JPS62274154A - Static pressure screw and its manufacture - Google Patents

Static pressure screw and its manufacture

Info

Publication number
JPS62274154A
JPS62274154A JP11563686A JP11563686A JPS62274154A JP S62274154 A JPS62274154 A JP S62274154A JP 11563686 A JP11563686 A JP 11563686A JP 11563686 A JP11563686 A JP 11563686A JP S62274154 A JPS62274154 A JP S62274154A
Authority
JP
Japan
Prior art keywords
screw
static pressure
porous body
flank surface
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11563686A
Other languages
Japanese (ja)
Other versions
JPH07117137B2 (en
Inventor
Munezumi Kanai
宗統 金井
Hiroo Kinoshita
博雄 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP61115636A priority Critical patent/JPH07117137B2/en
Publication of JPS62274154A publication Critical patent/JPS62274154A/en
Publication of JPH07117137B2 publication Critical patent/JPH07117137B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transmission Devices (AREA)

Abstract

PURPOSE:To eliminate the need of working a hole, a groove and the like on a flank surface by using a porous body for a fluid supply path confronting with the flank surface of a static pressure screw in the static pressure screw supporting between a male screw and a female screw out of contact by fluid pressure. CONSTITUTION:A nut stored in a case 2 fixes a porous body 11 made of ceramics or the like on a screw base 20 and further the forward end portion 19 made of the same material as that of the base 20 thereon, and forms a screw clearance 8 between a flank surface 9 and a male screw. Further there are provided a connecting hole 12 for supplying fluid pressure from a supply groove 4 of the base 20 to the porous body 11 and a reclaiming hole 7 for reclaiming a fluid from a screw valley portion of the nut to a reclaiming groove 5. In this arrangement, the porous body functions as a passage resistance, and the porous body itself works as a passage, so that it is necessary to work a supply hole and a passage groove on the flank surface so as to easily obtain a static pressure screw, the angle of thread of which is vertical and a static pressure screw made of ceramics.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は、流体圧で雄ねじと雌ねじ間を非接触で支持す
る静圧ねじに関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a static pressure screw that supports a male thread and a female thread without contact using fluid pressure.

〔従来の技術〕[Conventional technology]

回転を直線運動に変換させるねじ送りの高速・高精度化
を達成させる手段のひとつとして、雄ねじと雌ねじ間の
隙間(以下ねじ隙間と言う)に加圧流体を供給し、流体
圧を介して雄ねじと雌ねじ間を非接触で支持する静圧ね
じがある。
As one means of achieving high speed and high precision screw feeding that converts rotation into linear motion, pressurized fluid is supplied to the gap between the male thread and the female thread (hereinafter referred to as the thread gap), and the male thread is There is a static pressure screw that supports the female thread without contact.

この静圧ねじは、流体の供給や回収のため、雌ねじが複
雑な構造となり、設計が容易でないこと、あるいは高精
度な加工を要することなど技術的課題が多い反面、ねじ
送りの高速・高精度化を阻む主原因の摩擦損失を極めて
小さくでき、かつ摩耗を皆無にできるというため、近年
超精密加工、半導体素子、光学素子、電子機器などの高
速・高精度を要求される製造装置への適用が検討されて
いる。
This static pressure screw has a complicated internal thread structure for fluid supply and recovery, and there are many technical issues such as not being easy to design or requiring high-precision machining. Frictional loss, which is the main cause of problems, can be extremely reduced, and wear can be completely eliminated. In recent years, it has been applied to manufacturing equipment that requires high speed and high precision, such as ultra-precision processing, semiconductor elements, optical elements, and electronic equipment. is being considered.

第μ図に従来の静圧ねじの構造を断面図で示す。Figure μ shows a cross-sectional view of the structure of a conventional static pressure screw.

雄ねじ/は通常の送りねじである。これに対し、雌ねじ
はねじ隙間に流体を供給・回収するため、複雑な構造と
なっている。即ち、ケース2とナノト3で構成され、ナ
ツト3の円筒外周には流体の供給溝グと回収溝!が雄ね
じ/のピッチに合せて螺旋状に刻まれ、供給溝弘および
回収溝!が供給孔2と回収孔7に導かれ、ねじ隙間♂へ
の流体の供給回収が為される。ケース2には流体供給・
回収用孔2/がある。
Male thread / is a normal lead screw. On the other hand, female threads have a complicated structure because they supply and collect fluid into the thread gap. That is, it is composed of a case 2 and a nano nut 3, and the cylindrical outer circumference of the nut 3 has a fluid supply groove and a collection groove! is carved in a spiral shape to match the pitch of the male thread, and the supply groove and recovery groove! is guided to the supply hole 2 and the recovery hole 7, and the fluid is supplied and recovered to the screw gap ♂. Case 2 has fluid supply and
There is a recovery hole 2/.

第5図は、ねじ部の拡大断面図である。従来の静圧ねし
は、ねじの山と谷との斜面(以下フランク面と言う)、
即ち左右のフランク面2間のねじ山の角度がzO0近辺
の台形ねじが主として用いられる。この理由は、供給溝
≠からねじ隙間rに流体を導くだめの供給孔乙を加工す
る関係上、フランク面りが傾斜してないと、すなわちね
じ山の角度が垂直であれば、供給孔乙の方を傾けて加工
せねばならず、加工技術上これが非常に困難で不可能に
近いためである。また、回収孔7は単なる流体の通り道
であるので、フランク面以外のどこにあってもよく例え
ば雌ねじの谷の部分でよく、さほど加工の精密さを要求
されないが、供給孔6はフランク面りがねじ山の左右に
存在するため、回収孔7の倍以上の数は加工せねばなら
ない。さらに供給孔2はねじ隙間♂に供給する流体の帯
や流れの均一性に直接影響し静圧ねじの性能を支配する
ため、加工の精密さが要求される。とくに、静圧ねじの
小形化を図る場合、供給孔乙も相対的に細くなり、一層
精密加工が困難となり、静圧ねじの小形化が容易でない
欠点がある。
FIG. 5 is an enlarged sectional view of the threaded portion. Conventional static pressure screws have slopes between the crests and valleys of the screw (hereinafter referred to as flank surfaces),
That is, a trapezoidal screw in which the angle of the thread between the left and right flank surfaces 2 is around zO0 is mainly used. The reason for this is that when machining the supply hole B that guides the fluid from the supply groove≠ to the thread gap r, if the flank surface is not inclined, that is, if the angle of the thread is vertical, the supply hole B This is because the machine must be machined at an angle, which is extremely difficult and almost impossible in terms of processing technology. In addition, since the recovery hole 7 is simply a passage for fluid, it may be located anywhere other than the flank surface, for example, in the valley of a female thread, and does not require much precision in machining, but the supply hole 6 has a flank surface. Since they are present on the left and right sides of the thread, more than twice the number of recovery holes 7 must be machined. Furthermore, since the supply hole 2 directly affects the uniformity of the band and flow of the fluid supplied to the screw gap ♂ and controls the performance of the static pressure screw, precision in machining is required. In particular, when downsizing the static pressure screw, the supply hole B also becomes relatively thin, making precision machining even more difficult, which has the drawback that it is not easy to downsize the static pressure screw.

一方、静圧ねじも静圧軸受と同様の原理に従っており、
雄ねじと雌ねじ、または軸と軸受間の隙間が減少すると
隙間内の流路抵抗が増すため流体圧が上昇し、逆に隙間
が増大すると流体圧が下降するバランスで一定のねじ隙
間や軸受隙間が保たれるように構成される。この隙間変
化による流体圧の上昇や下降の割合が大きいほど雄ねじ
と雌ねじ、まだは軸と軸受間の剛性が高いことになり、
性能が良いことになる。しかしながら隙間内の流路抵抗
のみでは、この剛性をさほど高められないので、通常は
自戒絞シ1表面絞シ、あるいはオリフィス絞り等の流路
抵抗をさらに付加して、剛性を効率よく高める工夫がさ
れる。但し、静圧ねじにオリフィス絞りを適用すると、
さらに供給孔乙の加工が困難となるので、自戒絞りや表
面絞りがよく用いられる。
On the other hand, hydrostatic screws also follow the same principle as hydrostatic bearings.
When the gap between the male thread and the female thread, or between the shaft and the bearing, decreases, the flow path resistance within the gap increases, causing the fluid pressure to rise, and conversely, as the gap increases, the fluid pressure decreases.With this balance, a certain screw gap or bearing gap is maintained. configured to be maintained. The greater the rate of increase or decrease in fluid pressure due to this gap change, the greater the rigidity between the male thread and the female thread, and between the shaft and the bearing.
This means that the performance will be good. However, it is not possible to increase this rigidity very much with only the flow path resistance in the gap, so it is usually necessary to add flow path resistance such as self-control, surface restriction, orifice restriction, etc. to efficiently increase the rigidity. be done. However, if an orifice restriction is applied to a static pressure screw,
Furthermore, machining of the supply hole B is difficult, so self-drawing and surface drawing are often used.

第6図は、ねじの送り方向から見た自戒絞り形の静圧ね
じのフランク面である。紙面に垂直な方向にらせん状に
緊がっているが、切断面は図示しない。自戒絞りは流体
が供給孔2からねじ隙間に至る流路の断面積変化を流路
抵抗とするもので、この場合、供給孔乙からフランク面
りを通してねじ隙間に吐出された流体は流路抵抗が最小
となるよう、大半はフランク面りの半径方向に流れる。
FIG. 6 is a flank surface of a self-drawn type static pressure screw viewed from the screw feeding direction. It is twisted in a spiral shape in a direction perpendicular to the plane of the paper, but the cut surface is not shown. Self-control is a method in which the change in the cross-sectional area of the flow path from the supply hole 2 to the screw gap is used as the flow resistance. Most of the flow flows in the radial direction of the flank surface so that the flow is minimized.

このため、流体をフランク面りの円周上の全ての部分に
より均等に供給するには、精密加工を要する供給孔乙を
フランク面り上に多数加工せねばならず、静圧ねじの高
価格化を招く最大の欠点となっている。
Therefore, in order to supply fluid evenly to all parts of the circumference of the flank surface, it is necessary to machine a large number of supply holes on the flank surface that require precision machining, resulting in the high cost of static pressure screws. This is the biggest drawback that leads to

第7図は、表面絞り形のフランク面である。第6図と同
様に切断面を図示しない。表面絞りはフランク面り上に
流路溝10を設け、流路溝10からねじ隙間に至る流路
の断面積変化を流路抵抗とするものである。この場合、
流路溝10はフランク面りの円周方向に設けるので、供
給孔2から吐出された流体は、流路抵抗の小さい流路溝
10を流れた後、フランク面り(ねじ隙間)に達する。
FIG. 7 shows the flank surface of the surface drawing type. Similar to FIG. 6, the cut plane is not shown. The surface aperture is such that a channel groove 10 is provided on the flank surface, and a change in the cross-sectional area of the channel from the channel groove 10 to the screw gap is used as the channel resistance. in this case,
Since the channel groove 10 is provided in the circumferential direction of the flank surface, the fluid discharged from the supply hole 2 reaches the flank surface (screw gap) after flowing through the channel groove 10 with low flow resistance.

このため、自戒絞りのように多数の供給孔2を加工する
必要はないが、加工工具の加工位置への人出が容易でな
いことから、雌ねじのフランク面に供給孔と同様に精密
さが要求される流路溝10を形成すること自体が、静圧
ねじの高価格化を招く欠点となっている。
For this reason, it is not necessary to machine a large number of supply holes 2 as in the case of Jikado drawing, but since it is not easy to get someone to the processing position of the processing tool, precision is required on the flank surface of the female screw like the supply hole. The formation of the flow passage groove 10 itself is a drawback that increases the cost of the hydrostatic screw.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、静圧ねじのフランク面に供給孔や流路溝を設
けることなく構成できる静圧ねじを実現し、小形、高性
能で低価格の静圧ねじを提供することにある。
An object of the present invention is to realize a static pressure screw that can be configured without providing a supply hole or a flow path groove on the flank surface of the static pressure screw, and to provide a small, high-performance, low-cost static pressure screw.

〔問題点を解決するための手段〕 本発明による静圧ねじは、フランク面の少なくとも一部
が流体の供給路を有する多孔質体で構成され、前記多孔
質体内に流体を供給するための導通孔が前記多孔質体に
接続されていることを特徴とし、また、本発明による静
圧ねじの製造方法は、多輪筒の内側に少なくとも多孔質
の中空円筒を固着させた管状母材を内側から加工し、フ
ランク面の少なくとも一部が前記多孔質体で構成される
ようにねじ山とねじ谷を形成する工程と、前記管状母材
を外側から加工し、前記多孔質体に達する導通孔を形成
する工程を含むことを特徴とする。
[Means for Solving the Problems] The static pressure screw according to the present invention is constituted by a porous body having at least a part of its flank surface having a fluid supply passage, and a conduction for supplying fluid into the porous body. The method for producing a static pressure screw according to the present invention is characterized in that the hole is connected to the porous body, and the method for manufacturing a static pressure screw according to the present invention includes a tubular base material in which at least a porous hollow cylinder is fixed to the inside of a multi-ring cylinder. forming threads and thread valleys so that at least a portion of the flank surface is made of the porous body; and a step of machining the tubular base material from the outside to form a through hole reaching the porous body. It is characterized by including the step of forming.

〔作 用〕[For production]

本発明は、静圧ねじのフランク面に対する流体の供給路
に多孔質体を用いることにより、多孔質体が流路抵抗を
兼ねた作用をする。また多孔質自体が流路になるため、
フランク面に供給孔や流路溝を加工する必要がない。さ
らに、従来、不可能に近かったねじ山の角度が垂直の静
圧ねじや、セラミック製の静圧ねじを容易に実現できる
。また静圧ねじを小型化できる。
In the present invention, by using a porous body in the fluid supply path to the flank surface of the static pressure screw, the porous body acts as a flow path resistance. In addition, since the porous material itself becomes a flow path,
There is no need to process supply holes or channel grooves on the flank surface. Furthermore, it is now possible to easily create static pressure screws with vertical thread angles and ceramic static pressure screws, which was nearly impossible in the past. In addition, the static pressure screw can be made smaller.

〔実施例〕〔Example〕

(実施例/) 第1図(a)は本発明の第1の実施例で、//は多孔質
体、/λは供給溝≠と多孔質体77間の導通孔である。
(Example/) FIG. 1(a) shows a first example of the present invention, where // is a porous body and /λ is a communication hole between the supply groove≠ and the porous body 77.

図中従来例と同一のものについては同じ番号を用いる。In the figure, the same numbers are used for the same parts as in the conventional example.

/9はねじ山の先端部であり、後述する第3図(a)の
内輪筒/夕の材料で構成され、−〇はねじの基体であシ
後述する第3図(a)の外輪筒/6の材料で構成されて
いる。流体は供給溝弘から導通孔/2を通り、多孔質体
//に至った後、左右のねじ隙間♂に供給される。
/9 is the tip of the thread, which is made of the material of the inner ring shown in Fig. 3 (a), which will be described later, and -〇 is the base of the screw, and is made of the material of the outer ring shown in Fig. 3 (a), which will be described later. /6 materials. The fluid passes through the through hole /2 from the supply hole, reaches the porous body //, and is then supplied to the left and right screw gaps ♂.

また、第1図(b)はねじ送りの方向から見た第1図の
静圧ねじのフランク面近傍を模式的に示したものである
。紙面に垂直な方向にらせん状に緊がっているがこの切
断面は図示しない。なお、フランク面の後にある導通孔
/2を破線で示す。導通孔/2はねに山に対応する位置
にある。
Further, FIG. 1(b) schematically shows the vicinity of the flank surface of the static pressure screw in FIG. 1 as viewed from the screw feeding direction. Although it is twisted in a spiral shape in a direction perpendicular to the plane of the paper, this cut surface is not shown. Note that the conductive hole /2 located behind the flank surface is shown by a broken line. The conductive hole/2 is located at a position corresponding to the ridge.

通常、多孔質体//は連続して連った無数の微小空間に
より構成されるので、これを通過する流体は断面積変化
による流路抵抗と、微小空間の壁面との粘性摩擦による
流路抵抗とを受けることになる。このため、断面積変化
が流路抵抗の主体である自戒絞りや表面絞りに較べ優位
の流路抵抗となる。即ち、流体の流量はねじ隙間や軸受
隙間の3乗に、粘性抵抗は流速や流量に比例し、多孔質
内の流路はきわめて細く粘性抵抗を有するので、多孔質
絞りはねじ隙間が大きくなり流速が増せば多孔質内での
粘性抵抗が増大するため流量を増すまいとねじ隙間が小
さくなり流速が減れば多孔質内での粘性抵抗が減少する
ため流量を減らすまいと作用する。このことは、断面積
変化のみの従来の絞りに較べ、断面積変化に加え粘性抵
抗を有する多孔質絞りは、隙間が増せばより隙間内の圧
力を減少させ、隙間が減れば、より隙間の圧力を増大さ
せる効果を生むことになる。これは、静圧ねじのM性を
従来より高めることになる。
Normally, a porous body// is composed of a countless number of continuous micro-spaces, so the fluid passing through it is affected by flow resistance due to changes in cross-sectional area and flow paths due to viscous friction with the walls of the micro-spaces. It will be met with resistance. For this reason, the cross-sectional area change becomes a superior flow path resistance compared to self-restriction or surface restriction, in which the main flow path resistance is a change in cross-sectional area. In other words, the flow rate of fluid is proportional to the cube of the screw gap or bearing gap, and the viscous resistance is proportional to the flow velocity or flow rate.The flow path inside the porous material is extremely thin and has viscous resistance, so the porous restrictor has a large screw gap. As the flow rate increases, the viscous resistance within the porous material increases, so unless the flow rate is increased, the screw gap will become smaller, and if the flow speed decreases, the viscous resistance within the porous material will decrease, which will act to prevent the flow rate from being reduced. This means that, compared to a conventional diaphragm that only changes cross-sectional area, a porous diaphragm that has viscous resistance in addition to a change in cross-sectional area will reduce the pressure in the gap more as the gap increases, and as the gap decreases, the pressure in the gap will decrease more. This has the effect of increasing pressure. This improves the M property of the static pressure screw compared to the conventional one.

このような構造となっているため、本発明の静圧ねじは
、多孔質体//が流体の供給路と流路抵抗の付加とを兼
ねていることになる。この効果として、自戒絞りや表面
絞り形の静圧ねじに不可欠の供給孔や流路溝を精密加工
する必要がなく、加工が容易となるため静圧ねじの低価
格化が可能となる。加えて、従来の静圧ねじは、ねじ山
の左右のフランク面りに供給孔を設ける必要があったが
、本発明の静圧ねしは7本の導通孔/2で左右のフラン
ク面りに流体を供給できる。また、この導通孔/2は従
来の静圧ねじでも何ら有効利用されてない個所に設けら
れるから、供給孔乙を必要としない分だけねじ山を小さ
くできることになり、静圧ねじの小形化が可能となる。
Because of this structure, in the static pressure screw of the present invention, the porous body serves both as a fluid supply path and as an addition of flow path resistance. This effect eliminates the need for precision machining of supply holes and flow channel grooves, which are essential for self-drawn and surface-drawn type static pressure screws, making machining easier and making it possible to lower the price of static pressure screws. In addition, conventional static pressure screws required supply holes to be provided on the left and right flank surfaces of the screw thread, but the hydrostatic screw of the present invention has 7 conduction holes/2 on the left and right flank surfaces. can supply fluid to In addition, since this conduction hole /2 is provided in a place that is not used effectively even in conventional static pressure screws, the screw thread can be made smaller by the amount that does not require the supply hole B, and the size of the static pressure screw can be reduced. It becomes possible.

尚、本発明の静圧ねじは、気体または液体いずれの流体
も適用できること、並びに、気体と液体では粘性が大き
く異なるが、これに合せ適正な流路抵抗を有する多孔質
体//を選択すれば良いととなどは言うまでもない。流
体の適正な流量はねじ隙間と多孔質のボロンティの比に
依存する。隙間を大にすればポロシティを犬に、隙間を
小にすればポロシティを小に制御することにより、適正
な設計値にする。ポロシティは例えば焼結する前の原料
の粒度により調整できる。
It should be noted that the static pressure screw of the present invention can be used with either gas or liquid, and the viscosity of gas and liquid is greatly different, so a porous material with appropriate flow resistance should be selected accordingly. Needless to say, it's good. The proper flow rate of fluid depends on the ratio of thread clearance to porous volunty. By increasing the gap, the porosity is controlled to a smaller value, and by decreasing the gap, the porosity is controlled to a smaller value, thereby achieving an appropriate design value. Porosity can be adjusted, for example, by adjusting the particle size of the raw material before sintering.

(実施例、2) ス 第す図は本発明の第2の実施例である。従来の静圧ねじ
はフランク面りが頌斜してないと供給孔を設けるのが不
可能に近いが、本発明の静圧ねじは供給孔を必要としな
いので、第7図に示したねじ山の角度が垂直の静圧ねじ
が容易に実現できる。
(Embodiment 2) Figure 2 shows a second embodiment of the present invention. It is nearly impossible to provide a supply hole in a conventional static pressure screw unless the flank surface is oblique, but the static pressure screw of the present invention does not require a supply hole, so the screw shown in Fig. 7 A static pressure screw with vertical crest angles can be easily realized.

一般に、ねじ山が傾斜しているねじは、送り直角方向の
荷重を受けられること、フランク面が送りの案内となる
こと、あるいは、自動求心性があることなど多くの長所
がある反面、工作機械によるねじ山を創成する加工法に
精度上の難点があり、ねじ山に成形した型による加工が
主となるだめ高精度化にフランク面を形成することが容
易でない、とぐに、ねじの半径方向の加工分力が大きく
なるので、ねじの送り精度を定めてしまう雄ねじの加工
において、曲げモーメント成分が作用し雄ねじのたわみ
を誘引し、高精度加工を阻害する。この点、ねじ山の角
度が垂直のねじは、これらの長・短所が丁度逆になって
おり、加工時のたわみが生じ難いので工作機械の親ねじ
などに使用される精密送りねじにはねじ山の角度が垂直
の台形ねじが用い・られる理山となっている。本発明の
静圧ねじは・本実施例のようにねじ山の角度を垂直にて
き静圧ねじの主目的であるねじ送りの高精度化を従来に
較べ容易に達成できることになる。ただし本発明の静圧
ねじは特にねじ山の角度を垂直に限る必要はなく自由に
選択できるので広範囲な用途に適用できることは勿論で
ある。
In general, screws with inclined threads have many advantages, such as being able to receive loads in the direction perpendicular to the feed, the flank surface acting as a guide for the feed, and having automatic centripetal properties. The machining method for creating threads has a drawback in terms of accuracy, and since machining is mainly done using a mold formed on the threads, it is not easy to form flank surfaces with high precision. As the machining force component becomes large, in machining the male screw that determines the feed accuracy of the screw, a bending moment component acts and induces deflection of the male screw, impeding high-precision machining. In this regard, screws with vertical thread angles have exactly the opposite advantages and disadvantages, and are less prone to deflection during machining. A trapezoidal screw with a vertical angle is used. The static pressure screw of the present invention has a vertical screw thread angle as in this embodiment, and can more easily achieve high precision screw feeding, which is the main purpose of a static pressure screw. However, it is needless to say that the static pressure screw of the present invention can be applied to a wide range of applications since the angle of the screw thread need not be particularly limited to vertical and can be freely selected.

なお、第1図、第2図では多孔質体//をねじの山と谷
の一部分に設けであるが、ねじの山と谷との間がすべて
多孔質体であっても差支えない。
In addition, in FIGS. 1 and 2, the porous body // is provided in a part of the crests and valleys of the screw, but the porous body may be provided entirely between the crests and troughs of the screw.

また導通孔/2は多孔質体//に達していればよく、多
孔質体に開けられていなくてもよい。その信奉発明の主
旨を逸脱しない範囲内で種々の変更を加えうろことはい
うまでもない。
Further, the conduction hole /2 only needs to reach the porous body //, and does not need to be opened in the porous body. It goes without saying that various changes may be made without departing from the spirit of the claimed invention.

(実施例3) 第3図(a)、 (b)、 (C)は本発明の静圧ねじ
の製造法を説明するための、第3の実施例である。第3
図(a)が本発明の静圧ねじのナツト部を構成する加工
母材/3の製造工程で、/≠が多孔質中空筒、/夕が内
輪筒、/2が外輪筒である。加工母材/3は多孔質中空
筒/4tの内面と外面に、それぞれ内輪筒/!および外
輪筒/乙が同軸上になるよう配置し一体とする。一体化
は、個別に製作した内輪筒/!、外輪筒/2および多孔
質中空筒/弘をはめ合せた後、熱拡散で結合する方法、
内輪筒/J″と外輪筒/2との隙間に多孔質素材を注入
し焼成する方法、あるいは内輪筒/J−の外面または外
輪筒の内面にプラズマ溶射て多孔質部を形成した後内輪
筒/!または外輪筒/乙をはめ合せ結合する方法など種
々の方法が適用できる。また、加工母材/3(/弘のみ
あるいは/グから/&まで)には、金属あるいはセラミ
ックなど、多孔質体が存在するものであればいずれでも
良い。
(Embodiment 3) FIGS. 3(a), 3(b), and 3(C) show a third embodiment for explaining the method of manufacturing a static pressure screw of the present invention. Third
Figure (a) shows the manufacturing process of the processed base material /3 constituting the nut portion of the hydrostatic screw of the present invention, /≠ is a porous hollow cylinder, /Y is the inner ring cylinder, /2 is the outer ring cylinder. Processing base material /3 is a porous hollow cylinder /4t, and inner cylinder /! Arrange and integrate the outer ring cylinder/B so that they are coaxial. Integration is an individually manufactured inner cylinder/! , a method of fitting the outer ring cylinder/2 and the porous hollow cylinder/Hiro and then joining them by thermal diffusion;
A method in which a porous material is injected into the gap between the inner cylinder/J'' and the outer cylinder/2 and then fired, or a rear inner cylinder in which a porous part is formed by plasma spraying on the outer surface of the inner cylinder/J- or the inner surface of the outer cylinder. Various methods can be applied, such as the method of fitting and joining /! or outer ring cylinder /O.In addition, the processing base material /3 (from /Hiromi or /G to /&) may be made of porous material such as metal or ceramic. Any object that has a body is fine.

第3図(blは、このようにして製造した加工母材/3
に、公知の切削加工及び研削加工によシ雌ねじ部/7を
製作し切削加工または研削加工によりスパイラル状に流
体の供給溝≠、排出溝jを製作し、穴あけにより導通孔
/2、および排出孔7を製作した本発明の静圧ねじのナ
ツト/♂を示す。
Figure 3 (bl is the processed base material manufactured in this way/3
Then, a female thread part /7 is manufactured by a known cutting process and a grinding process, and a fluid supply groove ≠ and a discharge groove j are created in a spiral shape by cutting or grinding process, and a through hole /2 and a discharge groove are formed by drilling. The nut/♂ of the hydrostatic screw of the present invention with hole 7 made therein is shown.

第3図(C)は、本発明のナンド/♂を圧入や焼きばめ
によりケース2に組み込んだところを示す。このような
製造法をとるため、従来のように多数の精密な供給孔や
流路溝を製作する必要がなく精密加工を要するのは、静
圧ねじである以上避けられないねじのフランク面のみと
なり、加工精度が性能に及ぼす影響を軽減でき、且つ加
工も容易となるため、静圧ねじの高性能化や低価格化が
可能となる。また、従来の静圧ねじは供給孔や流路溝を
精密加工する関係上、ナツト/♂の材質は金属に限られ
ていたが、加工母材/3をセラミックで構成し仮焼成段
階で本発明の静圧ねじの形態を整えた後、通常の機械加
工で本焼成し最後にねじのフランク面のみ高精度に研削
あるいはラッピング加工することが可能となるので、セ
ラミック製の静圧ねじが実現できることになる。セラミ
ックは金属に較べ、高剛性、低加工歪など高精度加工に
適しており、また、塑性変形しないので、加工による多
孔質体の目詰りの心配がないこと等、本発明の静圧ねじ
を実現する上で有利な材料である。さらに低熱膨張係数
、且つ、軽量であり静圧ねじの主目的である高速・高精
度化にも合致した材料であることは言うまでもない。
FIG. 3(C) shows the NAND/♂ of the present invention assembled into the case 2 by press-fitting or shrink-fitting. Because this manufacturing method is used, there is no need to manufacture a large number of precise supply holes and flow grooves as in the past, and only the flank face of the screw, which is unavoidable since it is a static pressure screw, requires precision machining. As a result, the influence of machining accuracy on performance can be reduced, and machining is also easy, making it possible to improve the performance and lower the cost of static pressure screws. In addition, in conventional static pressure screws, the material of the nut/♂ was limited to metal due to precision machining of the supply hole and flow channel groove, but the machining base material/3 is made of ceramic, and the nut is made of ceramic during the pre-firing stage. After preparing the form of the static pressure screw of the invention, it is possible to carry out final firing using normal machining, and finally grinding or lapping only the flank surface of the screw with high precision, making it possible to create a ceramic static pressure screw. It will be possible. Compared to metals, ceramics are suitable for high-precision machining due to their high rigidity and low machining distortion, and since they do not undergo plastic deformation, there is no need to worry about clogging of porous bodies due to machining. It is an advantageous material for realization. Furthermore, it goes without saying that it is a material that has a low coefficient of thermal expansion, is lightweight, and meets the main objectives of static pressure screws: high speed and high precision.

なお、第3図の実施例では内輪筒のある場合について述
べたが、内輪筒がなくても第3図(C)の静圧ねじを製
造することは可能である。
Although the embodiment shown in FIG. 3 has been described with an inner ring cylinder, it is possible to manufacture the static pressure screw shown in FIG. 3(C) even without an inner ring cylinder.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、実施例/および2で示した本発明
の多孔質絞り形の静圧ねじは、従来の自戒絞りや表面絞
り形の静圧ねじに不可欠である精密な供給孔や流路溝の
加工を必要としないので、加工が容易となるだけでなく
、ねじ山の角度を選択できるので用途が広範囲となる。
As explained above, the porous drawing type static pressure screw of the present invention shown in Examples/2 is equipped with precise supply holes and flow channels that are essential for conventional self-drawing and surface drawing type static pressure screws. Since it does not require the processing of grooves, it is not only easy to process, but also has a wide range of applications because the angle of the thread can be selected.

とくに従来、不可能に近かったねじ山の角度が垂直であ
るねじの実現は、静圧ねじの主目的であるねじ送りの高
精度化をさらに進捗させることができる。また、7個)
の供給孔を設ける必要がなく、各ねじ山に対しても7個
(両側のフランク面に対して7個)導通孔を設ければ良
いので、容易にねじの小型化ができる。加えて、多孔質
絞りが従来の絞りに比べ流量の自動制御性があり優位で
あるので、静圧ねじの高剛性化にも効果がある等、静圧
ねじの小形高性能化や低価格化に直結する種々な利点が
ある。
In particular, the realization of a screw with a vertical thread angle, which was nearly impossible in the past, can further improve the precision of screw feeding, which is the main purpose of static pressure screws. Also, 7 pieces)
There is no need to provide a supply hole, and it is sufficient to provide seven through holes for each screw thread (seven for each flank surface on both sides), so the screw can be easily miniaturized. In addition, porous orifices are superior to conventional orifices in that they can automatically control the flow rate, so they are effective in increasing the rigidity of hydrostatic screws, making them smaller, with higher performance, and at lower prices. There are various advantages that are directly connected to

実施例3に示した本発明の静圧ねじの製造法は、種々な
方法で比較的に容易に多孔質絞り形静圧ねじの加工母材
が得られる利点に加え、セラミック製の静圧ねじを実現
できるので、セラミックの特徴を生かしたねじ送りの高
速・高精度化も可能となる利点がある。
The method for manufacturing a hydrostatic screw of the present invention shown in Example 3 has the advantage that a processed base material for a porous drawn-type hydrostatic screw can be obtained relatively easily by various methods. This has the advantage of making it possible to increase the speed and precision of screw feeding by taking advantage of the characteristics of ceramics.

従って、超精密な加工あるいは測定精度を求められる装
置における試料や加工・測定工具の精密送り、半導体素
子製造工程における微細パターン転写や検査に用いられ
るXYステージの高速・精密駆動あるいは光や磁気ディ
スク装置における書き込みや読取ヘッドの高速・高精度
な送り位置決め等に用いれば、本発明の静圧ねじの特徴
が生かせることになる。
Therefore, precision feeding of samples and processing/measuring tools in equipment that requires ultra-precision processing or measurement accuracy, high-speed and precision drive of XY stages used for fine pattern transfer and inspection in semiconductor device manufacturing processes, and optical and magnetic disk devices The characteristics of the static pressure screw of the present invention can be utilized for high-speed, high-precision feeding and positioning of writing and reading heads.

さらに、実施例/及び2では雌ねじのフランク面の一部
が多孔質体で構成される場合を説明したが、雄ねじのフ
ランク面の一部を多孔質体で構成し、雄ねじ側に流体の
導通孔を設けることも可能である。
Furthermore, in Examples/and 2, a case was explained in which a part of the flank surface of the female thread is made of a porous material, but a part of the flank surface of the male thread is made of a porous material, and fluid conduction is provided to the male thread side. It is also possible to provide holes.

なお、実施例/及び実施例コではフランク面の一部が多
孔質体で構成される例について説明したが、ねじ山の先
端部/りまですべて多孔質体で構成してもよい。またそ
の場合には、第3図(a)で内輪筒/夕のない二重構造
の管状母材を使用すればよい。
In addition, in Examples/Example C, an example in which a part of the flank surface is made of a porous material has been described, but the whole part up to the tip of the thread may be made of a porous material. In that case, it is sufficient to use a tubular base material having a double structure without an inner ring/tube as shown in FIG. 3(a).

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は多孔質絞りを用いた本発明の静圧ねじの
第1の実施例の断面図、第1図(b)は実施例/のフラ
ンク面、第2図は多孔質絞りを用いた本発明の静圧ねじ
の第2の実施例の断面図、第3図は多孔質絞りを用いた
本発明の静圧ねじの製造方法を示した実施例の断面図、
第≠図は従来の静圧ねじの構造を示した断面図、第!図
は第μ図におけるねじ部の拡大断面図、第2図は従来の
静圧ねしにおける自戒絞り形のフランク面、第7図は従
来の静圧ねじにおける面絞り形のフランク面である。 /は雄ねじ、2はナツトを格納するケース、3はナツト
、≠は供給溝、夕は回収溝、乙は供給孔、7は回収孔、
♂はねじ隙間、りはフランク面、10は流路溝、//は
多孔質体、/2は導通孔、/3は加工母材、/弘は多孔
質中空筒、/よは内輪筒、/2は外輪筒、/7は雌ねじ
部、/♂はナツト、/りはねじ山の先端部、−〇はねじ
の基体、2/はケースの流体供給・回収用孔である。
Fig. 1(a) is a sectional view of the first embodiment of the static pressure screw of the present invention using a porous orifice, Fig. 1(b) is a flank surface of the embodiment, and Fig. 2 is a porous orifice. FIG. 3 is a sectional view of a second embodiment of the hydrostatic screw of the present invention using a porous aperture, and FIG.
Figure ≠ is a sectional view showing the structure of a conventional static pressure screw. The figure is an enlarged sectional view of the threaded portion in Fig. µ, Fig. 2 is a flank face of a conventional static pressure screw with a self-drawn type, and Fig. 7 is a flank face of a face drawn type in a conventional static pressure screw. / is a male thread, 2 is a case that stores the nut, 3 is a nut, ≠ is a supply groove, ≠ is a collection groove, O is a supply hole, 7 is a collection hole,
♂ is the thread gap, ri is the flank surface, 10 is the flow groove, // is the porous body, /2 is the through hole, /3 is the processed base material, /Hiro is the porous hollow cylinder, /yo is the inner ring cylinder, /2 is the outer cylinder, /7 is the female thread, /♂ is the nut, / is the tip of the thread, -0 is the base of the screw, and 2/ is the fluid supply/recovery hole in the case.

Claims (2)

【特許請求の範囲】[Claims] (1)フランク面の少くとも一部が流体の供給路を有す
る多孔質体で構成され、前記多孔質体内に流体を供給す
るための導通孔が、前記多孔質体に接続されていること
を特徴とする静圧ねじ。
(1) At least a part of the flank surface is composed of a porous body having a fluid supply path, and a conduction hole for supplying fluid into the porous body is connected to the porous body. Characteristic static pressure screw.
(2)外輪筒の内側に少なくとも多孔質の中空円筒を固
着させた管状母材を内側から加工し、フランク面の少な
くとも一部が前記多孔質体で構成されるようにねじ山と
ねじ谷を形成する工程と、前記管状母材を外側から加工
し前記多孔質体に達する導通孔を形成する工程を含むこ
とを特徴とする静圧ねじの製造方法。
(2) A tubular base material with at least a porous hollow cylinder fixed to the inside of the outer ring cylinder is machined from the inside, and threads and thread valleys are formed so that at least a part of the flank surface is composed of the porous body. A method for manufacturing a static pressure screw, comprising the steps of: forming the tubular base material from the outside to form a through hole reaching the porous body.
JP61115636A 1986-05-20 1986-05-20 Hydrostatic screw and manufacturing method thereof Expired - Lifetime JPH07117137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61115636A JPH07117137B2 (en) 1986-05-20 1986-05-20 Hydrostatic screw and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61115636A JPH07117137B2 (en) 1986-05-20 1986-05-20 Hydrostatic screw and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS62274154A true JPS62274154A (en) 1987-11-28
JPH07117137B2 JPH07117137B2 (en) 1995-12-18

Family

ID=14667546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61115636A Expired - Lifetime JPH07117137B2 (en) 1986-05-20 1986-05-20 Hydrostatic screw and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH07117137B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108788878A (en) * 2018-05-04 2018-11-13 青岛科技大学 A kind of driving static-pressure lead screw pair of nut

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5715144A (en) * 1980-07-02 1982-01-26 Nachi Fujikoshi Corp Static pressure screw device
JPS59113360A (en) * 1982-12-17 1984-06-30 Matsushita Electric Ind Co Ltd Static screw

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5715144A (en) * 1980-07-02 1982-01-26 Nachi Fujikoshi Corp Static pressure screw device
JPS59113360A (en) * 1982-12-17 1984-06-30 Matsushita Electric Ind Co Ltd Static screw

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108788878A (en) * 2018-05-04 2018-11-13 青岛科技大学 A kind of driving static-pressure lead screw pair of nut
CN108788878B (en) * 2018-05-04 2019-07-16 青岛科技大学 A kind of driving static-pressure lead screw pair of nut

Also Published As

Publication number Publication date
JPH07117137B2 (en) 1995-12-18

Similar Documents

Publication Publication Date Title
EP0427363B1 (en) Static pressure lead screw
US4732491A (en) Downhole motor bearing assembly
CN108788238B (en) Deep hole processing intelligent drill rod system with radial tilting pad
US8485729B2 (en) Self-compensating hydrostatic journal bearing
CN102510789A (en) Blank and tool with cooling channels
CN115351561B (en) Hydrostatic pressure guide rail assembly applied to machine tool and machine tool
JPS62274154A (en) Static pressure screw and its manufacture
US4883420A (en) Die for extruding honeycomb structural bodies
US3698774A (en) Spindle assembly air bearings
CN106885023A (en) Piezo-electric type active control thin film restrictor
CN106704371B (en) A kind of pressurized air slit thrust bearing and its processing method
JP7005810B1 (en) Gas drawing structure and static pressure gas bearings that make up the static pressure gas bearing
JPH071057B2 (en) Hydrostatic screw
CN208696377U (en) A kind of deep hole machining intelligent drilling rod system with Tilting Pad block
JPS6228519A (en) Ceramic bearing device
JPS63176890A (en) Annular rotary hydraulic joint
TWI572798B (en) Ball screw device and bearing bush assembly thereof
JP2006029412A (en) Static pressure type linear motion guide unit
TWM504889U (en) Ball screw device and bearing bush assembly thereof
Kilmister The use of porous materials in externally pressurized gas bearings
US3585906A (en) Piston sealing control system
JP3037531B2 (en) Positioning device
GB2070156A (en) Hydrostatic Bearing
JPH09324846A (en) Static pressure screw
JP6741490B2 (en) Linear slide device using hydrostatic gas bearing mechanism

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term