JPS62278305A - Two-phase fluid oscillating element - Google Patents

Two-phase fluid oscillating element

Info

Publication number
JPS62278305A
JPS62278305A JP12150886A JP12150886A JPS62278305A JP S62278305 A JPS62278305 A JP S62278305A JP 12150886 A JP12150886 A JP 12150886A JP 12150886 A JP12150886 A JP 12150886A JP S62278305 A JPS62278305 A JP S62278305A
Authority
JP
Japan
Prior art keywords
jet
jet stream
flow path
stream
supply nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12150886A
Other languages
Japanese (ja)
Other versions
JPH06105084B2 (en
Inventor
Yutaka Takahashi
豊 高橋
Hideo Uematsu
英夫 植松
Ryoichi Koga
良一 古閑
Keijiro Kunimoto
国本 啓次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61121508A priority Critical patent/JPH06105084B2/en
Publication of JPS62278305A publication Critical patent/JPS62278305A/en
Publication of JPH06105084B2 publication Critical patent/JPH06105084B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fluid-Pressure Circuits (AREA)

Abstract

PURPOSE:To simplify construction of a flow path and to promote stabilized action or the like, by providing a jet stream injecting supply nozzle, inducing chamber having an opening communicating with the atmosphere and a side wall so that deflecting oscillation of a jet stream is performed with out providing a feedback flow path. CONSTITUTION:Inflow fluid to a supply flow path 6 is injected from a supply nozzle 7, and this jet stream Fil becomes a high speed flow in an inducing chamber 8, causing it to generate a pressure not more than the atmospheric pressure. As a result, air, which passes through a gas introducing port 9, is induced into the inducing chamber 8, and gas vortexes VL1, VR1 are formed in both sides of the jet stream Fil. Here the jet stream Fil, if its upper side gas vortex VL1 low decreases the pressure, is previously deflected to an upper side being jetted from a jet port as a stream FO1. Next, on part of a gas vortex VL2, formed by a jet stream Fi2, is allowed to flow out from the inducing chamber 8 as a bubble B, and its inflow to a part of low pressure vortex AL2 destructs a low pressure condition between the jet stream Fi2 and a side wall 11. As a result, the jet stream Fi2, which straight advances as a jet stream FO2, is jetted from the jet port.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は、洗浄水の噴射により、食器や人体を洗浄する
洗浄装置や散水装置の噴射ノズルに利用される流体発振
素子に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention Industrial Application Field The present invention relates to a fluid oscillation element used in a spray nozzle of a washing device or a water spray device that washes tableware or the human body by spraying washing water. It is related to.

従安の坊術 従来の発振素子を第6図に示す。この素子は供給流路1
5、供給ノズル16、前記供給ノズル16下流両側に噴
流付着壁17.18、供給ノズル16と噴流付着壁17
.18間には制御口19.20とを有すると共に、前記
各制御口19.20ば、噴流付着壁17.18に設けた
フィードバック口21.22とフィードバック流路23
.24を介して連通された構成となっている。
FIG. 6 shows a conventional oscillation element of Juan's Bojutsu. This element is the supply channel 1
5. Supply nozzle 16, jet adhesion walls 17 and 18 on both downstream sides of the supply nozzle 16, supply nozzle 16 and jet adhesion walls 17
.. Control ports 19 and 20 are provided between each of the control ports 19 and 18, and each of the control ports 19 and 20 has a feedback port 21 and a feedback flow path 23 provided in the jet adhesion wall 17 and 18.
.. The configuration is such that they are communicated via 24.

上記構成に於て供給流路15より流入した流体は供給ノ
ズ/L’16より噴出する。この噴流はコアンダ効果に
より一方の噴流付着壁に付着する。まず噴流付着壁17
に付着したと仮定する。付着した噴流は噴流付着壁17
に沿って出口25から噴出する。この時、噴流の1部は
フィードバック口21に入り、フィードバック流路23
を通り制御口19に戻る。制御口19に戻った流れは、
供給ノズ/v16からの主噴流を付着壁17から付着壁
18側に切り換える。以後、噴流は上記作動を繰返す。
In the above configuration, the fluid flowing in from the supply channel 15 is ejected from the supply nozzle/L'16. This jet adheres to one jet adhesion wall due to the Coanda effect. First, the jet adhesion wall 17
Assume that it is attached to The attached jet is attached to the jet adhesion wall 17
It spews out from the outlet 25 along. At this time, part of the jet enters the feedback port 21 and enters the feedback channel 23.
and returns to the control port 19. The flow that returned to the control port 19 is
The main jet flow from the supply nozzle/v16 is switched from the adhesion wall 17 to the adhesion wall 18 side. Thereafter, the jet repeats the above operation.

この結果、供給ノズ/L/16からの主噴流は付着壁1
7.18を交互に付着して噴出する発振噴流信号伝達流
路を設けるため、この流路が塞がれ動作不良を起したり
、また、フィードバック口、フィードバック流路条件に
より発振が太きく影響されるため、発振が安定する設計
許容値が非常に狭く、安定した素子製造が困難である等
の欠点を有上記問題点を解決するために、フィードバッ
ク流路を設けることなく、噴流噴射用供給ノズル、大気
へ連通ずる開口を有した誘引室、側壁とで構成し、噴射
流の偏向発振を行おうとするものである。
As a result, the main jet from the supply nozzle /L/16
Since the oscillating jet signal transmission flow path is provided in which 7.18 is attached and ejected alternately, this flow path may become blocked and malfunction may occur, and the oscillation may be affected by the feedback port and feedback flow path conditions. As a result, the design tolerance for stable oscillation is extremely narrow, making it difficult to manufacture stable devices. It consists of a nozzle, an induction chamber with an opening communicating with the atmosphere, and a side wall, and is intended to deflect and oscillate the jet stream.

作  用 素子の供給ノズルから噴射する噴流が誘引室を通過する
時に生ずる低圧により、大気から空気を誘引すると共に
、誘引室に流入した空気の作用により左右の誘引室間に
差圧を発生させ、噴射流の予備向を行わせ、更に付着壁
の噴流への壁効果によl偏向とを加え噴流を噴射口より
噴射させる。
The low pressure generated when the jet stream ejected from the supply nozzle of the working element passes through the induction chamber attracts air from the atmosphere, and the action of the air flowing into the induction chamber generates a pressure difference between the left and right induction chambers. The jet stream is pre-directed, and the jet stream is further deflected by the wall effect of the adhesion wall to cause the jet stream to be injected from the injection port.

この噴流偏向は誘引室へ誘引される空気により生ずる誘
引室左右のランダム的に変わる圧力差で交互に偏向され
、発振噴射が行われるものである。
This jet flow is alternately deflected by the randomly varying pressure difference between the left and right sides of the induction chamber caused by the air drawn into the induction chamber, and oscillating injection is performed.

実施例 以下本発明の二相流体発振素子の一実施例を第1図〜第
5図に基づいて説明する。
EXAMPLE Hereinafter, an example of the two-phase fluid oscillation device of the present invention will be described based on FIGS. 1 to 5.

第1図において、二相流体発振素子1は素子基盤2、上
板3、パツキン4の積層構造で、素子基盤2には供給流
路管5が取り付けである。
In FIG. 1, a two-phase fluid oscillation element 1 has a laminated structure of an element base 2, an upper plate 3, and a packing 4, and a supply flow path pipe 5 is attached to the element base 2.

第2図は素子基盤2に形成された流路パターンを示し、
6は供給流路、7は供給ノズル、8は供給ノズ/L/7
の下流に位置し外部に連通ずる気体導入口9を有し下流
端が絞り部10形状の誘引室、11.12は絞り部10
の下流両側に設けた側壁、13は前記側壁11.12の
下流開口端で形成された噴出口である。又、側壁11.
12は絞り部10に対しセットパック量14を有し配設
され、側壁と噴流間での低圧渦の発生を容易にしている
FIG. 2 shows a flow path pattern formed on the element substrate 2,
6 is a supply channel, 7 is a supply nozzle, 8 is a supply nozzle/L/7
11.12 is an induction chamber having a gas inlet 9 communicating with the outside and having a downstream end shaped like a constriction part 10;
The side walls 13 provided on both downstream sides of the side walls 11 and 12 are jet ports formed at the downstream opening ends of the side walls 11 and 12. Also, the side wall 11.
12 is disposed with a set pack amount 14 relative to the constriction portion 10 to facilitate generation of a low pressure vortex between the side wall and the jet stream.

第3図、第4図、第5図は素子の作l状態を示し、F、
は噴射流、Foは噴出流、VL、VRは気体導入口9よ
り誘引され誘引室8内に発生する気体筒、AL 、 A
Rは噴流の流体巻込み作用により噴流と付着壁11.1
2間に発生する低圧渦、Bは誘引室8から流出した気体
をしめす。
Figures 3, 4, and 5 show the manufacturing state of the element, F,
is a jet flow, Fo is a jet flow, VL and VR are gas cylinders induced from the gas inlet 9 and generated in the induction chamber 8, AL, A
R is due to the fluid entrainment action of the jet and the attached wall 11.1
A low-pressure vortex generated between 2 and B indicates gas flowing out from the induction chamber 8.

上記構成に基づく作動について説明する。The operation based on the above configuration will be explained.

供給流路6に流入した液体は供給ノズ/L/7から噴射
する。この噴射流は誘引室8で高速流となるため、誘引
室8は大気圧以下になる。即ち、大気に対し負圧となる
ため空気が気体導入口9を通り誘引室8内に誘引され噴
射流Fi1の両側に気体筒vL1、VL2を形成する。
The liquid that has flowed into the supply channel 6 is injected from the supply nozzle /L/7. Since this jet stream becomes a high-speed flow in the induction chamber 8, the pressure in the induction chamber 8 becomes lower than atmospheric pressure. That is, since the pressure becomes negative with respect to the atmosphere, air is induced into the induction chamber 8 through the gas inlet 9, forming gas cylinders vL1 and VL2 on both sides of the jet flow Fi1.

この気体筒vL1、VR1は流体の乱れの性質で圧力差
が生じる。仮に、上側の気体筒VLIが下側の気体筒V
R1より低くなった状態とすると、噴射流F11は上側
に予備向される。
A pressure difference occurs between the gas cylinders vL1 and VR1 due to the nature of fluid turbulence. If the upper gas cylinder VLI is the lower gas cylinder V
When it is lower than R1, the jet flow F11 is pre-directed upward.

予備向された噴射流Fi1は絞り部10と、噴射流F4
1と側壁11との壁効果により低圧渦AL1を発生、側
壁11に付着又は付着に近い状態となり上側により偏向
されて、噴出口13からF、、1となって噴出する(以
上第3図に示す状態となる)。次に、噴射流Fi2によ
って形成された気体筒VL2の1部が噴射流Fユ2と共
に誘引室8から気泡Bとなって流出、低圧渦Al1部に
流入し、噴射流Fi2と側壁11間の低圧状態を破壊す
る。その結果、噴射流Fi2は付着壁11から剥離し、
直進する噴出流F02となって、噴出口13から噴出す
る(以上第4図に示す状態となる)。次に、噴流付着剥
離時に生ずる慣性、噴流の不安定性により噴射流Fi3
は反対側の側壁12に付着し低圧渦AR3を発生、側壁
12に付着又は付着に近い状態となり下側により偏向さ
れて、噴出口13からF03  となって噴出する(以
上第5図に示す状態となる)。
The pre-directed jet flow Fi1 passes through the constriction section 10 and the jet flow F4
A low-pressure vortex AL1 is generated due to the wall effect between 1 and the side wall 11, and it adheres to or almost adheres to the side wall 11, is deflected by the upper side, and is ejected from the ejection port 13 as F, 1 (as shown in Fig. 3). ). Next, a part of the gas cylinder VL2 formed by the jet flow Fi2 flows out of the induction chamber 8 together with the jet flow F2 as bubbles B, flows into the low pressure vortex Al1 part, and flows between the jet flow Fi2 and the side wall 11. Destroy low pressure conditions. As a result, the jet flow Fi2 separates from the adhesion wall 11,
The jet stream F02 moves straight and is jetted out from the spout 13 (the state shown in FIG. 4 is thus reached). Next, due to the inertia and jet instability that occur during jet adhesion and separation, the jet flow Fi3
adheres to the opposite side wall 12 and generates a low-pressure vortex AR3, which adheres to or almost adheres to the side wall 12, is deflected by the lower side, and is ejected from the jet nozzle 13 as F03 (the above state shown in Fig. 5). ).

以後、上記側壁11側で説明した付着剥離現象が付着壁
12側で発生し、噴射流は側壁11.12間を交互に付
着した発振流となる。
Thereafter, the adhesion separation phenomenon described on the side wall 11 side occurs on the adhesion wall 12 side, and the jet flow becomes an oscillating flow that adheres alternately between the side walls 11 and 12.

発明の効果 (1)以上のように、フィードバック流路等の信号路を
有しない流路構成であるため、流路がシンプルとなる。
Effects of the Invention (1) As described above, since the flow path configuration does not have a signal path such as a feedback flow path, the flow path becomes simple.

そのため、信号路のつまりによるトラグルがなく、作動
が安定すると共に、素子製造が容易となる。
Therefore, there is no trouble caused by clogging of the signal path, the operation is stable, and the device manufacturing is facilitated.

■ 噴出流が誘引された空気の作用により、発振すると
共に、流れの断続化が促進され、粒子状に成長する。そ
の結果、噴流の衝突力が高まり洗浄効果が向上する。
■ Due to the action of the air induced by the jet flow, it oscillates, promotes the discontinuation of the flow, and grows into particles. As a result, the collision force of the jet stream increases and the cleaning effect improves.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す二相流体発振素子の斜
視図、第2図は同二相流体発振素子の流路パターン図、
第3図、第4図、第5図は同二相流体発振素子の作動を
示す作動状態図、第6図は従来の発振素子の流路パター
ン図である。 6・・・・・・供給流路、7・・・・・・供給ノズル、
8・・・・・・誘引室、9・・・・・・気体導入口、1
o・・・・・・絞り部、11.12・・・・・・側壁、
1a・・・・・・噴出口、14・・・・・・セットバッ
ク量。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名3・
−11反 4・−ハ0ツ午ン 9・−気体導入口 第2図 第3図 VF/ 第4図 ’/R2 第5図 第6図
FIG. 1 is a perspective view of a two-phase fluid oscillation device showing an embodiment of the present invention, FIG. 2 is a flow path pattern diagram of the same two-phase fluid oscillation device,
FIG. 3, FIG. 4, and FIG. 5 are operating state diagrams showing the operation of the two-phase fluid oscillation device, and FIG. 6 is a flow path pattern diagram of a conventional oscillation device. 6... Supply channel, 7... Supply nozzle,
8... Attraction chamber, 9... Gas inlet, 1
o...Aperture part, 11.12...Side wall,
1a... Jet outlet, 14... Setback amount. Name of agent: Patent attorney Toshio Nakao and 1 other person3.
-11 anti-4・-HA0tsu 9・-Gas inlet Fig. 2 Fig. 3 VF/ Fig. 4'/R2 Fig. 5 Fig. 6

Claims (2)

【特許請求の範囲】[Claims] (1)供給流路、供給ノズル、供給ノズル下流に位置し
外部に連通する気体導入口を有し下流端が絞り部形状の
誘引室、及び前記絞り部下流両側に下流開口端を噴出口
とする側壁とで構成され、前記供給流路より流入する液
体が制御室に流入する気体の作用により発振噴出する二
相流体発振素子。
(1) A supply channel, a supply nozzle, an induction chamber located downstream of the supply nozzle and having a gas inlet communicating with the outside, with a downstream end shaped like a constriction, and a downstream opening end on both sides downstream of the constriction as a spout. a two-phase fluid oscillation element, which is configured with a side wall that is configured to have a liquid flowing in from the supply flow path and ejects the liquid flowing into the control chamber in oscillation due to the action of the gas flowing into the control chamber.
(2)付着壁は、噴流と壁間で低圧領域又は低圧渦領域
の形成を促進する絞り部に対しセットバック量を有し配
設された特許請求の範囲第1項記載の二相流体発振素子
(2) Two-phase fluid oscillation according to claim 1, wherein the attached wall has a setback amount with respect to the constriction portion that promotes the formation of a low pressure region or a low pressure vortex region between the jet flow and the wall. element.
JP61121508A 1986-05-27 1986-05-27 Two-phase fluid oscillator Expired - Lifetime JPH06105084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61121508A JPH06105084B2 (en) 1986-05-27 1986-05-27 Two-phase fluid oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61121508A JPH06105084B2 (en) 1986-05-27 1986-05-27 Two-phase fluid oscillator

Publications (2)

Publication Number Publication Date
JPS62278305A true JPS62278305A (en) 1987-12-03
JPH06105084B2 JPH06105084B2 (en) 1994-12-21

Family

ID=14812930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61121508A Expired - Lifetime JPH06105084B2 (en) 1986-05-27 1986-05-27 Two-phase fluid oscillator

Country Status (1)

Country Link
JP (1) JPH06105084B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019043270A (en) * 2017-08-31 2019-03-22 株式会社デンソー On-board sensor cleaning device
US11679422B2 (en) 2017-08-15 2023-06-20 Denso Corporation On-board sensor cleaning device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3398758A (en) * 1965-09-30 1968-08-27 Mattel Inc Pure fluid acoustic amplifier having broad band frequency capabilities

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3398758A (en) * 1965-09-30 1968-08-27 Mattel Inc Pure fluid acoustic amplifier having broad band frequency capabilities

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11679422B2 (en) 2017-08-15 2023-06-20 Denso Corporation On-board sensor cleaning device
JP2019043270A (en) * 2017-08-31 2019-03-22 株式会社デンソー On-board sensor cleaning device

Also Published As

Publication number Publication date
JPH06105084B2 (en) 1994-12-21

Similar Documents

Publication Publication Date Title
JP6545784B2 (en) Improved three jet island fluid oscillator circuit, method and nozzle assembly
US7472848B2 (en) Cold-performance fluidic oscillator
JP3881518B2 (en) Fluid oscillator
US4508267A (en) Liquid oscillator device
US4562867A (en) Fluid oscillator
US5383597A (en) Apparatus and method for controlling the cone angle of an atomized spray from a low pressure fuel injector
EP1827703B1 (en) Improved cold-performance fluidic oscillator
CN1289270A (en) Nozzles with integrated or built-in-fillers and method
EP2931435B1 (en) Fluidic nozzle and oscillator circuit
JPS62278305A (en) Two-phase fluid oscillating element
US7293722B1 (en) Method and apparatus for generation of low impact sprays
JPS62278306A (en) Two-phase fluid oscillating element
JP2017064394A (en) Water discharge device
JPH0535281B2 (en)
KR20220083787A (en) Fluid vibrator for nozzle assembly for improved low temperature performance
EP0044331B1 (en) Liquid oscillator device
JPS63172006A (en) Fluid oscillation element
JPS63152703A (en) Fluid oscillating element
JPH0347905B2 (en)
JPH0535282B2 (en)
JPS63158305A (en) Fluid oscillation element
JPS6131709A (en) Two-phase fluid oscillating element
JPH0720563B2 (en) Fluid oscillation element nozzle
JPH0463251B2 (en)
WO2017057327A1 (en) Water discharging device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term