JPS6227555B2 - - Google Patents

Info

Publication number
JPS6227555B2
JPS6227555B2 JP57186407A JP18640782A JPS6227555B2 JP S6227555 B2 JPS6227555 B2 JP S6227555B2 JP 57186407 A JP57186407 A JP 57186407A JP 18640782 A JP18640782 A JP 18640782A JP S6227555 B2 JPS6227555 B2 JP S6227555B2
Authority
JP
Japan
Prior art keywords
resin
thin film
glass
printing
glass substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57186407A
Other languages
Japanese (ja)
Other versions
JPS5975680A (en
Inventor
Masaharu Oono
Takashi Hirao
Koshiro Mori
Shinichiro Ishihara
Masatoshi Kitagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57186407A priority Critical patent/JPS5975680A/en
Publication of JPS5975680A publication Critical patent/JPS5975680A/en
Publication of JPS6227555B2 publication Critical patent/JPS6227555B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アモルフアスシリコン太陽電池に利
用される、ガラスを基板とする薄膜素子の量産方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for mass producing thin film elements using glass as a substrate, which are used in amorphous silicon solar cells.

従来例の構成とその問題点 従来例は第1図に示す様にガラス基板1の上に
パツシベーシヨン樹脂5が各素子ごとに分離され
て塗布されている。7,8は電気端子である。素
子中央部のAA断面を第2図に示す。ガラス基板
上に形成した第一の電極2の上にアモルフアスシ
リコン、カルコゲナイド化合物半導体等の薄膜3
を堆積しその上に第2の電極4に形成し更にその
上にエポキシ樹脂等のパツシベーシヨン樹脂5を
塗布してある。パツシベーシヨン樹脂5は主に電
極2,4が薄膜3の防湿を機械的保護の役割を果
たし、太陽電池や光起電力素子の場合は電極4と
樹脂5が共に透明であるかあるいは電極2が透明
電極である必要がある。電極2,4は各々端子
7,8は最終的に持続されている。パツシベーシ
ヨン樹脂5は一般にスクリーン印刷で塗布し加熱
して硬化乾燥させる。塗布された樹脂のパターン
を目印にして樹脂が分離されたガラス面6,6′
等にダイヤモンドやタングステンカーバイド等の
刃先をもつカツテイングマシンで縦横にキズをつ
けた後キズをつけた面を外側にして折り曲げる様
に力を加えて割り、第1図の場合12個の素子が分
離できる。
Structure of the Conventional Example and its Problems In the conventional example, as shown in FIG. 1, a passivation resin 5 is applied on a glass substrate 1 separately for each element. 7 and 8 are electrical terminals. Figure 2 shows the AA cross section of the central part of the device. A thin film 3 of amorphous silicon, chalcogenide compound semiconductor, etc. is formed on a first electrode 2 formed on a glass substrate.
A second electrode 4 is formed thereon, and a passivation resin 5 such as epoxy resin is applied thereon. In the passivation resin 5, the electrodes 2 and 4 mainly play the role of mechanically protecting the thin film 3 from moisture, and in the case of solar cells or photovoltaic elements, either the electrode 4 and the resin 5 are both transparent, or the electrode 2 is transparent. Must be an electrode. The terminals 7, 8 of the electrodes 2, 4, respectively, are finally sustained. The passivation resin 5 is generally applied by screen printing and cured and dried by heating. Glass surfaces 6, 6' where the resin is separated using the pattern of the applied resin as a guide
After making scratches in the vertical and horizontal directions using a cutting machine with a cutting edge made of diamond, tungsten carbide, etc., force is applied to bend the cut surface with the scratched side facing outward to break it, resulting in 12 elements in the case shown in Figure 1. Can be separated.

従来例の第一の欠点はカツテイング不良の多い
ことである。カツテイングマシンの刃先が少しで
も樹脂5にかかればその部分はガラスにキズがつ
かず折り曲げるとガラスが任意の形状に破損して
しまい不良品が多発する。
The first drawback of the conventional example is that there are many cutting defects. If the edge of the cutting machine touches the resin 5 even slightly, the glass will not be scratched in that area, but when bent, the glass will break into an arbitrary shape, resulting in many defective products.

パツシベーシヨン樹脂5は通常の印刷と異なり
厚みが20μ〜100μぐらいあり、スクリーン印刷
でパターンのボケを除去するのは困難である。ま
た硬化、乾燥のための加温によつて一時的に粘度
が低下し、6,6′の部分の間隔0.2〜0.5mmのス
リツトが部分的につながり易い。
Unlike ordinary printing, the passivation resin 5 has a thickness of about 20 to 100 microns, and it is difficult to remove pattern blurring by screen printing. Furthermore, the viscosity temporarily decreases due to heating for curing and drying, and the slits at 0.2 to 0.5 mm in the 6 and 6' portions tend to be partially connected.

第二の欠点は、印刷機のスクリーンが洗浄の時
に破損しやすいことである。印刷用の樹脂5は常
温でも1時間〜6時間で硬化が乾燥がはじまるた
め定期的に溶剤でふき取り洗浄する必要がある。
印刷用スクリーンは上記6,6′の0.2〜0.5mmの
スリツトに対応して乳剤の巾が小さい部分がある
ため洗浄の時に乳剤がメツシユからはがれ易い。
A second disadvantage is that the printing press screen is easily damaged during cleaning. The printing resin 5 begins to harden and dry in 1 to 6 hours even at room temperature, so it must be periodically wiped off and cleaned with a solvent.
Since the printing screen has a portion where the width of the emulsion is small corresponding to the slits 6 and 6' of 0.2 to 0.5 mm, the emulsion is easily peeled off from the mesh during cleaning.

第三の欠点は、薄膜3のパターンと樹脂5のパ
ターンのズレによる耐湿信頼性の低下である。ガ
ラス基板は外寸のバラツキが大きく、薄膜とパツ
シベーシヨン樹脂の印刷時にそれぞれ位置ズレす
ると薄膜3の端部が樹脂5からはみ出て露出し、
耐湿信頼性が低下する。
The third drawback is a decrease in moisture resistance reliability due to misalignment between the pattern of the thin film 3 and the pattern of the resin 5. Glass substrates have large variations in external dimensions, and if the positions of the thin film and the passivation resin are misaligned during printing, the edge of the thin film 3 will protrude from the resin 5 and be exposed.
Moisture resistance reliability decreases.

発明の目的 本発明は、上記従来例の三つの欠点を解決し、
ガラスカツテイング時の不良がほとんど無く、樹
脂を塗布するスクリーン印刷機のスクリーンの寿
命が3倍以上長持ちし、印刷の位置ズレによる素
子の耐湿然の低下を防ぐことができる。
Purpose of the invention The present invention solves the three drawbacks of the above conventional example,
There are almost no defects during glass cutting, the life of the screen of the screen printing machine that applies the resin is more than three times longer, and it is possible to prevent the moisture resistance of the element from deteriorating due to misalignment of printing.

発明の構成 本発明は、硬質のパツシベーシヨン樹脂を各素
子ごとに分離せず連続して印刷し、樹脂を塗布し
た面と反対のガラス面にキズをつけてガラスと樹
脂を同時にカツテイングし、複数個の薄膜素子を
分離する方法である。
Structure of the Invention The present invention involves printing a hard passivation resin continuously without separating each element, scratching the glass surface opposite to the resin-applied surface, and cutting the glass and resin at the same time. This is a method for separating thin film elements.

実施例の説明 第3図、第4図に本発明による実施例を示す。
樹脂3はエポキシ樹脂、シリコン樹脂等の耐湿性
に効果のある硬質(望しくはシヨア硬度80以上)
の樹脂を用いる。アモルフアスシリコンを用いる
太陽電池および光起電力素子の場合、0.5mm〜1
mm厚のガラス基板1の上にITO(インジウム・テ
イン・オキサイド)、SnO2等の透明電極2を電子
ビーム蒸着やスパツタリングで約500Å〜1500Å
形成し、その上にシランガス中のプラズマCVD
によつてP層、i層、N層の三層から成る半導体
薄膜3を約3500Å〜5000Å堆積する。次に、アル
ミニウム、ニツケル、クロム、チタン等の金属を
真空蒸着して電極4を形成し、最後に硬質の樹脂
5をスクリーン印刷した後硬化乾燥させる。カツ
テイングは樹脂5を塗布した反対側のガラス面
9,9′の部分にカツテイングマシンでキズをつ
け、ガラス1と硬質の樹脂5を同時に割ることが
できる。従つて不良がほとんど発生しない。樹脂
が軟質の場合は割れにくく、樹脂のはく離が生じ
易い。エポキシ樹脂の場合、顔料の種類によつて
硬度と密着力が変わり、基板との密着力が強く硬
度の大きいものとして、酸化鉄(ベンガラ)やカ
ーボンを顔料に用いたアミン系エポキシ樹脂で良
い結果が得られた。本発明の様に樹脂を塗布する
面と反対のガラス面にキズをつける場合、ガラス
基板1を通して薄膜3のパターンが見えるため、
その中央部にカツテイングマシンのカツターヘツ
ドを顕微鏡を用いてセツトすることができ、従来
例の様なカツテイングや印刷の位置ズレによる耐
湿信頼性の低下は起こらない。第3図の実施例で
分かるように樹脂5をスクリーン印刷する時のス
クリーンには巾のせまい乳剤パターンが無いため
洗浄によつて乳剤がはく離することがない。従つ
て従来例に比べスクリーンが約3倍長持ちする。
スクリーン印刷の条件設定も細かいスリツトパタ
ーンが無いため容易である。
DESCRIPTION OF EMBODIMENTS FIGS. 3 and 4 show embodiments of the present invention.
Resin 3 is a hard material that is effective in moisture resistance, such as epoxy resin or silicone resin (preferably Shore hardness of 80 or higher)
resin is used. For solar cells and photovoltaic devices using amorphous silicon, 0.5 mm to 1
A transparent electrode 2 made of ITO (indium tein oxide), SnO 2 , etc. is formed on a glass substrate 1 with a thickness of about 500 Å to 1500 Å by electron beam evaporation or sputtering.
Form and plasma CVD in silane gas on it
A semiconductor thin film 3 consisting of three layers, a P layer, an i layer, and an N layer, is deposited to a thickness of approximately 3500 Å to 5000 Å. Next, metals such as aluminum, nickel, chromium, and titanium are vacuum-deposited to form electrodes 4, and finally, hard resin 5 is screen printed and then hardened and dried. In cutting, a cut is made using a cutting machine on the glass surfaces 9, 9' on the opposite side to which the resin 5 is applied, and the glass 1 and the hard resin 5 can be broken at the same time. Therefore, almost no defects occur. If the resin is soft, it is difficult to break and peeling of the resin is likely to occur. In the case of epoxy resins, the hardness and adhesion vary depending on the type of pigment, and good results are obtained with amine-based epoxy resins that use iron oxide (red iron oxide) or carbon as pigments, as they have strong adhesion to the substrate and high hardness. was gotten. When scratching the glass surface opposite to the surface to which the resin is applied as in the present invention, the pattern of the thin film 3 is visible through the glass substrate 1.
The cutter head of the cutting machine can be set in the center using a microscope, and moisture resistance reliability does not deteriorate due to misalignment of cutting or printing as in the conventional example. As can be seen in the embodiment shown in FIG. 3, since there is no narrow emulsion pattern on the screen when the resin 5 is screen printed, the emulsion does not peel off during washing. Therefore, the screen lasts about three times longer than the conventional example.
Setting conditions for screen printing is also easy because there is no fine slit pattern.

発明の効果 本発明によれば、ガラス基板のカツテイング不
良が発生せず、樹脂の印刷が容易でスクリーンの
寿命が長く、素子の耐湿信頼性が低下することが
ない。
Effects of the Invention According to the present invention, cutting defects of the glass substrate do not occur, resin printing is easy, the life of the screen is long, and the moisture resistance reliability of the device does not deteriorate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術を説明する為の多素子形成板
の平面図、第2図は第1図の断面図、第3図は本
発明の製造法を説明する為の多素子形成板の平面
図、第4図は第3図の断面図である。 1……ガラス基板、2,4……電極、3……薄
膜、5……樹脂、7,8……電気端子、9,9′
……カツトするガラス面。
Fig. 1 is a plan view of a multi-element forming plate for explaining the prior art, Fig. 2 is a sectional view of Fig. 1, and Fig. 3 is a plan view of a multi-element forming plate for explaining the manufacturing method of the present invention. FIG. 4 is a sectional view of FIG. 3. 1... Glass substrate, 2, 4... Electrode, 3... Thin film, 5... Resin, 7, 8... Electric terminal, 9, 9'
...Glass surface to cut.

Claims (1)

【特許請求の範囲】[Claims] 1 ガラス基板上に複数個の薄膜素子を形成し、
その上に連続した硬質のパツシベーシヨン樹脂を
塗布し硬化させた後、前記ガラス基板の前記樹脂
塗布面と対抗する面にキズをつけて前記ガラス基
板と樹脂を同時に割る薄膜素子の製造法。
1 Forming multiple thin film elements on a glass substrate,
A method for manufacturing a thin film element in which a continuous hard passivation resin is applied thereon and cured, and then a surface of the glass substrate opposite to the resin-coated surface is scratched to simultaneously break the glass substrate and the resin.
JP57186407A 1982-10-22 1982-10-22 Manufacture of thin film element Granted JPS5975680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57186407A JPS5975680A (en) 1982-10-22 1982-10-22 Manufacture of thin film element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57186407A JPS5975680A (en) 1982-10-22 1982-10-22 Manufacture of thin film element

Publications (2)

Publication Number Publication Date
JPS5975680A JPS5975680A (en) 1984-04-28
JPS6227555B2 true JPS6227555B2 (en) 1987-06-15

Family

ID=16187867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57186407A Granted JPS5975680A (en) 1982-10-22 1982-10-22 Manufacture of thin film element

Country Status (1)

Country Link
JP (1) JPS5975680A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0361357U (en) * 1989-10-17 1991-06-17

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032589A (en) * 1973-06-28 1975-03-29
JPS58218179A (en) * 1982-06-11 1983-12-19 Sharp Corp Thin film solar battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032589A (en) * 1973-06-28 1975-03-29
JPS58218179A (en) * 1982-06-11 1983-12-19 Sharp Corp Thin film solar battery

Also Published As

Publication number Publication date
JPS5975680A (en) 1984-04-28

Similar Documents

Publication Publication Date Title
KR20010043511A (en) Display substrate electrodes with auxiliary metal layers for enhanced conductivity
JPH07321363A (en) Method of fabricating semiconductor wafer
JPH05502759A (en) How to apply vapor deposited contacts to solar cells
US5312643A (en) Method of producing a transparent conductive film provided with supplementary metal lines
JP2783918B2 (en) Method for manufacturing photovoltaic device
JPS6227555B2 (en)
JP2680582B2 (en) Method for manufacturing photovoltaic device
JPS6154954A (en) Thermal head and manufacture thereof
JPH0713695A (en) Transparent touch panel
JP2000091601A (en) Solar battery
EP0228280A1 (en) Image sensors and methods of manufacturing same
JPS6338874B2 (en)
JP3307533B2 (en) Chip electronic component and its manufacturing method, and surge absorber and its manufacturing method
US5169493A (en) Method of manufacturing a thick film resistor element
JPH0428132B2 (en)
JP2003258274A (en) Method of manufacturing lower electrode of thin film solar cell
JPH04249379A (en) Photovoltaic device and manufacture thereof
JPH0143933B2 (en)
JPS6314872B2 (en)
JPH0566411A (en) Transparent conductive film and production of transparent conductive film
JPH0370184A (en) Photovoltaic device
JPH0382169A (en) Manufacture of amorphous solar cell
JPH03194819A (en) Transparent touch panel
JP2003234201A (en) Resistor and its manufacturing method
JPS58165213A (en) Method of forming transparent electrode