation means 20 in operation, it indicates that the amount of permeated liquid in at least one membrane separation means has decreased. It can be determined that a failure has occurred in the membrane separation function due to damage to the membrane surface, etc., if each membrane separation means is individually cleaned by using an appropriate method and connected to a cleaning system (not shown). Therefore, the membrane separation means is fixed by an appropriate method and its operation is stopped.

次いで、膜モジュールを点検、補修する。本実施例によ
れば、ブロック内の複数の膜分離手段20に共通の透過
液の流量と濃度を検出するセンサを備え、このセンサの
信号によって、ブロック毎に膜分離手段の運転性能を監
視できるので、最小限のセンサ数で多数の膜分離手段の
監視、運転工程の切替、点検、補修を比較的容易に実施
できる。
Next, the membrane module is inspected and repaired. According to this embodiment, a plurality of membrane separation means 20 in a block are equipped with a sensor that detects the flow rate and concentration of a common permeate, and the operational performance of the membrane separation means for each block can be monitored based on the signal from this sensor. Therefore, it is possible to monitor a large number of membrane separation means, switch operating processes, inspect, and repair relatively easily with a minimum number of sensors.

上記実施例において、センサに代えて、人為的なサンプ
リングを実施するようにしてもよい。
In the above embodiments, artificial sampling may be performed instead of the sensor.

本発明は有機性廃水の活性汚泥処理のみならず一般的な
液体の濃縮装置にも適用できる。また、膜分離手段は水
平に配置する必要はなく、傾斜または垂直に配置しても
よい。
The present invention is applicable not only to activated sludge treatment of organic wastewater but also to general liquid concentrators. Further, the membrane separation means need not be arranged horizontally, but may be arranged inclined or vertically.

〔発明の効果〕〔Effect of the invention〕 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す装置系キス、第2図は本
発明に係る膜分離手段の実施例を示す側断面図、第3図
〜第5図はそれぞれ膜分離手段の変形例を示す説明図、
第6図は膜分離手段を逆洗する場合の説明図、第7図は
本発明に保る円板膜の構造を示す図であり、(イ)は側
断面図、仲)は正面図、第8図は本発明の他の実施例を
示す装置系統図である。 IO・・・貯 槽、     12・・・流入管路16
・・・循環用管路、  18・・・ポンプ20・・・膜
分離手段、   22・・・(濃縮液の戻り)管路28
.30・・・切替弁、  32・・・ケース36・・・
漠モジュール、 38・・・中空回転軸40・・・円板
膜、    44・・・回転駆動源56・・・洗浄液貯
槽、  60・・・ポンプ第1図 第2図 第4図 第5図
Fig. 1 is a device system showing an embodiment of the present invention, Fig. 2 is a side sectional view showing an embodiment of the membrane separation means according to the invention, and Figs. 3 to 5 are modified examples of the membrane separation means. An explanatory diagram showing
FIG. 6 is an explanatory diagram when backwashing the membrane separation means, and FIG. 7 is a diagram showing the structure of the disc membrane maintained in the present invention, (a) is a side sectional view, middle) is a front view, FIG. 8 is an apparatus system diagram showing another embodiment of the present invention. IO...Storage tank, 12...Inflow pipe 16
...Circulation pipe line, 18...Pump 20...Membrane separation means, 22...(Concentrate return) pipe line 28
.. 30...Switching valve, 32...Case 36...
38... Hollow rotating shaft 40... Disc membrane, 44... Rotating drive source 56... Cleaning liquid storage tank, 60... Pump Fig. 1 Fig. 2 Fig. 4 Fig. 5

Claims (2)

【特許請求の範囲】[Claims] (1)被処理液の流入口を備えた貯槽と、この貯槽から
抜き出した被処理液を複数の膜分離手段に分配するとと
もに、膜分離手段で濃縮した被処理液を前記貯槽に返送
循環する濃縮循環系とからなる液体の濃縮装置において
、前記膜分離手段は被処理液の流入口および流出口を備
えた筒状のケース内に、中空回転軸に多数の円板膜を並
列に取付けた膜モジュールを収納し、円板膜からの透過
液を前記中空回転軸の中空部を経由して装置外へ排出す
る構造とされ、かつ複数の膜分離手段がそれぞれ被処理
液の通液工程および円板膜の洗浄工程を独立して切替え
可能とされたことを特徴とする液体の濃縮装置。
(1) A storage tank equipped with an inlet for the liquid to be treated, and the liquid to be treated extracted from this storage tank is distributed to a plurality of membrane separation means, and the liquid to be treated concentrated by the membrane separation means is returned and circulated to the storage tank. In a liquid concentrating device comprising a concentrating circulation system, the membrane separation means has a plurality of disk membranes mounted in parallel on a hollow rotating shaft within a cylindrical case equipped with an inlet and an outlet for the liquid to be treated. The structure is such that the membrane module is housed and the permeated liquid from the disc membrane is discharged to the outside of the apparatus through the hollow part of the hollow rotating shaft, and a plurality of membrane separation means are respectively used in the process of passing the liquid to be treated and A liquid concentrating device characterized by being able to independently switch the cleaning process of a disc membrane.
(2)前記被処理液は有機性の廃水であり、前記貯槽は
、曝気手段を備え、この貯槽内で増殖させた活性汚泥に
よつて、前記被処理液中の有機性物質を酸化分解処理す
るものであることを特徴とした特許請求の範囲第(1)
項に記載の液体の濃縮装置。
(2) The liquid to be treated is organic wastewater, and the storage tank is equipped with an aeration means, and the organic substances in the liquid to be treated are oxidized and decomposed by activated sludge grown in the storage tank. Claim No. (1) characterized in that
A device for concentrating liquids as described in Section.
JP61122748A 1986-05-28 1986-05-28 Liquid concentrator Expired - Fee Related JPH0698275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61122748A JPH0698275B2 (en) 1986-05-28 1986-05-28 Liquid concentrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61122748A JPH0698275B2 (en) 1986-05-28 1986-05-28 Liquid concentrator

Publications (2)

Publication Number Publication Date
JPS62279807A true JPS62279807A (en) 1987-12-04
JPH0698275B2 JPH0698275B2 (en) 1994-12-07

Family

ID=14843624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61122748A Expired - Fee Related JPH0698275B2 (en) 1986-05-28 1986-05-28 Liquid concentrator

Country Status (1)

Country Link
JP (1) JPH0698275B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02293092A (en) * 1989-05-02 1990-12-04 Kubota Corp Sewage treating device
JPH0370729U (en) * 1989-11-14 1991-07-16
FR2799391A1 (en) * 1999-10-07 2001-04-13 Degremont Biological filter station for treatment of waste water and sewage has membranes supported by angled disks on rotating horizontal shaft with rising gas bubble stream to scour the membranes
WO2001056937A1 (en) * 2000-01-31 2001-08-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Water treatment unit
WO2003029152A3 (en) * 2001-10-01 2003-09-12 Koehler August Papierfab Method and device for purifying wastewaters
WO2011110284A1 (en) * 2010-03-09 2011-09-15 Tu Kaiserslautern Device for treating suspensions rich in solids using process engineering
EP2612701A1 (en) * 2012-01-09 2013-07-10 Grundfos BioBooster A/S Rotating membrane filter disc apparatus
JP2015080755A (en) * 2013-10-22 2015-04-27 三菱化工機株式会社 Exhaust gas purification device for ship, and purification method of the same
CN109331661A (en) * 2014-12-22 2019-02-15 普罗设备股份有限公司 High speed cross-current Dynamic membrane filter
CN113428939A (en) * 2021-06-30 2021-09-24 张迎立 Rotary running RO/NF membrane module

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673506A (en) * 1979-11-16 1981-06-18 Hitachi Plant Eng & Constr Co Ltd Washing method for module pressure-tight pipe for membrane separation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673506A (en) * 1979-11-16 1981-06-18 Hitachi Plant Eng & Constr Co Ltd Washing method for module pressure-tight pipe for membrane separation

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02293092A (en) * 1989-05-02 1990-12-04 Kubota Corp Sewage treating device
JPH0370729U (en) * 1989-11-14 1991-07-16
FR2799391A1 (en) * 1999-10-07 2001-04-13 Degremont Biological filter station for treatment of waste water and sewage has membranes supported by angled disks on rotating horizontal shaft with rising gas bubble stream to scour the membranes
EP1702664A3 (en) * 2000-01-31 2007-09-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Water treatment unit
US7037429B2 (en) 2000-01-31 2006-05-02 Fraunhofer-Gesellschaft zur Förderung derangewandten Forschung e.V. Water treatment unit
WO2001056937A1 (en) * 2000-01-31 2001-08-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Water treatment unit
WO2003029152A3 (en) * 2001-10-01 2003-09-12 Koehler August Papierfab Method and device for purifying wastewaters
WO2011110284A1 (en) * 2010-03-09 2011-09-15 Tu Kaiserslautern Device for treating suspensions rich in solids using process engineering
EP2612701A1 (en) * 2012-01-09 2013-07-10 Grundfos BioBooster A/S Rotating membrane filter disc apparatus
JP2015080755A (en) * 2013-10-22 2015-04-27 三菱化工機株式会社 Exhaust gas purification device for ship, and purification method of the same
WO2015060332A1 (en) * 2013-10-22 2015-04-30 三菱化工機株式会社 Marine exhaust gas purification device, and method therefor
CN109331661A (en) * 2014-12-22 2019-02-15 普罗设备股份有限公司 High speed cross-current Dynamic membrane filter
US10927020B2 (en) 2014-12-22 2021-02-23 PRO-Equipment, Inc. High velocity cross flow dynamic membrane filter
CN113428939A (en) * 2021-06-30 2021-09-24 张迎立 Rotary running RO/NF membrane module

Also Published As

Publication number Publication date
JPH0698275B2 (en) 1994-12-07

Similar Documents

Publication Publication Date Title
EP1704911B1 (en) Method for cleaning a separation membrane in a membrane bioreactor system
US4255255A (en) Tubular membrane separation process and apparatus therefor
JPH09313902A (en) Chemical cleaning method for immersion type ceramic membrane separation device
JPS62279807A (en) Concentrator of liquid
EP0669159A1 (en) Back wash method for filtration modules using internally pressurized hollow fibers
JPS61274799A (en) Apparatus for treating waste water
KR20190138975A (en) Liquefied fertilizer purification apparatus using porous ceramic membrane
JP3575916B2 (en) Reverse osmosis membrane spiral element and treatment system using the same
JPH04267986A (en) Flow rate change corresponding type waste water treatment apparatus
JPH11244852A (en) Desalination device and back washing method of filter used for desalination device
JPS62221493A (en) Method for treating membrane bioreactor
JP2514930B2 (en) Membrane separation device with backwash ejector
KR0164580B1 (en) A water recycling system using membrane process and operating method thereof
JP2004130211A (en) Filtration unit, filter, and method for controlling the filter
Jacangelo et al. Membranes in water treatment
US20070210017A1 (en) Filter system for filtering water or wastewater and a method of operating the filter system
JP2002316189A (en) Biological treatment apparatus and autotrophic sulfur denitrification method
JPH03280821A (en) Purifier for fish culture water
CN221254090U (en) Industrial water treatment ultrafiltration equipment
JPH07144192A (en) Operating method of night soil treating device using filter membrane
JPH1080624A (en) Membrane filtration method
JPH1190190A (en) Filter and its washing method
JPH07256283A (en) Cross-flow type membrane separation water treatment apparatus
JPH0478426A (en) Membrane separating method and device for liquid
JP2582014B2 (en) Aerobic biological filter bed treatment method and apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees