JPS62274055A - Bearing steel - Google Patents

Bearing steel

Info

Publication number
JPS62274055A
JPS62274055A JP61114747A JP11474786A JPS62274055A JP S62274055 A JPS62274055 A JP S62274055A JP 61114747 A JP61114747 A JP 61114747A JP 11474786 A JP11474786 A JP 11474786A JP S62274055 A JPS62274055 A JP S62274055A
Authority
JP
Japan
Prior art keywords
less
steel
bearings
bearing
life
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61114747A
Other languages
Japanese (ja)
Inventor
Masao Tanaka
正雄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP61114747A priority Critical patent/JPS62274055A/en
Publication of JPS62274055A publication Critical patent/JPS62274055A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/66High carbon steel, i.e. carbon content above 0.8 wt%, e.g. through-hardenable steel

Abstract

PURPOSE:To improve the rolling fatigue characteristics of a bearing made of undermentioned material and also to prolong the rolling life of the above, by providing a composition in which the amounts of C, Si, Mn, Cr, Mo, and Fe are specified and the amounts of Cu and Ni as impurities are reduced and limited to the prescribed quantities or below. CONSTITUTION:This bearing steel has a composition consisting of, by weight, 0.8-1.2% C, <=2% Si, <=2% Mn, 0.3-2.5% Cr, 0.05-1% Mo, and the balance Fe with impurities. Moreover, among the above impurities, Cu and/or Ni is limited to <=0.1%, respectively.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [発明の目的] (産業上の利用分野) 本発明は、とくに転勤寿命に著しく優れた軸受の素材と
して利用される軸受用鋼に関するものである。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Purpose of the Invention] (Field of Industrial Application) The present invention relates to a steel for bearings that is used as a material for bearings that has particularly excellent rolling life. be.

(従来の技術〕 一般に、機械構造用部品は高い疲れ強さを要求されるの
で、材料の選択に配慮する必要があるが、とくに軸受等
の転勤疲労特性が重視される機械構造用部品には、JI
S  G  4805に制定された高炭素クロム軸受鋼
(SUJ1〜5)が素材として用いられることが多い、
しかしながら、近年においては、自動車や産業機械等の
高速作動化などによって、軸受に対する負荷がさらに太
きくなってきており、転勤疲労特性により一層優れた軸
受およびその素材である軸受用鋼の開発が望まれている
(Prior art) In general, mechanical structural parts are required to have high fatigue strength, so consideration must be given to the selection of materials, but this is especially true for mechanical structural parts such as bearings where transfer fatigue properties are important. , J.I.
High carbon chromium bearing steel (SUJ1-5) specified in S G 4805 is often used as the material.
However, in recent years, the load on bearings has become heavier due to the high-speed operation of automobiles, industrial machinery, etc., and it is desirable to develop bearings with even better transfer fatigue properties and the steel used for bearings. It is rare.

そこで、このような軸受用鋼において、これを素材とす
る軸受の転勤疲労特性をさらに向上させてその寿命を延
長させるようにするためには、鋼中に不可避的に含有さ
れる代表的な非金属介在物、すなわち、5i02 、M
nS、TiN等の量を抑制することが必要であり、その
ためには、鋼中のO,S、Ti 、N等の含有量を極力
低減させることが重要である。
Therefore, in order to further improve the transfer fatigue characteristics of bearings made of such bearing steel and extend its life, it is necessary to incorporate typical non-containing materials that are unavoidably contained in the steel. Metal inclusions, i.e. 5i02, M
It is necessary to suppress the amount of nS, TiN, etc., and for this purpose, it is important to reduce the content of O, S, Ti, N, etc. in the steel as much as possible.

(発明が解決しようとする問題点) したがって、とくに転勤疲労特性に優れていることが要
求される軸受の素材となる軸受用鋼を溶製するに際して
は、VIM法、VAR法、ESR法、PAM法などのい
わゆる特殊溶解精錬法(例えば、「鉄鋼便覧」第3版 
■ 製銑・製鋼 第728頁〜第764頁に記載)を単
独であるいはこれらの組合わせで採用することもあるが
、素材コストが大幅に上昇するため軸受価格が高いもの
になると共に、大量生産向きでないという問題点を有し
ている。
(Problems to be Solved by the Invention) Therefore, when producing steel for bearings, which is a material for bearings that are particularly required to have excellent transfer fatigue properties, the VIM method, VAR method, ESR method, PAM method, etc. So-called special melting and refining methods such as
■ Pig making/steel making (described on pages 728 to 764) may be used alone or in combination, but this significantly increases the material cost, making the bearing price high, and making mass production difficult. It has the problem of not being oriented properly.

また、上述のようにO,S、Ti、N等の不純物含有量
を極力低減することによって、転勤疲労特性は改善でき
るものの、いまだ不十分であるという問題点があった。
Further, as mentioned above, although the transfer fatigue characteristics can be improved by reducing the content of impurities such as O, S, Ti, and N as much as possible, there is still a problem that it is still insufficient.

(発明の目的) 本発明は、このような従来の問題点に鑑みてなされたも
ので、とくに軸受の転勤疲労特性を大幅に改善してその
寿命を延長させることが可能であり、しかも素材コスト
の上昇をできるだけ抑制することが可能である軸受用鋼
を提供することを目的としているものである。
(Purpose of the Invention) The present invention has been made in view of these conventional problems, and in particular, it is possible to significantly improve the rolling fatigue characteristics of bearings and extend their life, while reducing material costs. The object of the present invention is to provide a steel for bearings that is capable of suppressing the increase in .

[発明の構成] (問題点を解決するための手段) 本発明による転勤疲労特性に優れた軸受用鋼は、重量%
で、C:0.8〜1.2%、Si:2.0%以下、Mn
:2.0%以下、Cr:0.3〜2.5%、および必要
に応じてSo文・A立:0.016〜0.070%を含
み、残部Feおよび不純物からなり、不純物中において
Cu:O,10%以下および/またはNi:0.10%
以下に規制したことを特徴としており、必要に応じてさ
らに残部Fe中にMO二〇、05〜1.0%を含有させ
、同じく必要に応じ不純物中において、P:0.006
%[F、S:0.005%以下、O:0.0007%以
下、N:0.0060%以下、Ti=0.0020%以
下に規制するようにしたことを特徴としている。
[Structure of the Invention] (Means for Solving the Problems) The bearing steel having excellent transfer fatigue properties according to the present invention has a weight percentage of
So, C: 0.8 to 1.2%, Si: 2.0% or less, Mn
: 2.0% or less, Cr: 0.3 to 2.5%, and if necessary, So and A: 0.016 to 0.070%, with the balance consisting of Fe and impurities. Cu: O, 10% or less and/or Ni: 0.10%
It is characterized by the following regulation, and if necessary, further include MO20.05 to 1.0% in the balance Fe, and P:0.006 in impurities if necessary.
% [F, S: 0.005% or less, O: 0.0007% or less, N: 0.0060% or less, Ti = 0.0020% or less.

次に1本発明による転勤疲労特性に優れた軸受用鋼の成
分組成(重量%)の限定理由について説明する。
Next, the reason for limiting the composition (weight %) of the bearing steel having excellent transfer fatigue properties according to the present invention will be explained.

C:0.8〜1.2% Cは軸受の強度、硬さおよび耐摩耗性を向上させ、その
寿命を高めるのに有効な元素であるので、このような効
果を得るために0.8%以上とした。しかし、C含有量
が多くなると鋼中の炭化物も巨大化する傾向となり、M
3 C(M: Fe 。
C: 0.8 to 1.2% C is an effective element for improving the strength, hardness and wear resistance of bearings and increasing their lifespan, so to obtain such effects, 0.8 to 1.2% % or more. However, as the C content increases, the carbides in the steel tend to become large, and M
3C(M: Fe.

Cr)系の巨大炭化物が析出して、軸受の転勤疲労寿命
を低下させるので1.2%以下とした。なお、P+S量
を低減することによって焼割れ限界を向上させ、C含有
量の上限を高めることができるので、高強度および高耐
摩耗性の軸受を焼割れなく得ることができるようになる
Since giant Cr)-based carbides precipitate and reduce the rolling fatigue life of the bearing, the content was set at 1.2% or less. Note that by reducing the amount of P+S, the limit of quench cracking can be improved and the upper limit of the C content can be increased, so that a bearing with high strength and high wear resistance can be obtained without quench cracking.

Si:2.0%以下 Slは鋼の溶製時において脱酸剤として作用すると共に
、焼入性を向上して軸受の寿命を延長するのに有効な元
素であるが、Si含有量が多すぎると被削性が低下する
ので2.0%以下とした。
Si: 2.0% or less Sl is an element that acts as a deoxidizing agent during steel melting and is effective in improving hardenability and extending the life of bearings. If it is too high, machinability deteriorates, so it is set to 2.0% or less.

Mn:2.0%以下 Mnは鋼の溶製時において脱酸および脱硫剤として作用
すると共に、焼入性を向上して基地の強靭性を高め、軸
受の寿命を延長するのに有効な元素であるが、Mn含宥
量を多くしても寿命の向上はみられず、かえって被削性
を低下させるので2.0%以下とした。
Mn: 2.0% or less Mn acts as a deoxidizing and desulfurizing agent during steel melting, and is an effective element for improving hardenability, increasing the toughness of the base, and extending the life of bearings. However, even if the Mn content is increased, no improvement in service life is observed, and on the contrary, the machinability is reduced, so the Mn content is set at 2.0% or less.

Cr:0.3〜2.5% Crは炭化物の均一微細化に寄与すると共に焼入性を向
上させ、基地の強靭性を高めて軸受の寿命を延長させる
のに有効な元素であるので、このような効果を得るため
に0.3%以上とした。しかし、Cr含有量が多くなり
すぎると均一微細な炭化物が得にくくなり、軸受の寿命
を向上させることができなくなるので2.5%以下とし
た。
Cr: 0.3-2.5% Cr is an effective element that contributes to uniform refinement of carbides, improves hardenability, increases the toughness of the matrix, and extends the life of the bearing. In order to obtain such an effect, the content was set to 0.3% or more. However, if the Cr content becomes too large, it becomes difficult to obtain uniform fine carbides, making it impossible to improve the life of the bearing, so it is set at 2.5% or less.

Mo:0.05〜1.0% Moは焼入性の向上に有効な元素であり、軸受の強靭性
を増大させるのに有効であるので、軸受の大きさ等を考
慮して必要に応じて0.05%以上添加してもよい、し
かし、多量に含有すると炭化物が微細かつ均一に分散し
なくなり、かえって靭性を低下させるので、添加する場
合でも1.0%以下とするのが良い。
Mo: 0.05-1.0% Mo is an element that is effective in improving hardenability and is effective in increasing the toughness of bearings. However, if it is added in a large amount, the carbides will not be finely and uniformly dispersed, which will actually reduce the toughness, so even if it is added, it is preferably 1.0% or less.

So!L嚢A1:0.016〜0.070%軸受の転勤
疲労にとって影響の大きい酸化物系の介在物を減少させ
るためには、従来はAfL量をできるだけ少なくする方
が良いとされていた。ところが、0含有量をかなり少な
く、例えばより望ましくは0.0007%以下に低減す
ると、一定量のAfLは酸化物系の介在物として鋼中に
存在せず、かえって結晶粒を微細化する作用により軸受
の靭性および疲労強度を向上させるようになり。
So! L-bag A1: 0.016-0.070% In order to reduce oxide-based inclusions that have a large effect on transfer fatigue of bearings, it has conventionally been thought that it is better to reduce the amount of AfL as much as possible. However, when the 0 content is reduced to a considerably small amount, preferably 0.0007% or less, a certain amount of AfL does not exist in the steel as oxide-based inclusions, but rather has the effect of refining the crystal grains. This improves the toughness and fatigue strength of bearings.

また、球状化が比較的大きな冷却速度でも完全に進み1
球状化焼鈍を行いやすくなることがわかった。そして、
少なくとも0.016%含有させることによって、軸受
の転勤疲労特性に悪影響を及ぼすことなく靭性および疲
労強度ならびに球状化焼鈍特性を向上することができる
In addition, spheroidization progresses completely even at a relatively high cooling rate.
It was found that it becomes easier to perform spheroidizing annealing. and,
By containing at least 0.016%, toughness, fatigue strength, and spheroidizing annealing characteristics can be improved without adversely affecting the transfer fatigue characteristics of the bearing.

しかし、5ofL・A立置が0.070%を超えると0
含有量が0.0007%以下であっても鋳込時等におい
て空気中の酸素と結合したり、取鍋耐大物と度広したり
して酸化物系の介在物を生成するようになるので好まし
くない、したがって、上記のような効果を得るために5
ofLeAn量は0.016〜0.070%の範囲に限
定した。
However, if 5ofL/A standing exceeds 0.070%, 0
Even if the content is less than 0.0007%, it will combine with oxygen in the air during casting, etc., or spread with large ladle-resistant materials, producing oxide-based inclusions. Unfavorable, therefore, in order to obtain the above effect, 5
The amount ofLeAn was limited to a range of 0.016% to 0.070%.

Cu:0.10%以下 Cuは軸受用鋼の基地強度を低下させ、転勤疲労特性に
悪影響を及ぼすので、軸受の転勤寿命を増大させるため
にその上限を0.10%とする必要があり、できるだけ
少なくすることが望ましい、そして、Cu量の低減は通
常の精錬による除去が困難であるため、原材料の選択に
より実現させることとなる。
Cu: 0.10% or less Cu reduces the base strength of bearing steel and has a negative effect on transfer fatigue properties, so in order to increase the transfer life of bearings, the upper limit should be 0.10%. It is desirable to reduce the amount of Cu as much as possible, and since it is difficult to remove by ordinary refining, reducing the amount of Cu is achieved by selecting raw materials.

Ni:0.10%以下 Niは焼入性の向上に寄与する元素ではあるが、′この
発明による軸受用鋼では焼入性を厳密にコントロールす
る観点から0.10%以下に限定した。そして、Ni量
の規制は通常の精錬によっては除去しがたい場合がある
ので、このような場合にはあらかじめ原材料の分析を行
い、焼入性に影響を及ぼさない程度までNi量の値が十
分低い材料を選定することが望ましい。
Ni: 0.10% or less Although Ni is an element that contributes to improving hardenability, it is limited to 0.10% or less in the steel for bearings according to the present invention from the viewpoint of strictly controlling hardenability. In some cases, restrictions on the amount of Ni may be difficult to remove through normal refining, so in such cases, the raw material should be analyzed in advance to ensure that the amount of Ni is sufficient to the extent that it does not affect hardenability. It is desirable to select materials with low

P:0.006%以下。P: 0.006% or less.

Pは結晶粒界に析出して、軸受の転勤寿命を低下させる
ので、その上限をo 、ooe%以下とし、なるべく少
なくすることが望ましい、この場合、P含有量の低減は
、溶解炉において十分な酸化精錬を行うこと、また、溶
解炉から別容器へ除滓して出湯しあるいは別容器へ出湯
した後除滓し、溶湯中にCaOもしくはNa2 CO3
を主成分とするフラックスを酸素含有ガスの流れにのせ
て吹き込む酸化精錬を行うことにより達せられる。
Since P precipitates at grain boundaries and reduces the rolling life of the bearing, it is desirable to set the upper limit to 0,00% or less and to reduce it as much as possible.In this case, the P content can be sufficiently reduced in the melting furnace. In addition, by removing the slag from the melting furnace into a separate container and tapping the melt, or by removing the sludge after tapping the melt into a separate container, CaO or Na2 CO3 is removed from the molten metal.
This is achieved by performing oxidative refining, in which a flux whose main component is blown into a flow of oxygen-containing gas.

S:0.005%以下 SはMnと結合してM n Sを形成し、鋼中にストリ
ンガ−状に展伸した状態で存在することとなるため、機
械的異方性を助長し、軸受の転勤寿命を低下させるので
、その上限をo、oos%以下とし、なるべく少なくす
ることが望ましい、この場合、S含有量の低減は、取鍋
精錬(LF)による還元精錬の強化などで達せられる。
S: 0.005% or less S combines with Mn to form MnS, and exists in the steel in a stretched stringer-like state, which promotes mechanical anisotropy and improves bearing performance. Since it reduces the transfer life of S, it is desirable to set the upper limit to o, oos% or less and to reduce it as much as possible. In this case, reduction of S content can be achieved by strengthening reduction refining by ladle refining (LF), etc. .

0:o、ooo7%以下 0が多量に含まれているとAJL203.SiO,Ti
O2等の酸化物系介在物を生成し、軸受の転勤寿命を低
下させるので、その上限を0.0007%以下とし、な
るべく少なくすることが望ましい、この場合、LF(取
鍋精錬)およびDH,RH(真空脱ガス)の強化によっ
て0含宥量を低減することができる。
0: o, ooo 7% or less If a large amount of 0 is contained, AJL203. SiO, Ti
Oxide-based inclusions such as O2 are generated and reduce the transfer life of the bearing, so it is desirable to keep the upper limit to 0.0007% or less and to reduce it as much as possible.In this case, LF (ladle refining) and DH, Zero tolerance can be reduced by enhancing RH (vacuum degassing).

N:0.006,0%以下 NはTiN等の塊状の窒化物の生成し、当該窒化物のエ
ツジ部が転勤疲労破壊の起点となって軸受の転勤寿命を
低下させるので、その上限をo、ooso%以下とし、
なるべく少なくすることが望ましい、この場合、DH,
RH(真空脱ガス)の強化によってN含有量を低減する
ことができる。
N: 0.006.0% or less N produces lumpy nitrides such as TiN, and the edges of the nitrides become the starting point of transfer fatigue fracture, reducing the transfer life of the bearing, so the upper limit should be set to o. , less than ooso%,
It is desirable to reduce it as much as possible. In this case, DH,
The N content can be reduced by strengthening RH (vacuum degassing).

Ti : 0.0020以下 TiはNと結合して塊状の窒化物TiNを生成し、当該
窒化物のエツジ部が転勤疲労破壊の起点となって軸受の
転勤寿命を低下させるので、その上限を0.0020%
以下とし、なるべく少なくすることが望ましい、この場
合、原材料の厳選、および溶解炉とは別容器での酸化精
錬の強化(02供給)などによってTi含有量を低減す
ることができる。
Ti: 0.0020 or less Ti combines with N to form a lumpy nitride TiN, and the edge of the nitride becomes a starting point for transfer fatigue fracture, reducing the transfer life of the bearing, so the upper limit is set to 0. .0020%
It is desirable to reduce the Ti content as much as possible. In this case, the Ti content can be reduced by carefully selecting raw materials and strengthening oxidation refining in a container separate from the melting furnace (02 supply).

(実施例) まず、原材料を電気アーク炉内で溶製したが、この際、
原材料を厳選することによってTi。
(Example) First, raw materials were melted in an electric arc furnace.
Ti by carefully selecting raw materials.

Cu、Ni量が所望値以下となるようにすると共に、0
2を用いた十分な酸化精錬によって脱P。
While ensuring that the amounts of Cu and Ni are below the desired values,
DeP by sufficient oxidation refining using 2.

脱Tiを行うようにした0次いで、除滓を行ったのち取
鍋内に移した。そして、この取鍋内への出鋼が完了した
のち、上方に設置したランスから02の流れにのせてN
a2CO3粉末を2kg/lonの割合で供給し、これ
と同時に底部からArガスを送給して攪拌した。そして
、除滓を行ったが、このとき復Pを防止するため十分な
除滓を行った。続いて、電極を設置して取鍋精錬を実施
し、底部からのArガスの吹込みによる攪拌と、上部ラ
ンスからスラグ−メタW界面へのガス攪拌とを併用する
ことによって、脱[3]  、脱[01を促進させた。
Next, the slag was removed and then transferred into a ladle. After the steel has been tapped into the ladle, N is placed on the flow of 02 from the lance installed above.
A2CO3 powder was supplied at a rate of 2 kg/lon, and at the same time Ar gas was supplied from the bottom for stirring. Then, slag removal was carried out, but at this time, sufficient slag removal was performed to prevent back-up. Next, an electrode was installed and ladle refining was carried out, and the de[3] , promoted de[01].

次に、溶鋼を真空脱ガス(RH)装置に移し。Next, the molten steel is transferred to a vacuum degassing (RH) device.

温度の均一化ならびに脱[N]の促進を行って。By equalizing the temperature and promoting [N] removal.

成分調整したのち、タンディツシュ内に移し変えで連總
錦浩を行ったー 次いで、得られた鋳片に対して分塊圧延および製品圧延
を行ったのち球状化焼鈍を行った。
After adjusting the components, the slab was transferred into a tundish and subjected to continuous broiling.The obtained slab was then subjected to blooming rolling and product rolling, and then spheroidizing annealing.

このようにして得た軸受用鋼の化学成分を第1表に示す
The chemical composition of the bearing steel thus obtained is shown in Table 1.

次に、前記の球状化焼なまし材から転勤寿命試験用の試
験片形状に加工したのち、850℃加熱保持後油冷の焼
入れ、および160℃加熱保持後空冷の焼もどしを行い
、次いで研磨して転勤寿命試験用の試験片を作成した。
Next, after processing the above-mentioned spheroidized annealed material into the shape of a test piece for a rolling life test, it was heated and held at 850°C, then oil-cooled, tempered, heated and held at 160°C, and then air-cooled, and then polished. A test piece for the transfer life test was prepared.

次に、前記の各試験片を用いて、ヘルツ応力が536k
gf/mm2のスラスト式転勤寿命試験を行って各試験
片の転勤寿命(累積破損確率lO%)を測定し、比較鋼
NO19を基準として転勤寿命の評価を行っ゛だ、この
結果を同じく第1表に示す。
Next, using each of the above test pieces, the Hertzian stress was 536k.
gf/mm2 thrust type transfer life test was conducted to measure the transfer life (cumulative failure probability lO%) of each test piece, and the transfer life was evaluated using comparison steel No. 19 as a standard. Shown in the table.

第1表に示すように、本発明による軸受用鋼(No、 
 1〜B)は比較の軸受用鋼(No、9〜11)に比べ
て転勤寿命に著しく優れていることが明らかである。
As shown in Table 1, bearing steel according to the present invention (No.
It is clear that steels No. 1 to B) are significantly superior in transfer life compared to comparative bearing steels (Nos. 9 to 11).

[発明の効果] 以上説明してきたように1本発明による軸受用鋼は、重
量%で、C:0.8〜1.2%、Si:2.0%以下、
M n : 2 、0%以下、Cr:0.3〜2.5%
、および必要に応じて5oil・A文:0.O16〜0
.070%、同じく必要に応じてM o : 0 、0
5〜1.0%を含み、残部Feおよび不純物からなり、
不純物中において。
[Effects of the Invention] As explained above, the bearing steel according to the present invention contains, in weight percent, C: 0.8 to 1.2%, Si: 2.0% or less,
Mn: 2, 0% or less, Cr: 0.3-2.5%
, and if necessary, 5 oil・A sentence: 0. O16~0
.. 070%, also as necessary M o: 0, 0
Contains 5 to 1.0%, the balance consists of Fe and impurities,
In impurities.

Cu:0.10%以下および/またはNi:0.10%
以下に規制し、より望ましくは不純物中においてP:0
.006%以下、S:o、oos%以下、O:O,0.
0007%以下、N:0.0060%以下、Ti:0.
0020%以下に規制したものであるから、この軸受用
鋼を素材とした軸受の転勤疲労特性を著しく改善するこ
とができ、当該軸受の転勤寿命を大幅に延長させること
が可能であるという非常に優れた効果がもたらされる。
Cu: 0.10% or less and/or Ni: 0.10%
P: 0 in impurities, preferably as follows:
.. 006% or less, S: o, oos% or less, O: O, 0.
0007% or less, N: 0.0060% or less, Ti: 0.0007% or less, N: 0.0060% or less, Ti: 0.
0.0020% or less, it is possible to significantly improve the rolling fatigue characteristics of bearings made from this bearing steel, and to significantly extend the rolling life of the bearings. Excellent effects are brought about.

Claims (6)

【特許請求の範囲】[Claims] (1)重量%で、 C:0.8〜1.2%、 Si:2.0%以下、 Mn:2.0%以下、 Cr:0.3〜2.5%を含み、残部Feおよび不純物
からなり、不純物中においてCu:0.10%以下およ
び/またはNi:0.10%以下に規制したことを特徴
とする軸受用 鋼。
(1) Contains C: 0.8 to 1.2%, Si: 2.0% or less, Mn: 2.0% or less, Cr: 0.3 to 2.5%, and the balance is Fe and 1. Steel for bearings comprising impurities, the impurities being regulated to Cu: 0.10% or less and/or Ni: 0.10% or less.
(2)残部Fe中にMo:0.05〜1.0%含有して
いることを特徴とする特許請求の範囲第(1)項記載の
軸受用鋼。
(2) The steel for bearings according to claim (1), characterized in that Mo: 0.05 to 1.0% is contained in the balance Fe.
(3)不純物中において、 P:0.006%以下、 S:0.005%以下、 O:0.0007%以下、 N:0.0060%以下、 Ti:0.0020%以下に規制したことを特徴とする
特許請求の範囲第(1)項または第(2)項記載の軸受
用鋼。
(3) Among impurities, P: 0.006% or less, S: 0.005% or less, O: 0.0007% or less, N: 0.0060% or less, Ti: 0.0020% or less A bearing steel according to claim (1) or (2), characterized in that:
(4)重量%で、 C:0.8〜1.2%、 Si:2.0%以下、 Mn:2.0%以下、 Cr:0.3〜2.5%、 Sol・Al:0.016〜0.070%を含み、残部
Feおよび不純物からなり、不純物中においてCu:0
.10%以下および/またはNi:0.10%以下に規
制したことを特徴とする軸受用鋼。
(4) In weight%, C: 0.8 to 1.2%, Si: 2.0% or less, Mn: 2.0% or less, Cr: 0.3 to 2.5%, Sol/Al: 0 .016 to 0.070%, the balance consists of Fe and impurities, Cu: 0 in the impurities
.. Steel for bearings, characterized in that it is regulated to 10% or less and/or Ni: 0.10% or less.
(5)残部Fe中にMo:0.05〜1.0%含有して
いることを特徴とする特許請求の範囲第(4)項記載の
軸受用鋼。
(5) The steel for bearings according to claim (4), characterized in that the balance of Fe contains Mo: 0.05 to 1.0%.
(6)不純物中において、 P:0.006%以下、 S:0.005%以下、 O:0.0007%以下、 N:0.0060%以下、 Ti:0.0020%以下に規制したことを特徴とする
特許請求の範囲第(4)項または第(5)項記載の軸受
用鋼。
(6) Among impurities, P: 0.006% or less, S: 0.005% or less, O: 0.0007% or less, N: 0.0060% or less, Ti: 0.0020% or less Steel for bearings according to claim 4 or 5, characterized in that:
JP61114747A 1986-05-21 1986-05-21 Bearing steel Pending JPS62274055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61114747A JPS62274055A (en) 1986-05-21 1986-05-21 Bearing steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61114747A JPS62274055A (en) 1986-05-21 1986-05-21 Bearing steel

Publications (1)

Publication Number Publication Date
JPS62274055A true JPS62274055A (en) 1987-11-28

Family

ID=14645657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61114747A Pending JPS62274055A (en) 1986-05-21 1986-05-21 Bearing steel

Country Status (1)

Country Link
JP (1) JPS62274055A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306542A (en) * 1988-05-31 1989-12-11 Sanyo Special Steel Co Ltd Steel for bearing in which composition of inclusions is regulated
JPH03146639A (en) * 1989-10-31 1991-06-21 Ntn Corp Bearing steel for cold rolling
JPH07507357A (en) * 1992-05-27 1995-08-10 アクチボラゲット・エス・コー・エフ Steel for rolling bearings
WO2001029277A1 (en) * 1999-10-21 2001-04-26 Koyo Seiko Co., Ltd. Steel for large bearing and parts for large bearing
JP2006283090A (en) * 2005-03-31 2006-10-19 Jfe Steel Kk Method for refining bearing steel
WO2012158089A1 (en) 2011-05-17 2012-11-22 Aktiebolaget Skf Improved bearing steel
JP2013001940A (en) * 2011-06-15 2013-01-07 Jfe Steel Corp Bearing material
EP2647734A1 (en) * 2010-11-29 2013-10-09 JFE Steel Corporation Bearing steel exhibiting excellent machinability after spheroidizing annealing and excellent resistance to hydrogen fatigue after quenching/tempering
JP2017137565A (en) * 2015-11-09 2017-08-10 シーアールエス ホールディングス, インコーポレイテッドCrs Holdings, Incorporated Free-machining powder metallurgy steel product and method of making same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306542A (en) * 1988-05-31 1989-12-11 Sanyo Special Steel Co Ltd Steel for bearing in which composition of inclusions is regulated
JPH03146639A (en) * 1989-10-31 1991-06-21 Ntn Corp Bearing steel for cold rolling
JPH07507357A (en) * 1992-05-27 1995-08-10 アクチボラゲット・エス・コー・エフ Steel for rolling bearings
WO2001029277A1 (en) * 1999-10-21 2001-04-26 Koyo Seiko Co., Ltd. Steel for large bearing and parts for large bearing
US6582532B1 (en) 1999-10-21 2003-06-24 Koyo Seiko Co., Ltd. Steel for large bearing and parts for large bearing
KR100497828B1 (en) * 1999-10-21 2005-07-01 고요 세이코 가부시키가이샤 Steel for large bearing and parts for large bearing
JP2006283090A (en) * 2005-03-31 2006-10-19 Jfe Steel Kk Method for refining bearing steel
EP2647734A1 (en) * 2010-11-29 2013-10-09 JFE Steel Corporation Bearing steel exhibiting excellent machinability after spheroidizing annealing and excellent resistance to hydrogen fatigue after quenching/tempering
EP2647734A4 (en) * 2010-11-29 2014-04-30 Jfe Steel Corp Bearing steel exhibiting excellent machinability after spheroidizing annealing and excellent resistance to hydrogen fatigue after quenching/tempering
WO2012158089A1 (en) 2011-05-17 2012-11-22 Aktiebolaget Skf Improved bearing steel
JP2014517151A (en) * 2011-05-17 2014-07-17 アクティエボラゲット・エスコーエッフ Improved bearing steel
EP2710165A4 (en) * 2011-05-17 2015-07-15 Skf Ab Improved bearing steel
JP2013001940A (en) * 2011-06-15 2013-01-07 Jfe Steel Corp Bearing material
JP2017137565A (en) * 2015-11-09 2017-08-10 シーアールエス ホールディングス, インコーポレイテッドCrs Holdings, Incorporated Free-machining powder metallurgy steel product and method of making same

Similar Documents

Publication Publication Date Title
CN106222362B (en) A kind of method of refining of spring steel
CN105886933B (en) Hot work die steel with high tempering softening resistance and high toughness and manufacturing method thereof
EP3831970A1 (en) Spring steel having superior fatigue life, and manufacturing method for same
CN102251197B (en) High-carbon chromium bearing steel and preparation method thereof
JPS60194047A (en) High quality bearing steel and its production
CN108359898A (en) A kind of low preparation method for being mingled with bearing steel of hypoxemia
JPS62170460A (en) High strength valve spring steel and its manufacture
JPH0579745B2 (en)
JPH01168848A (en) Universal free cutting steel for automobile parts and its production
CN112981237A (en) Steel for ball cage type universal joint retainer and production method thereof
JP3929035B2 (en) Sulfur-containing free-cutting machine structural steel
WO2019054448A1 (en) Steel material having excellent rolling fatigue characteristics
JPS62274055A (en) Bearing steel
WO2012118053A1 (en) Hot work tool steel having excellent toughness, and process of producing same
JPH083720A (en) Parts made of steel excellent in rolling fatigue life and its production
CN113604745A (en) High-sulfur free-cutting tool steel bar and preparation method thereof
JPS6338418B2 (en)
JPS61272349A (en) Bearing steel
JPS62274052A (en) Case-hardening steel for bearing
CN112442629B (en) Medium-carbon steel for mechanical structure and manufacturing method thereof
JPH0585629B2 (en)
JPH0791579B2 (en) Method for manufacturing case-hardening steel in which crystal grains do not coarsen during carburizing heat treatment
CN115852272B (en) Tellurium-containing high-speed steel and preparation method thereof
WO2021256159A1 (en) Method for producing cast slab that serves as material for steel with high fatigue strength
JP6984803B1 (en) Manufacturing method of slabs used as a material for high fatigue strength steel