JPS62276884A - Thin film solar cell element - Google Patents

Thin film solar cell element

Info

Publication number
JPS62276884A
JPS62276884A JP61119604A JP11960486A JPS62276884A JP S62276884 A JPS62276884 A JP S62276884A JP 61119604 A JP61119604 A JP 61119604A JP 11960486 A JP11960486 A JP 11960486A JP S62276884 A JPS62276884 A JP S62276884A
Authority
JP
Japan
Prior art keywords
type
thin film
solar cell
cell element
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61119604A
Other languages
Japanese (ja)
Inventor
Katsuhiko Nomoto
克彦 野元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP61119604A priority Critical patent/JPS62276884A/en
Publication of JPS62276884A publication Critical patent/JPS62276884A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

PURPOSE:To enhance electrical characteristics of solar cell element by using silicon carbide hydride (fluorination) thin film, in which amorphous and crystallite phases are mixed as a p-type semiconductor thin film of an optical incidence side. CONSTITUTION:Hydride (fluorination) p-type SiC (p-type muc-SiC: H (:F)), in which crystallite and amorphous phases are mixed at least as window layers of pin-types solar cells is used. Accordingly, conductivity can be improved by maintaining a wideband gap to inhibit a power loss due to a series of resistance components in a solar cell element, thereby utilizing effectively incident lights at i layer 3 where a further active layer is obtained. The use of p-type SiC enables a thin film solar cell element to have the high collecting efficiency of lights.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〈産業上の利用分野〉 本発明は、アモルファスシリコンを母体とする太陽電池
において更なる高性能化を図った薄膜太陽電池素子に関
する。
Detailed Description of the Invention 3. Detailed Description of the Invention <Industrial Application Field> The present invention relates to a thin film solar cell element with further improved performance in a solar cell based on amorphous silicon.

〈従来の技術〉 近年、低コスト太陽電池としてアモルファスノリコンを
母体とした薄膜太陽電池が急速に実用化され、また、実
験室レベルでは光電変換効率で10%を越えるものが報
告されるに至っている。このような高性能なアモルファ
ス太陽電池は、多くの乙のがp型アモルファスSiCを
光の入射側としfこpin型あるいは(pin)  (
X=2. 3−)型のものであり、又、素子の信頼性と
いう観点からもp型層を光の入射側とした方が有利であ
ると言われている。
<Conventional technology> In recent years, thin-film solar cells using amorphous Noricon as a matrix have been rapidly put into practical use as low-cost solar cells, and photoelectric conversion efficiencies exceeding 10% have been reported at the laboratory level. There is. Many of these high-performance amorphous solar cells use p-type amorphous SiC as the light incident side and are of the pin type or (pin) type.
X=2. 3-) type, and it is said that it is advantageous to have the p-type layer on the light incident side from the viewpoint of device reliability.

しかしながら、現在のアモルファスシリコンを母体とし
た薄膜太陽電を也の光電変換効率は、上述した如く実験
室レベルでlO〜12%程度のらのてあり、結晶ノリコ
ン太陽電池の変換効率20%前後には到底及ばない段階
であり、より一層の高性能化か必要だと考えられる。
However, as mentioned above, the photoelectric conversion efficiency of thin-film solar cells based on amorphous silicon is around 12% at the laboratory level, and the conversion efficiency of crystalline solar cells is around 20%. This is far beyond the level of current performance, and further improvements in performance are considered necessary.

〈発明が解決しようとする問題点〉 pin型を基本としLニアモルファス太陽電池は、すで
に述べたように、従来p型窓層として水素化アモルファ
スノリコン・カーバイド(以下a−SiC0Hと略す)
が用いられて来た。このp型a−SiC:Hは以下に述
べる長所と欠点を有していると考えられる。確かにp型
a−SiC:)(は、 p型水素化アモルファスンリコ
ン(a−9i:H)に比べると光学的バンドギャップ(
E0p’ )は太きく(p型a  SiC:Hの場合E
0pt<18eV、p型a−SiC:HでE0p’> 
1.8eV)、光電変換活性層でである真性(1型)層
での光の利用効率を高めることができ、又、広いバンド
ギャップによる光生成キャリア(電子)の逆拡散を抑え
る効果も期待できる。第4図は、光の有効利用という観
点から、このEoptの差による薄膜太陽電池(セル)
の光収集効率を各光の波長に対してシミュレートした計
算結果である。図よりEoptが1.8eV から2.
0eVまで広がることによって500nm以下の短波長
域での収集効率が改善される様子がわかる。更にp層E
optが大きくなった場合の計算結果ら第4図に示して
おいたが、収集効率は一層改善されろ傾向を示している
<Problems to be Solved by the Invention> As already mentioned, L near-morphous solar cells based on the pin type conventionally use hydrogenated amorphous silicon carbide (hereinafter abbreviated as a-SiC0H) as the p-type window layer.
has been used. This p-type a-SiC:H is considered to have the following advantages and disadvantages. It is true that p-type a-SiC:) (has a smaller optical bandgap (
E0p') is thick (E for p-type a SiC:H
0pt<18eV, p-type a-SiC:H with E0p'>
1.8 eV), it can increase the efficiency of light utilization in the intrinsic (type 1) layer, which is the photoelectric conversion active layer, and is also expected to have the effect of suppressing back diffusion of photogenerated carriers (electrons) due to the wide band gap. can. Figure 4 shows the thin film solar cell (cell) based on this difference in Eopt from the perspective of effective use of light.
These are the calculation results of simulating the light collection efficiency for each wavelength of light. From the figure, Eopt ranges from 1.8eV to 2.
It can be seen that the collection efficiency in the short wavelength region of 500 nm or less is improved by expanding the range to 0 eV. Furthermore, p layer E
The calculation results when opt becomes larger are shown in FIG. 4, and the collection efficiency tends to be further improved.

しかしながら、他方では、以下に示すような問題があっ
た。第5図は、上記のような様々なp o p Eを持
つp層を実際のアモルファス太陽電池の窓層として用い
た場合のアモルファス太陽電池(100mW/am2)
のセル特性結果である。開放電圧V。Cはp型a−Si
C・Hのワイドバンドギャップによる(見かけの)拡散
電位が増大することによってE Optが大きくなるに
つれて向上している。短絡11流Jscも第4図の計算
結果から予想されるρ型a −3iC:H吸収ロスの低
減等によって単調な増加傾向を示している。しかし、H
Vカーブの曲線因子FFがEo p t〜1.9eV程
度から減少し始めるために、上記Jsc、”ocの増加
にも拘わらず、光電変換効率y7(−J  xV  X
FF)はc o p tsc     oc     
      g〜2.OeVて極大となってしまう。
However, on the other hand, there were problems as shown below. Figure 5 shows an amorphous solar cell (100 mW/am2) when a p layer with various p op E as described above is used as a window layer of an actual amorphous solar cell.
These are the cell characteristics results. Open circuit voltage V. C is p-type a-Si
The E Opt is improved as the E Opt becomes larger due to an increase in the (apparent) diffusion potential due to the wide bandgap of C.H. The short-circuit 11 flow Jsc also shows a monotonous increasing trend due to the reduction in the ρ type a-3iC:H absorption loss, etc., which is expected from the calculation results shown in FIG. However, H
Since the fill factor FF of the V curve starts to decrease from around Eo p t~1.9eV, the photoelectric conversion efficiency y7(-J xV
FF) is co p tsc oc
g~2. OeV becomes maximum.

本発明者等は、上記のような曲線因子FFの低下の主な
原因が、p型a−SiC:I(の導電率がE0pt>2
.OeVで急激に低下し、lXl0−’(Ωcm)−’
以下となりシリーズ抵抗によるロスが現れることが主な
原因であることを見出だした。表はp層(膜厚〜100
人)の導電率と太陽電池素子内におけるp層のシリーズ
抵抗によるパワーロスを見積らったものである。10’
(Ωcm)”−’の導電率て〜1%のロスが生じ、10
%の光電変換効率を有するセルでさえ、実に1割程度の
ロスが出て来る計算になる。
The present inventors believe that the main cause of the decrease in the fill factor FF as described above is that the electrical conductivity of p-type a-SiC:I (E0pt>2
.. It decreases rapidly at OeV, lXl0-'(Ωcm)-'
It was found that the main cause was the appearance of loss due to series resistance as shown below. The table shows the p layer (thickness ~100
The power loss due to the electrical conductivity of the human body and the series resistance of the p-layer in the solar cell element is estimated. 10'
(Ωcm)"-' conductivity, a loss of ~1% occurs, and 10
It is calculated that even a cell with a photoelectric conversion efficiency of 10% has a loss of about 10%.

表 本発明の目的は、上記の如き問題に鑑み、p型2−Si
C:Hの光学的特性が良好であることを最大限に生かす
べくその電気的特性の向上を図り更なる高性能薄膜太陽
電池を提供することにある。
Table In view of the above-mentioned problems, an object of the present invention is to
The object of the present invention is to improve the electrical properties of C:H in order to make the most of its good optical properties, thereby providing a thin film solar cell with even higher performance.

く問題点を解決するための手段〉 本発明に係る薄膜太陽電池素子は、n型、i(真性)型
、p型の水素化(フッ素化)アモルファスノリコン(a
−SiC・H(:F))を母体とした半導体薄膜を積層
したpin型あるいはpinpin−((pin) 。
Means for Solving the Problems> The thin film solar cell element according to the present invention is made of n-type, i (intrinsic) type, and p-type hydrogenated (fluorinated) amorphous silicone (a
A pin type or pinpin-((pin)) is a stack of semiconductor thin films based on -SiC.H(:F)).

X=2.3・・)型薄膜太陽電池において、少なくとも
光の入射側のp型半導体薄膜としてアモルファス川と微
結品相の混在する水素化(フッ素化)ノリコン・カーバ
イド(p型μc −S iC:H(:F))薄膜を用い
たことを特徴とする。
In X=2.3...) type thin film solar cells, the p-type semiconductor thin film on the light incident side is made of hydrogenated (fluorinated) noricon carbide (p-type μc-S) containing a mixture of amorphous and microcrystalline phases. It is characterized by using an iC:H(:F)) thin film.

く作 用〉 光の入射側のp型μc −S iC:H(:F )薄膜
において、光学的バンドギャップは低下仕ずに導電率が
向上するので、太陽電池素子内のシリーズ抵抗が減少し
、パワーロスが減少する。さらに、拡散電位ら大きくな
る。その結果、光電変換率か増加ずろ。
Effect> In the p-type μc-SiC:H(:F) thin film on the light incident side, the conductivity improves without decreasing the optical bandgap, so the series resistance within the solar cell element decreases. , power loss is reduced. Furthermore, the diffusion potential also increases. As a result, the photoelectric conversion rate increases.

〈実施例〉 本発明の実施例として、p型半導体薄膜として微結晶相
とアモルファス相の混在する水素化(フッ素化)SiC
(p型μc−SiC:H(:F))をアモルファス太陽
電池の窓層に応用することを揚げ、特にTCO/pin
/基板型太陽電池素子の場合についてその効果を説明す
る。
<Example> As an example of the present invention, hydrogenated (fluorinated) SiC containing a mixture of microcrystalline phase and amorphous phase was used as a p-type semiconductor thin film.
We aim to apply (p-type μc-SiC:H(:F)) to the window layer of amorphous solar cells, especially TCO/pin.
/The effect will be explained in the case of a substrate type solar cell element.

このような太陽電池素子のセル構造を第1図に示す。基
板1として例えばステンレス等を用い、その上にグロー
放電法あるいは光CVD法等によりn型水素化アモルフ
ァスシリコンあるいはn型の微結晶相とアモルファス相
の混在する水素化(フッ素化)ノリコン層2を20〜l
oonmの範囲で堆積する。次に、光電変換活性層とし
ての真性(1)型水素化アモルファスノリコン(a−S
i:H)層3を400〜700nmの範囲て積層する。
The cell structure of such a solar cell element is shown in FIG. For example, stainless steel or the like is used as the substrate 1, and a layer 2 of n-type hydrogenated amorphous silicon or hydrogenated (fluorinated) silicon containing a mixture of n-type microcrystalline and amorphous phases is formed thereon by a glow discharge method or a photo-CVD method. 20~l
It is deposited in the range of oom. Next, an intrinsic (1) type hydrogenated amorphous silicone (a-S
i:H) Layer 3 is laminated to a thickness of 400 to 700 nm.

さらに微結晶相とアモルファス相の混在する水素化(フ
ッ素化)p型5ic(p型μc−SiC:H(:F))
層4を3〜20nmの範囲で積層し、最後にEB法ある
いはスパッタ法等により透明導電膜(TC○)5と、集
電極としてAQ層6.6を順次形成することにより上記
のTCO/pin/基板型薄膜太陽電池を作成すること
ができる。
Furthermore, hydrogenated (fluorinated) p-type 5ic (p-type μc-SiC:H(:F)) with a mixture of microcrystalline phase and amorphous phase
The above TCO/pin is obtained by laminating layers 4 in a range of 3 to 20 nm, and finally forming a transparent conductive film (TC○) 5 and an AQ layer 6.6 as a collector electrode in sequence by EB method or sputtering method. /A substrate type thin film solar cell can be created.

アモルファスシリコンの微結晶化は特に不純物ドープ膜
(p型、n型)において容易に得られ、光学的バンドギ
ャップの低下を招かずに導電率の飛躍的向上(1xlO
−’(Ωcm)−’ ぐらいまで向上)が可能である。
Microcrystallization of amorphous silicon can be easily obtained especially in impurity-doped films (p-type, n-type), and can dramatically improve conductivity (1xlO
-'(Ωcm)-') is possible.

本発明者らはこの方法をp型アモルファスノリコン・カ
ーバイドに応用したものであり、特に水素化(フッ素化
)p型SiCの光学的ワイドバンドギャップをより一層
有効に利用することが可能となる。従って、pin型太
陽電池の少なくとも窓層として微結晶相とアモルファス
相の混在する水素化(フッ素化)p型5iC(p型μc
−8iC:H(:F乃を用いることにより、(1)  
ワイドバンドギャップを維持しつつ導電率の向上が可能
であり、太陽電池素子内のノリーズ抵抗成分によるパワ
ーロスを抑えることができ、入射光をより一層活性層で
ある 1層で有効に利用−できる。
The present inventors have applied this method to p-type amorphous silicon carbide, which makes it possible to utilize the wide optical bandgap of hydrogenated (fluorinated) p-type SiC even more effectively. . Therefore, as at least the window layer of a pin solar cell, hydrogenated (fluorinated) p-type 5iC (p-type μc
By using -8iC:H(:Fno, (1)
It is possible to improve conductivity while maintaining a wide bandgap, suppress power loss due to the Norise resistance component within the solar cell element, and make more effective use of incident light in the single active layer.

(2)又、微結晶化することによりp型層のフェルミレ
ベルを一層価電子帯側に近ずけることになる(p型a−
3iCに比べ0.2〜0.5 eV程度近付けろことが
可能)。このため、従来のちのより02〜0.5eV程
度大きな拡散電位が得られ、1型光型活性層内により大
きな電界を組み込むことが可能であり、この効果により
ざらにJso、vo。。
(2) Furthermore, microcrystalization brings the Fermi level of the p-type layer closer to the valence band side (p-type a-
It is possible to bring it closer to 0.2 to 0.5 eV compared to 3iC). Therefore, it is possible to obtain a diffusion potential that is about 02 to 0.5 eV higher than that of the conventional one, and it is possible to incorporate a larger electric field into the type 1 photoactive layer, and this effect roughly increases Jso, vo. .

r’Fの向上が期待できる。An improvement in r'F can be expected.

この様子をバンドプロファイルとして第2図(a)(b
)に示した。ここに、第2図(a)は、従来のp型a−
3iC:Hの場合を示し、第2図(b)は、本実施例の
p型μc−SiC:H(・F)の場合を示す。
This situation is shown as a band profile in Figure 2 (a) (b).
)It was shown to. Here, FIG. 2(a) shows the conventional p-type a-
3iC:H, and FIG. 2(b) shows the case of p-type μc-SiC:H(·F) of this example.

○と・は、それぞれ、光生成キャリアを示し、一点R1
mはフェルミレベルを示す。本実施例の拡散電位1ビ 
212′は、従来例の拡散電位11゜12より大きい。
○ and ・respectively indicate photogenerated carriers, and one point R1
m indicates the Fermi level. Diffusion potential 1 bit of this example
212' is larger than the diffusion potential of 11°12 in the conventional example.

(3)更に、一般に微結晶化により短波長側400nm
付近での吸収係数は従来に比べて小さくなる( l X
 I O−5(0−5(’程度まては)ために、短波長
側400 nm付近でのp層による吸収ロスは更に低、
威することが予想される。第3図はこの【00nm前後
での吸収係数の違いによる太陽電池の収集効率(分光感
度特性)の差をシミュレートした計算結果である。本実
施例のp型μc−3iC:H(:F)(E0pt〜2.
0ev)の収集効率(b)は、従来例のp型a−SiC
:H(E0p’ 〜2.1eV)の収集効率(a)に比
べて低波長側で大きくなっている。
(3) Furthermore, generally the short wavelength side is 400 nm due to microcrystalization.
The absorption coefficient in the vicinity becomes smaller than before ( l
Because I O-5 (0-5 (to a degree), the absorption loss due to the p layer near the short wavelength side 400 nm is even lower.
expected to be intimidating. FIG. 3 shows calculation results simulating differences in collection efficiency (spectral sensitivity characteristics) of solar cells due to differences in absorption coefficients around 00 nm. In this example, p-type μc-3iC:H(:F)(E0pt~2.
0ev) collection efficiency (b) is the conventional p-type a-SiC
:H (E0p' ~ 2.1 eV) Collection efficiency (a) is larger on the lower wavelength side.

以上に説明した例では、pin型薄膜太陽電池について
説明したか、(pin)型薄膜太陽電池(x= 2 。
In the example explained above, a pin type thin film solar cell was explained, or a (pin) type thin film solar cell (x=2).

3、 ・)についてら、光の入射側のp型半導体として
μc−SiC:H(・F)を用いても同様の効果か得ら
れる。
Regarding 3.), similar effects can be obtained by using μc-SiC:H(·F) as the p-type semiconductor on the light incident side.

〈発明の効果〉 以上詳述した如く、 pin型を基本とじ1こアモルフ
ァス太陽?ri池の窓層として微結晶相とアモルファス
相の混在する水素化(フッ素化)p型5iC(p型μc
−3iC:H(:F))を用いることにより収集効率の
高い薄膜太陽TL池素子が得られることが明らかになっ
た。
<Effects of the invention> As detailed above, the pin type can be basically closed and the amorphous sun? Hydrogenated (fluorinated) p-type 5iC (p-type μc
It has been revealed that a thin film solar TL cell element with high collection efficiency can be obtained by using -3iC:H(:F)).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、薄膜太陽電池素子の図式的な断面図である。 第2図(a) 、 (b)は、それぞれ、従来のp型層
−SiC:H膜と本実施例のp型μc−SiC:H(:
F)膜のバンドプロファイルの模式図である。 第3図は、太陽N、池の収集効率のグラフである。 第4図は、太陽電池の収集効率を光学的バンドギャップ
E Optについて示すグラフである。 第5図は、従来のp型層−3iC:Hの太陽電池特性(
Jsc、■。。、FF)を光学的バンドギャップEol
:Hに対して示すグラフである。 I・・基板、2・・・n型層、3・・・i型層、4・・
・p型層、5 ・透明導電膜、   6,6・・集電極
。 特許出願人     ンヤープ株式会社代  理  人
 弁理士 前出 葆ほか2名第4図 億畏+nm1 1.8sv 第5図 p4Eg   (eVl
FIG. 1 is a schematic cross-sectional view of a thin film solar cell element. FIGS. 2(a) and 2(b) show the conventional p-type layer-SiC:H film and the p-type μc-SiC:H film of this example, respectively.
F) Schematic diagram of the band profile of the membrane. FIG. 3 is a graph of solar N and pond collection efficiency. FIG. 4 is a graph showing the collection efficiency of a solar cell in terms of optical bandgap E Opt. Figure 5 shows the solar cell characteristics of the conventional p-type layer-3iC:H (
Jsc, ■. . , FF) as the optical bandgap Eol
: It is a graph shown for H. I...Substrate, 2...N-type layer, 3...I-type layer, 4...
・P-type layer, 5 ・Transparent conductive film, 6, 6...Collector electrode. Patent Applicant: Nyap Co., Ltd. Agent: Patent Attorney: Maeda Ao et al.

Claims (2)

【特許請求の範囲】[Claims] (1)n型、i(真性)型、p型の水素化(フッ素化)
アモルファスシリコン(a−Si:H(:F))を母体
とした半導体薄膜を積層したpin型あるいはpinp
in・・・((pin)_x、x=2、3・・・)型薄
膜太陽電池において、少なくとも光の入射側のp型半導
体薄膜としてアモルファス相と微結晶相の混在する水素
化(フッ素化)シリコン・カーバイド(p型μc−Si
C:H(:F))薄膜を用いたことを特徴とする薄膜太
陽電池素子。
(1) Hydrogenation (fluorination) of n-type, i (intrinsic) type, and p-type
PIN type or PINP, which is a stack of semiconductor thin films based on amorphous silicon (a-Si:H(:F))
In... ((pin)_x, x = 2, 3...) type thin film solar cells, at least the p-type semiconductor thin film on the light incident side is hydrogenated (fluorinated) in which an amorphous phase and a microcrystalline phase coexist. ) silicon carbide (p-type μc-Si
A thin film solar cell element characterized by using a C:H(:F)) thin film.
(2)上記p型半導体薄膜として室温での導電率が10
^−^3(Ωcm)^−^1以上、活性化エネルギーが
0.1eV以下、光学的バンドギャップが2.0eV以
上の特性を有するアモルファス相と微結晶相の混在する
p型μc−SiC:H(:F)薄膜を用いたことを特性
とする特許請求の範囲第1項記載の薄膜太陽電池素子。
(2) The conductivity of the p-type semiconductor thin film at room temperature is 10
p-type μc-SiC with a mixture of amorphous phase and microcrystalline phase having characteristics of ^-^3 (Ωcm)^-^1 or more, activation energy of 0.1 eV or less, and optical band gap of 2.0 eV or more: The thin film solar cell element according to claim 1, characterized in that a H(:F) thin film is used.
JP61119604A 1986-05-24 1986-05-24 Thin film solar cell element Pending JPS62276884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61119604A JPS62276884A (en) 1986-05-24 1986-05-24 Thin film solar cell element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61119604A JPS62276884A (en) 1986-05-24 1986-05-24 Thin film solar cell element

Publications (1)

Publication Number Publication Date
JPS62276884A true JPS62276884A (en) 1987-12-01

Family

ID=14765507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61119604A Pending JPS62276884A (en) 1986-05-24 1986-05-24 Thin film solar cell element

Country Status (1)

Country Link
JP (1) JPS62276884A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02164079A (en) * 1988-12-19 1990-06-25 Hitachi Ltd Amorphous silicon solar cell
JPH02164078A (en) * 1988-12-19 1990-06-25 Hitachi Ltd Amorphous solar cell
JPH02164077A (en) * 1988-12-19 1990-06-25 Hitachi Ltd Amorphous silicon solar cell
JP2011029625A (en) * 2009-07-03 2011-02-10 Semiconductor Energy Lab Co Ltd Photoelectric conversion device, and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4109271A (en) * 1977-05-27 1978-08-22 Rca Corporation Amorphous silicon-amorphous silicon carbide photovoltaic device
JPS57204178A (en) * 1981-06-10 1982-12-14 Matsushita Electric Ind Co Ltd Optoelectric transducer
JPS6091626A (en) * 1983-09-26 1985-05-23 エクソン リサーチ アンド エンジニアリング カンパニー Method of producing amorphous silicon pin semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4109271A (en) * 1977-05-27 1978-08-22 Rca Corporation Amorphous silicon-amorphous silicon carbide photovoltaic device
JPS57204178A (en) * 1981-06-10 1982-12-14 Matsushita Electric Ind Co Ltd Optoelectric transducer
JPS6091626A (en) * 1983-09-26 1985-05-23 エクソン リサーチ アンド エンジニアリング カンパニー Method of producing amorphous silicon pin semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02164079A (en) * 1988-12-19 1990-06-25 Hitachi Ltd Amorphous silicon solar cell
JPH02164078A (en) * 1988-12-19 1990-06-25 Hitachi Ltd Amorphous solar cell
JPH02164077A (en) * 1988-12-19 1990-06-25 Hitachi Ltd Amorphous silicon solar cell
JPH0583199B2 (en) * 1988-12-19 1993-11-25 Hitachi Ltd
JP2011029625A (en) * 2009-07-03 2011-02-10 Semiconductor Energy Lab Co Ltd Photoelectric conversion device, and method of manufacturing the same
US9496428B2 (en) 2009-07-03 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
Yang et al. Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies
US4272641A (en) Tandem junction amorphous silicon solar cells
JP4162447B2 (en) Photovoltaic element and photovoltaic device
Anderson et al. An 8% efficient layered Schottky‐barrier solar cell
BRPI0716716A2 (en) frontal contact with intermediate layer (s) adjacent to it for use in photovoltaic device and method of doing the same
TW201917904A (en) Solar cell
JP2001267610A (en) Solar battery
Yang et al. Progress in triple-junction amorphous silicon-based alloy solar cells and modules using hydrogen dilution
Green et al. 25-percent efficient low-resistivity silicon concentrator solar cells
JPS62276884A (en) Thin film solar cell element
CN209981254U (en) Crystalline silicon double-sided solar cell structure
JPS6333308B2 (en)
JP2680579B2 (en) Photovoltaic device
JPH0636429B2 (en) Heterojunction photoelectric device and heterojunction photoelectric device
JP2003051604A (en) Photovoltaic element
JPS61135167A (en) Thin-film solar cell
JPH05275725A (en) Photovoltaic device and its manufacture
JP3245962B2 (en) Manufacturing method of thin film solar cell
CN217387168U (en) Back contact type solar cell
JP4253966B2 (en) Amorphous thin film solar cell
JP2744680B2 (en) Manufacturing method of thin film solar cell
CN216084908U (en) CdSe/N type silicon laminated cell
JPH09181343A (en) Photoelectric conversion device
JP2004311970A (en) Stacked photovoltaic element
JPH03263878A (en) Photovoltaic device