JPS62275133A - Carbon fiber-reinforced thermoplastic resin composition - Google Patents

Carbon fiber-reinforced thermoplastic resin composition

Info

Publication number
JPS62275133A
JPS62275133A JP2556887A JP2556887A JPS62275133A JP S62275133 A JPS62275133 A JP S62275133A JP 2556887 A JP2556887 A JP 2556887A JP 2556887 A JP2556887 A JP 2556887A JP S62275133 A JPS62275133 A JP S62275133A
Authority
JP
Japan
Prior art keywords
resin
thermoplastic
carbon fiber
fibers
resins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2556887A
Other languages
Japanese (ja)
Other versions
JPS642613B2 (en
Inventor
Katsumi Nakama
中間 克美
Hiroaki Yamashita
山下 博明
Koji Kuroda
黒田 浩次
Mikio Kashimoto
樫本 幹男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Chemicals Ltd
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Chemicals Ltd, Toho Rayon Co Ltd filed Critical Teijin Chemicals Ltd
Priority to JP2556887A priority Critical patent/JPS62275133A/en
Publication of JPS62275133A publication Critical patent/JPS62275133A/en
Publication of JPS642613B2 publication Critical patent/JPS642613B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title composition excellent in impact strength, adhesion of carbon fiber to thermoplastic resin and capability of binding fibers, by mixing a thermoplastic resin with a carbon fiber coated with a specified amount of a polyurethane resin. CONSTITUTION:A polyacrylic, rayon, pitch, carbonaceous or graphite carbon fiber (a) whose surface is treated preferably by oxidation is coated with 0.3-10wt% wholly thermoplastic linear polyurethane resin (b) obtained by reacting an isocyanate with a diol at an NCO to OH ratio in the range of 0.95-1.0 to obtain a polyurethane resin-coated carbon fiber (b). 97-40wt% thermoplastic resin (A) selected from among a polycarbonate resin, a polyamide resin and a thermoplastic saturated polyester resin is mixed with 3-60wt% component B.

Description

【発明の詳細な説明】 3、発明の詳細な説明 本発明は、複合材料に用いることができる炭素繊維強化
熱可塑性樹脂組成物に関し、その目的とするところは、
熱可塑性樹脂をマトリックスとする炭素11!1a強化
樹脂の機械特性、特に耐衝撃強度を向上させるとともに
、繊維の集束性を高めて樹脂との混合時の作業性を改善
した熱可塑性樹脂組成物を提供することにある。
Detailed Description of the Invention 3. Detailed Description of the Invention The present invention relates to a carbon fiber-reinforced thermoplastic resin composition that can be used for composite materials.
A thermoplastic resin composition that improves the mechanical properties, especially the impact strength, of a carbon 11!1a reinforced resin with a thermoplastic resin as a matrix, as well as improves the cohesiveness of fibers and improves the workability when mixing with the resin. It is about providing.

近年、熱可塑性樹脂を炭素繊維で強化した高性能のエン
ジニアリング樹脂材料が注目され、その需要が急激に増
加している。しかし、炭水繊維は表面に活性基をもたず
本質的に不活性であって、熱可塑性樹脂との接着性が悪
く、炭水繊維をそのまま熱可塑性樹脂と混合したものは
、マトリックス樹脂単体と比べて機械特性が向上するも
のの、向上の程度が不十分で炭素amの特性が十分有効
に利用されているとはいえない。
In recent years, high-performance engineering resin materials made by reinforcing thermoplastic resins with carbon fibers have attracted attention, and the demand for them is rapidly increasing. However, hydrocarbon fibers do not have active groups on their surfaces and are essentially inert, and have poor adhesion to thermoplastic resins. Although the mechanical properties are improved compared to the above, the degree of improvement is insufficient and it cannot be said that the properties of carbon am are fully utilized effectively.

炭素繊維と熱可塑性樹脂との接着性の悪さは、強化樹脂
の特に耐衝撃強度に著しい悪影響を与えている。
Poor adhesion between carbon fibers and thermoplastic resins has a significant negative impact, particularly on the impact strength of the reinforced resins.

炭水繊維と熱可塑性樹脂を混合するには、適当な良さく
例えば10〜3II11)に切断した繊維を樹脂ベレッ
ト或いは樹脂パウダーとともに押出機で溶融混練するの
が一般的である。この際!IMに高い集束性が付与され
ていないと、繊維は樹脂との摩擦力によって開繊して綿
状になり、押出機ホッパー内で浮き上って樹脂のみが供
給されるようになり、均一な樹脂組成物を定常的に得る
のが困難となる。
In order to mix the hydrocarbon fiber and the thermoplastic resin, it is common to melt and knead the fibers cut into suitable sizes, for example, 10 to 3II11), together with resin pellets or resin powder in an extruder. On this occasion! If the IM is not highly cohesive, the fibers will spread out due to the frictional force with the resin, become fluffy, float up in the extruder hopper, and only the resin will be supplied, resulting in a uniform distribution. It becomes difficult to obtain the resin composition regularly.

かかる困難を避けるためには、当然のことながら繊維に
高い集束性を付与することが必要であり、また開繊防止
の見地から繊維長を11IIg以下の、いわゆるミルド
ファイバーにすることが考えられる。
In order to avoid such difficulties, it is of course necessary to impart high cohesiveness to the fibers, and from the standpoint of preventing fiber opening, it is conceivable to use so-called milled fibers with a fiber length of 11 II g or less.

繊維の集束性を高めるため炭素繊維をマトリックス樹脂
と同じ熱可塑性樹脂で被覆処理することが行われ、この
場合一般にマトリックス樹脂は溶剤にとかして使用され
る。そして、この際の溶剤としては、例えばポリアミド
樹脂に対するギ酸、フェノール等とか、又はポリカーボ
ネート、ポリサルホン、ポリエーテルサルホンの各樹脂
に対する塩素系溶剤とかの、処理工程において環境を悪
化させる溶剤が使用されることが多く、また、熱可塑性
樹脂で無害な溶剤にとけるものも少く、これらを考える
と、集束性を^めるのに溶剤を使用する方法は好ましい
ものではない。また、開繊し易さを防ぐため、前記のよ
うな炭素繊維を11′IIII以下のミルドファイバー
にする方法は、ミルドファイバーが混線時スクリュー内
でさらに類4JAN化し、最終成形物中の繊維長が0.
1mm以下になるため、成形物の各種特性の向上に寄与
せず、したがって、高強度、高弾性の成形物を得る目的
には適合しない。
In order to improve the cohesiveness of the fibers, carbon fibers are coated with the same thermoplastic resin as the matrix resin, and in this case, the matrix resin is generally used after being dissolved in a solvent. In this case, solvents that degrade the environment during the treatment process are used, such as formic acid, phenol, etc. for polyamide resin, or chlorinated solvents for polycarbonate, polysulfone, and polyethersulfone resins. In addition, few thermoplastic resins are soluble in harmless solvents, and considering these factors, it is not preferable to use solvents to improve convergence. In addition, in order to prevent easy opening, the above-mentioned method of converting carbon fibers into milled fibers with a diameter of 11'III or less is such that the milled fibers are further converted into 4JAN in the screw when mixed, and the fiber length in the final molded product is reduced. is 0.
Since it is less than 1 mm, it does not contribute to improving various properties of the molded product, and is therefore not suitable for the purpose of obtaining a molded product with high strength and high elasticity.

炭素mMは、一般にエポキシ樹脂をマトリックス樹脂と
する複合材料に使用され、この場合、繊維は未硬化エポ
キシ樹脂でサイジング処理され、そ′のまま切断して熱
可塑性樹脂の強化材として使用される。このような未硬
化エポキシ樹脂でサイジング処理された炭素繊維は、乾
燥等のために加熱された樹脂とホッパー内で接触したと
きエポキシ樹脂の軟化により繊維を開繊し易くし、定常
運転を困難にする場合が多い。
Carbon mM is generally used in composite materials with epoxy resin as the matrix resin, in which case the fibers are sized with uncured epoxy resin, cut as is, and used as reinforcement for thermoplastic resins. When carbon fibers sized with such uncured epoxy resin come into contact with resin heated for drying in the hopper, the epoxy resin softens and the fibers tend to open, making steady operation difficult. Often.

本発明者らは、これらの問題点を改良すべく種々検討し
た結果、特定量のポリウレタン樹脂で炭素繊維を被覆処
理することにより、炭素繊維と熱可塑性樹脂との接着性
を高めて成形物の特性を向上させ、さらに繊維の集束性
を高めて繊維と樹脂との混合時の作業性を向上させろる
ことを見出し、本発明に至った。
As a result of various studies aimed at improving these problems, the inventors of the present invention found that by coating carbon fibers with a specific amount of polyurethane resin, the adhesiveness between carbon fibers and thermoplastic resin was increased and molded products were formed. The inventors have discovered that it is possible to improve the properties and further improve the cohesiveness of the fibers, thereby improving the workability when mixing the fibers and the resin, leading to the present invention.

すなわら、本発明は、0.3〜10重量%のポリウレタ
ン樹脂で被覆処理された炭素繊維3〜60重量%及び熱
可塑性樹lft97〜40重間%からなる炭素繊維強化
熱可塑性樹脂組成物である。そして、熱可塑性rMIF
Wとして、特にポリカーボネート樹脂、ポリアミド樹脂
、又は熱可塑性飽和ポリエステル樹脂が選択された前記
樹脂組成物である。
Specifically, the present invention provides a carbon fiber-reinforced thermoplastic resin composition comprising 3-60% by weight of carbon fibers coated with 0.3-10% by weight of polyurethane resin and 97-40% by weight of thermoplastic resin. It is. and thermoplastic rMIF
In the resin composition, W is particularly selected from a polycarbonate resin, a polyamide resin, or a thermoplastic saturated polyester resin.

本発明における被覆炭素IINは、集束性に優れている
ので、樹脂との混合時に押出機のホッパーから円滑に供
給されて均一な樹脂組成物を与え、しかも特にポリカー
ボネート樹脂、ポリアミド樹脂、熱可塑性飽和ポリエス
テル樹脂との接着性が高く、本発明の樹脂組成物は、成
形物に優れた特性、特に耐衝撃強度を与えることができ
る。
The coated carbon IIN in the present invention has excellent cohesiveness, so it can be smoothly fed from the hopper of an extruder when mixed with a resin to give a uniform resin composition, and is particularly useful for polycarbonate resins, polyamide resins, thermoplastic saturated resins, etc. The resin composition of the present invention has high adhesion to polyester resins, and can provide molded products with excellent properties, particularly impact strength.

本発明において原料として用いられる炭素繊維は、通常
知られているポリアクリル系、レーヨン系、ピッチ系の
ものであり、炭素質又は黒鉛質のいずれでもよい。また
、本発明における炭素繊維は、一般使用の場合と同様表
面が酸化処理されたものが好適である。
The carbon fiber used as a raw material in the present invention is a commonly known polyacrylic, rayon, or pitch type, and may be either carbonaceous or graphite. Further, the carbon fiber in the present invention is preferably one whose surface has been oxidized as in the case of general use.

本発明で用いられるポリウレタン樹脂は、1.6−ヘキ
サンジイソシアネート、4.4′  −ジフェニルメタ
ンジイソシアネート、4.4′  −ジシクロヘキシル
メタンジイソシアネート、トリレンジインシアネート、
イソホロンジイソシアネート等のイソシアネート類(A
>とエチレングリコール、ブチレングリコール、1.6
−ヘキサンジオール、ビスヒドロキシエトキシベンゼン
等のグリコール類、ポリエチレンアジペート、ポリカプ
ロラクトン、ポリ(ヘキサメチレンアジペート)等のポ
リエステルジオール類又はポリオキシテトラメチレング
リコール等のポリエーテルジオール類などのジオール類
(B)との反応T” IQ ラレルトコ’5 (7) 
0.95≦NGO101−1≦1.0のいわゆる完全熱
可塑タイプの線状ポリウレタン樹脂である。
The polyurethane resin used in the present invention includes 1,6-hexane diisocyanate, 4,4'-diphenylmethane diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, tolylene diisocyanate,
Isocyanates such as isophorone diisocyanate (A
> and ethylene glycol, butylene glycol, 1.6
- Diols (B) such as glycols such as hexanediol and bishydroxyethoxybenzene, polyester diols such as polyethylene adipate, polycaprolactone, and poly(hexamethylene adipate), or polyether diols such as polyoxytetramethylene glycol; Reaction of T” IQ Larel Toko’5 (7)
It is a so-called completely thermoplastic type linear polyurethane resin in which 0.95≦NGO101-1≦1.0.

NGO/○ト1〉1の、いわゆる不完全熱可塑りイブの
ポリウレタン樹脂は、サイジング処理時に架橋反応を起
し易く、この結果、炭素繊維の集束性の過多を+Sき、
熱可塑性樹脂特にポリアミド樹脂のような溶融粘度の低
い樹脂との混合タン樹脂で被覆処理されたものである。
The so-called incompletely thermoplastic polyurethane resin of NGO/○to 1>1 tends to cause a crosslinking reaction during the sizing process, and as a result, the excessive cohesiveness of carbon fibers is increased by +S.
It is coated with a mixed tan resin with a thermoplastic resin, particularly a resin with a low melt viscosity such as a polyamide resin.

ここにポリウレタン樹脂のサイジング口が0.311 
m%未満では、繊維の集束性が悪く、繊維と樹脂との接
着性向上の程度も低く、逆に10重攪%を越えると集束
性が強過て分散が不良となり強度が低下する。
The sizing port of the polyurethane resin is 0.311 here.
If it is less than m%, the cohesiveness of the fibers will be poor and the degree of improvement in adhesion between the fibers and the resin will be low.On the other hand, if it exceeds 10% by weight, the cohesiveness will be too strong, resulting in poor dispersion and a decrease in strength.

炭N繊維にポリウレタン樹脂を被覆処理するには、ポリ
ウレタン樹脂を適当な溶剤にとかした溶液又はこれを水
に分散させた液にuli維を浸漬法のようにして製造さ
れる。適当なフィラメント数を有する実質的に連続した
炭素繊維を、メチルエチルケトンに0.5〜5重黴%と
かしたポリウレタン樹脂溶液に連続的に浸漬し、次いで
80℃の熱風乾燥炉に通して脱溶剤し、その後カッター
で適当な長さに切断することによって19られる。
In order to coat the charcoal-N fibers with a polyurethane resin, the uli fibers are manufactured by dipping them in a solution of the polyurethane resin in a suitable solvent or a solution of the polyurethane resin dispersed in water. Substantially continuous carbon fibers having an appropriate number of filaments are continuously immersed in a polyurethane resin solution containing 0.5 to 5% mold in methyl ethyl ketone, and then passed through a hot air drying oven at 80°C to remove the solvent. , and then cut to an appropriate length with a cutter.

炭*m維を熱可塑性樹脂に混合する場合、繊維の長さは
特に限定がないが、作業性の点から0.3〜10mm特
に 3〜6IIlfflが好ましい。
When charcoal*m fibers are mixed into a thermoplastic resin, the length of the fibers is not particularly limited, but from the viewpoint of workability, 0.3 to 10 mm, particularly 3 to 6 IIlffl, is preferable.

本発明において、熱可塑性樹脂としては、一般に市販さ
れているポリカーボネート樹脂、ポリアミド樹脂、熱可
塑性飽和ポリエステル樹脂、(例えばポリブチレンテレ
フタレート樹脂、ポリエチレンテレフタレート樹脂)ポ
リアセタール84脂、ポリサルホンbfI脂、ポリエー
テルサルホン樹脂、ポリフェニレンサルフフイドHA 
m、スチレン系樹脂、オレフィン系樹脂、塩化ビニル樹
脂のような一般成形用樹脂を使用できるが、特に、ポリ
カーボネート樹脂、ポリアミド樹脂、熱可塑性ポリエス
テル樹脂が、成形物の機械物性を顕箸に向上させるので
好適である。
In the present invention, thermoplastic resins include generally commercially available polycarbonate resins, polyamide resins, thermoplastic saturated polyester resins (e.g., polybutylene terephthalate resins, polyethylene terephthalate resins), polyacetal 84 resins, polysulfone bfI resins, and polyethersulfone resins. Resin, polyphenylene sulfide HA
General molding resins such as styrene resins, olefin resins, and vinyl chloride resins can be used, but in particular, polycarbonate resins, polyamide resins, and thermoplastic polyester resins improve the mechanical properties of molded products. Therefore, it is suitable.

ポリカーボネート樹脂は、芳香族ジヒドロキシ化合物と
カーボネート前駆体、例えばホスゲン、ジフェニルカー
ボネート等とから溶液法又は溶融法で製造される。この
場合芳香族ジヒドロキシ化合物としては、2.2−ビス
(4−ヒドロキシフェニル)プロパン(一般名ビスフエ
ノールA)、ビス(4−ヒドロキシフェニル)メタン、
1.1−ビス(4−ヒドロキシフェニル)シクロヘキサ
ン、2.2−ビス(4−ヒドロキシ−3−メチルフェニ
ル〉プロパン、2.2〜ビス(3,5−ジブロモ−4−
ヒドロキシフェニル)プロパン、2.2−ビス(3,5
−ジメチル−4−ヒドロキシフェニル)プロパン、ビス
(4−ヒドロキシフェニル)サルファイド、ビス(4−
ヒドロキシフェニル)スルホン等が挙げられる。特に好
ましいポリカーボネート樹脂は、2.2−ビス(4−ヒ
ドロキシフェニル)アルカン系、とりわけビスフェノー
ルAを主成分とするポリカーボネートである。平均分子
量15,000〜ioo、oooのものが好適である。
Polycarbonate resins are produced from aromatic dihydroxy compounds and carbonate precursors, such as phosgene, diphenyl carbonate, etc., by a solution method or a melt method. In this case, the aromatic dihydroxy compounds include 2,2-bis(4-hydroxyphenyl)propane (common name bisphenol A), bis(4-hydroxyphenyl)methane,
1.1-bis(4-hydroxyphenyl)cyclohexane, 2.2-bis(4-hydroxy-3-methylphenyl)propane, 2.2-bis(3,5-dibromo-4-
hydroxyphenyl)propane, 2,2-bis(3,5
-dimethyl-4-hydroxyphenyl)propane, bis(4-hydroxyphenyl)sulfide, bis(4-
Examples include hydroxyphenyl) sulfone. A particularly preferred polycarbonate resin is a polycarbonate based on 2,2-bis(4-hydroxyphenyl)alkane, especially bisphenol A. Those having an average molecular weight of 15,000 to ioo, ooo are suitable.

また、ポリアミド樹脂としては、ナイロン6、ナイロン
66、ナイロン11、ナイロン12、ナイロン6.10
等を、さらに熱可塑性飽和ポリエステル樹脂としては、
ポリエチレンテレフタレート、ポリエチレンテレフタレ
ート、又はこれらを主成分とする共…合ポリエステル等
を挙げることができる。
In addition, as polyamide resins, nylon 6, nylon 66, nylon 11, nylon 12, nylon 6.10
etc. Furthermore, as a thermoplastic saturated polyester resin,
Examples include polyethylene terephthalate, polyethylene terephthalate, and co-polyester containing these as main components.

本発明にかかる炭素lIN強化熱可塑性樹脂組成物は、
舶記処理された炭素繊維を3〜6唖1%と熱可塑性樹脂
を97〜40重量%含むものである。
The carbon IN reinforced thermoplastic resin composition according to the present invention is
It contains 3 to 6 weight % of carbon fibers treated with carbon fibers and 97 to 40 weight % of thermoplastic resin.

樹脂組成物中の炭素繊維含有率が、3型筒%未満のとき
は強化材としての効果が小さり、60重邑%を越えると
きは成形性が著しく悪化し、いずれにしても好ましくな
い。
When the carbon fiber content in the resin composition is less than 3%, the effect as a reinforcing material is small, and when it exceeds 60%, the moldability deteriorates significantly, which is not preferable in any case.

以下、本発明を実施例によって一層詳細に説明するが、
本発明はこれにより限定されるものではない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited thereby.

実施例1゜ 分子量致方のエステル型完全熱可塑性ポリウレタン樹脂
(大日本インキ化学工業社製りリスボン6216S L
 )をメチルエチルケトンに溶解してポリウレタン樹脂
溶液を作り、これにアクリル系高強度タイプの炭素m維
ロービング(120’00フイラメント)を浸漬し、次
いで80℃の熱風乾燥機で脱溶剤後、ロービングカッタ
ーで61IIll長の炭素繊維チョツプドストランドを
作成した。
Example 1 Ester-type fully thermoplastic polyurethane resin with a high molecular weight (Lisbon 6216S L manufactured by Dainippon Ink and Chemicals Co., Ltd.)
) in methyl ethyl ketone to make a polyurethane resin solution, acrylic high-strength type carbon m-fiber roving (120'00 filament) was immersed in this, and after removing the solvent in a hot air dryer at 80°C, it was removed with a roving cutter. A chopped carbon fiber strand with a length of 61IIll was produced.

この際ポリウレタン樹脂溶液の濃度を調整し、サイジン
グ聞の異なる5種のチョツプドストランドを作成した。
At this time, the concentration of the polyurethane resin solution was adjusted, and five types of chopped strands with different sizing distances were created.

これらの各チョツプドストランドを十分に乾燥したナイ
ロン66樹脂ペレット(宇部興産社製2020B)又は
ポリカーボネート樹脂パウダー(今人化成社製パンライ
トL−1250P )にそれぞれ炭素繊維が30重間%
になるように添加し、計3Kgをタンブラ−にてトライ
ブレンドした後、4mmベント式押出機にて溶融混練し
てストランド状に押出し、水冷後ベレット状に切断して
成形材料を得た。この際押出機のホッパー内に残留した
炭素繊維はこれを取出しその重量を測定した。結果を表
1に示す。
These chopped strands are thoroughly dried into nylon 66 resin pellets (2020B manufactured by Ube Industries, Ltd.) or polycarbonate resin powder (Panlite L-1250P manufactured by Konjin Kasei Co., Ltd.), each containing 30% by weight of carbon fiber.
After tri-blending a total of 3 kg in a tumbler, the mixture was melt-kneaded and extruded into a strand shape using a 4 mm vented extruder, and after cooling with water, the mixture was cut into pellet shapes to obtain a molding material. At this time, the carbon fibers remaining in the hopper of the extruder were taken out and their weight was measured. The results are shown in Table 1.

炭素繊維が残った系は定常運転が困難なものである。炭
素繊維が残った系については、混合比を同じにして再度
ホッパーに投入した後プラスック製の棒を用いて強制的
に炭素1!雑を押出機に供給した。
Steady operation of a system in which carbon fibers remain is difficult. For systems with remaining carbon fibers, the mixture ratio is kept the same, the mixture is put into the hopper again, and then a plastic rod is used to force the carbon fibers to 1! The miscellaneous was fed to the extruder.

このようにして得た炭素繊維含有率30重量%の成形材
料を十分乾燥した後、射出成形機にて試験片を成形し物
性を測定した。結果を表2で示す。
After thoroughly drying the molding material having a carbon fiber content of 30% by weight thus obtained, a test piece was molded using an injection molding machine and its physical properties were measured. The results are shown in Table 2.

比較例1゜ ナイジング処理をしない(ノーサイズ)炭素繊維又はエ
ポキシ樹脂(シェル化学社製エピコート828〉でサイ
ジング処理をした炭素繊維の各6n+m lのチョツプ
ドストランドを実施例1と同様にそれぞれナイロン66
樹脂ベレットと混合し押出機のホッパーに投入し押出し
た。また、前記各チョツプドストランドをそれぞれポリ
カーボネート樹脂パウダーと混合し同様にして押出した
。その結果いずれの場合も大部分の炭素繊維がホッパー
内に残留し満足な成形材料を得ることができなかった。
Comparative Example 1 Each 6n+ml chopped strand of carbon fiber without sizing treatment (no size) or carbon fiber sized with epoxy resin (Epicoat 828 manufactured by Shell Chemical Co., Ltd.) was made into nylon in the same manner as in Example 1. 66
The mixture was mixed with resin pellets, put into the hopper of an extruder, and extruded. Further, each of the chopped strands was mixed with polycarbonate resin powder and extruded in the same manner. As a result, in all cases, most of the carbon fibers remained in the hopper, making it impossible to obtain a satisfactory molding material.

各残留炭素繊維の重量を測定した。結果を表1に併記す
る。
The weight of each residual carbon fiber was measured. The results are also listed in Table 1.

また、実施例1と同様に再度混合比を同じにして、プラ
スチック製の棒で強制的に炭素繊維を押出機に供給し成
形材料を得た。この成形材料を十分乾燥した後、射出成
形機にて試験片を成形し物性を測定した。結果を表2に
併記する。
Further, as in Example 1, the mixing ratio was again made the same, and carbon fibers were forcibly fed to the extruder using a plastic rod to obtain a molding material. After thoroughly drying this molding material, a test piece was molded using an injection molding machine and its physical properties were measured. The results are also listed in Table 2.

実施例2゜ 前記実施例1で使用したと同じチョツプドストランドを
十分に乾燥したポリブチレンテレフタレート(今人社製
CL −7000>にそれぞれ炭素繊維含有率が30重
邑%になるように添加し、タンブラ−にてトライブレン
ドした後、40mmベント式押出機にて溶融混練してス
トランド状に押出し、水冷後ベレット化した。これらの
ベレットを120℃で4時間乾燥した後、射出成形機で
試験片を成形し、物性測定を行った。結果を表3に示す
Example 2 The same chopped strands used in Example 1 were added to sufficiently dried polybutylene terephthalate (CL-7000 manufactured by Konjinsha) so that the carbon fiber content was 30%. After tri-blending in a tumbler, the mixture was melt-kneaded in a 40 mm vented extruder, extruded into strands, cooled with water, and made into pellets. After drying these pellets at 120°C for 4 hours, they were molded in an injection molding machine. A test piece was molded and its physical properties were measured.The results are shown in Table 3.

比較例2゜ ボI記比較例1で使用したと同じノーサイズ炭素繊維又
はエポキシ樹脂サイズ炭素繊維を用いて調製した試験片
の物性を表3に併記する。
Comparative Example 2 Bo I The physical properties of test pieces prepared using the same no-size carbon fibers or epoxy resin-sized carbon fibers as used in Comparative Example 1 are also listed in Table 3.

以上によれば、0,3〜10重量%のポリウレタン樹脂
で被覆処理された炭素繊維を用いることによって熱可塑
性樹脂との混合が定常的に行われ、かつ成形物の物性が
著しく向上することがわかる。
According to the above, by using carbon fiber coated with 0.3 to 10% by weight of polyurethane resin, mixing with the thermoplastic resin can be carried out constantly, and the physical properties of the molded product can be significantly improved. Recognize.

Claims (1)

【特許請求の範囲】 (1)0.3〜10重量%のポリウレタン樹脂で被覆処
理された炭素繊維3〜60重量%及び 熱可塑性樹脂97〜40重量%からなる炭素繊維強化熱
可塑性樹脂組成物。 (2)熱可塑性樹脂がポリカーボネート樹脂、ポリアミ
ド樹脂、又は熱可塑性飽和ポリ エステル樹脂である特許請求の範囲第 (1)項記載の組成物。
[Scope of Claims] (1) A carbon fiber-reinforced thermoplastic resin composition comprising 3-60% by weight of carbon fibers coated with 0.3-10% by weight of a polyurethane resin and 97-40% by weight of a thermoplastic resin. . (2) The composition according to claim (1), wherein the thermoplastic resin is a polycarbonate resin, a polyamide resin, or a thermoplastic saturated polyester resin.
JP2556887A 1987-02-07 1987-02-07 Carbon fiber-reinforced thermoplastic resin composition Granted JPS62275133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2556887A JPS62275133A (en) 1987-02-07 1987-02-07 Carbon fiber-reinforced thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2556887A JPS62275133A (en) 1987-02-07 1987-02-07 Carbon fiber-reinforced thermoplastic resin composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57007542A Division JPS58126375A (en) 1982-01-22 1982-01-22 Carbon fiber and resin composition thereof

Publications (2)

Publication Number Publication Date
JPS62275133A true JPS62275133A (en) 1987-11-30
JPS642613B2 JPS642613B2 (en) 1989-01-18

Family

ID=12169530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2556887A Granted JPS62275133A (en) 1987-02-07 1987-02-07 Carbon fiber-reinforced thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPS62275133A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01245027A (en) * 1987-12-28 1989-09-29 Osaka Gas Co Ltd Massive carbon fiber containing resin composition and production thereof
JPH02129229A (en) * 1988-11-10 1990-05-17 Toho Rayon Co Ltd Chopped carbon fiber strand and preparation thereof
JP2001026702A (en) * 1999-05-13 2001-01-30 Sumitomo Chem Co Ltd Liquid crystal polyester resin composition and molded products therefrom
JP2006335890A (en) * 2005-06-02 2006-12-14 Teijin Chem Ltd Reclaimed resin composition and method for producing reclaimed resin composition
CN101781452A (en) * 2010-03-05 2010-07-21 飞虎(厦门)聚氨酯制品有限公司 Product of polyurethane-glass fiber resin compound material and method for preparing same
JP2013545869A (en) * 2010-12-14 2013-12-26 ザ・ボーイング・カンパニー Composite material with twisted resin coated fibers
CN116333483A (en) * 2023-05-12 2023-06-27 广东爱上新材料股份有限公司 Anti-skid shock-absorbing polyurethane rubber particles for runway and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928670A (en) * 1972-06-27 1974-03-14

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928670A (en) * 1972-06-27 1974-03-14

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01245027A (en) * 1987-12-28 1989-09-29 Osaka Gas Co Ltd Massive carbon fiber containing resin composition and production thereof
JPH02129229A (en) * 1988-11-10 1990-05-17 Toho Rayon Co Ltd Chopped carbon fiber strand and preparation thereof
JPH0583044B2 (en) * 1988-11-10 1993-11-24 Toho Rayon Kk
JP2001026702A (en) * 1999-05-13 2001-01-30 Sumitomo Chem Co Ltd Liquid crystal polyester resin composition and molded products therefrom
JP4529232B2 (en) * 1999-05-13 2010-08-25 住友化学株式会社 Liquid crystal polyester resin composition and molded product thereof
JP2006335890A (en) * 2005-06-02 2006-12-14 Teijin Chem Ltd Reclaimed resin composition and method for producing reclaimed resin composition
CN101781452A (en) * 2010-03-05 2010-07-21 飞虎(厦门)聚氨酯制品有限公司 Product of polyurethane-glass fiber resin compound material and method for preparing same
JP2013545869A (en) * 2010-12-14 2013-12-26 ザ・ボーイング・カンパニー Composite material with twisted resin coated fibers
CN116333483A (en) * 2023-05-12 2023-06-27 广东爱上新材料股份有限公司 Anti-skid shock-absorbing polyurethane rubber particles for runway and preparation method thereof
CN116333483B (en) * 2023-05-12 2023-11-10 广东爱上新材料股份有限公司 Anti-skid shock-absorbing polyurethane rubber particles for runway and preparation method thereof

Also Published As

Publication number Publication date
JPS642613B2 (en) 1989-01-18

Similar Documents

Publication Publication Date Title
JPH0146636B2 (en)
EP0102159B1 (en) Method of producing fibre-reinforced composition
DE60312482T2 (en) OLIGOMERE CHAIN EXTENDER FOR TREATMENT AND AFTER-TREATMENT AND RECYCLING OF CONDENSATE POLYMERS, COMPOSITIONS AND APPLICATIONS BASED ON THEM
JPH05255588A (en) Fiber-reinforced thermoplastic molding composition
CN111087793B (en) Antibacterial and mildewproof thermoplastic polyurethane composition, foaming bead, preparation method of foaming bead and formed body
KR0144360B1 (en) Mechanically compatible polyurethane/polyolefin thermoplastic polynenic blends
JPS62275133A (en) Carbon fiber-reinforced thermoplastic resin composition
EP4151667A1 (en) Composition, pellet, molded product and composition production method
JP2006335890A (en) Reclaimed resin composition and method for producing reclaimed resin composition
JPH0149300B2 (en)
JPH05162132A (en) Resin-coated carbon-fiber chopped strand
US5641572A (en) Short carbon fiber bundling mass, process for producing the same and fiber-reinforced thermoplastic resin composition
US4160757A (en) Adhesive composition
JP2011521084A (en) Fiber reinforced TPU composite
JP3048481B2 (en) Bundled carbon fiber, method for producing the same, and carbon fiber reinforced thermoplastic resin
US3422066A (en) Polyurethane fibers
JPS583501B2 (en) Carbon fiber reinforced thermoplastic resin composition
JPH1077350A (en) Chopped strand of carbon fiber
EP1017742A1 (en) Thermoplastic polyurethane additives for chain extension and reactive extrusion
US3792114A (en) Composition of polysulfones and polyurethanes
JPS63152468A (en) Carbon fiber for reinforcing thermoplastic resin
JPH09105080A (en) Surface-treated carbon fiber and carbon fiber-reinforced resin composition
JPH05171020A (en) Preparation of thermoplastic resin composition
WO2024004748A1 (en) Fiber-reinforced resin molding material and molded article
JPH05132875A (en) Bundled carbon short fiber