JPH0585629B2 - - Google Patents

Info

Publication number
JPH0585629B2
JPH0585629B2 JP60203892A JP20389285A JPH0585629B2 JP H0585629 B2 JPH0585629 B2 JP H0585629B2 JP 60203892 A JP60203892 A JP 60203892A JP 20389285 A JP20389285 A JP 20389285A JP H0585629 B2 JPH0585629 B2 JP H0585629B2
Authority
JP
Japan
Prior art keywords
less
steel
machinability
inclusions
durability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60203892A
Other languages
Japanese (ja)
Other versions
JPS6263651A (en
Inventor
Yatsuka Takada
Tadamasa Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP20389285A priority Critical patent/JPS6263651A/en
Publication of JPS6263651A publication Critical patent/JPS6263651A/en
Publication of JPH0585629B2 publication Critical patent/JPH0585629B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0087Treatment of slags covering the steel bath, e.g. for separating slag from the molten metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、自動車、各種産業機械において使用
される玉軸受、ローラ軸受等に適し、耐久寿命、
切削性および冷間鍛造性に優れた軸受鋼およびそ
の製造法に関するものである。 (従来技術) 自動車、産業機械において使用される軸受は、
これら機器の性能向上が図られるについて、軸受
により高負荷、高速度化のもとで使用され、耐久
寿命が重要視されるようになり、耐久寿命をさら
に向上させ得る鋼の開発がなされてきた。 従来、耐久寿命を向上させるためAl2O3等の酸
化物系介在物量を低減する方法が実施されてい
る。 (解決しようとする問題点) しかし、鋼中のAl2O3を低減させる方法におい
て高負荷、高速度化に対して満足し得る耐久寿命
を得るものではなかつた。 また、軸受を構成する内輪、外輪は熱間鍛造に
成形された後、熱処理を施し、切削加工によつて
仕上げられるが、近年、加工技術が急速に進歩
し、高速切削加工が増加するにつれて、耐久寿命
に加えて切削性についても要望されるようになつ
てきた。 しかし、従来使用されているSUJ 2は切削性
が十分でなく、高速切削に際し切削工具の摩耗が
早く、早期に切削工具を取り替える必要が有り、
生産性が低いなどの問題点があつた。 従来、切削性を向上させるため、Sを0.080%
S添加によつて切削性は向上するが、硫化物系介
在物が増加することによつて、耐久寿命や、冷間
鍛造性が大巾に低下するという欠点を有してい
た。 (問題点を解決するための手段) 本発明はかかる従来鋼の欠点に鑑みてなしたも
ので、本発明者等が種々の合金元素に対して、耐
久寿命、切削性および冷間鍛造性に及ぼす影響に
ついて研究した結果、酸化物系介在物なかでも時
にアルミナ系酸化物が大きな介在物を生成し、耐
久寿命、切削性および冷間鍛造性を大幅に低下さ
せること、かつTiは炭窒化物を生成し、耐久寿
命、冷間鍛造性を低下させ、さらにP等の不純物
元素についても耐久寿命に悪影響を与えることを
見出したものである。 本発明はこれらの知見をもとにO量を0.0008%
以下、Ti0.0025%以下と耐久寿命、切削性および
冷間鍛造性を阻害する介在物を生成する元素を極
力低下させ、さらにS量を0.008%以下と従来鋼
に比べて低減し、さらに不純物元素についても
P0.010%以下と低下することによつて、鋼中に存
在する非金属介在物量〔JIS(A+B+C)〕を
0.030%以下とし、かつその大きさについても平
約27μm以下とすることにより、従来鋼に比べて
定格寿命(B10)、平均寿命(B50)ともに2倍以
上と大幅に優れた耐久寿命を得ることに成功した
ものである。 そして、本発明においては低酸素、低硫黄、低
Tiの高清浄度の鋼を溶製するに原材料を厳選し、
電気炉において酸化精錬を施した溶鋼を取鍋中へ
出鋼し、出鋼時もしくは出鋼後に脱P処理を施し
該溶鋼上の酸化スラグを真空スラグクリーナによ
よつて吸引し、ついで塩基度が3以上の高塩基度
性スラグ(FeO+MnO≦0.5%の還元性で、かつ
CaO/SiO2/Al2O3=0.3〜0.4の脱S能のすぐれ
たスラグ)を電極加熱で造滓し、かつ浴温度の調
整を行いつつ、ダブルポーラスレンガにより不活
性ガスを吹き込み、溶鋼を強撹拌しながら還元精
錬を行い、S0.008%以下、O0.0020%以下、かつ
低Ti化を図り、ついで還流式真空脱ガス装置に
よつて処理時間の2/3を高還流し、残り1/3を弱還
流により真空脱ガス精錬を施し、O、H量をより
低減し、さらに断気鋳造を行うことにより、高清
浄度の軸受鋼が得られることを見出したものであ
る。 以下に本発明鋼について詳述する。 第1発明鋼は、重量比にしてC0.70〜1.10%、
Si0.15〜1.60%、Mn0.15〜1.15%、P0.010%以下、
S0.008%以下、Cr0.50〜1.60%、O0.0008%以下、
Ti0.0025%以下を含有し、更に、Pb0.05〜0.15
%、Te0.01〜0.15%、Se0.01〜0.15%及びCa0.001
〜0.01%のうち1種ないし2種以上を含有させ、
焼入性及び切削性をより向上させたもので、第2
発明は上記鋼を製造するに際し、塩基度が3〜6
の高塩基性スラグの存在下で、かつ圧力が1〜2
気圧の不活性雰囲気下で、浴温度の調整を行いつ
つ強撹拌しながら還元精錬を行い、ついで還流式
真空脱ガス装置によつて高還流(処理時間の2/3)
と弱還流(処理時間の1/3)により真空脱ガス精
錬を行うことを特徴とする軸受鋼の製造法であ
る。 以下に本発明鋼の成分限定理由について説明す
る。 Cは転がり軸受用鋼として要求される硬さHR
C60以上を確保するに必要な元素であり、0.70%
以上の含有が必要である。しかし、1.10%を越え
て含有させる巨大炭化物が生成し易くなり、かつ
耐久寿命、冷間鍛造性、衝撃疲労が低下するので
上限を1.10%とした。 Siは脱酸作用、焼入性を向上させるとともに耐
久寿命、衝撃疲労を向上させる元素であり0.15%
以上の含有が必要である。しかし、1.60%を越え
て含有させる転動寿命特性、切削性を劣化させる
ので上限を1.60%とした。 Mnは脱酸作用、焼入性を向上させる元素であ
り0.15%以上の含有が必要である。しかし、多く
含有させても効果の向上が小さく、かつMnSを
生成し転がり寿命を低下させるので上限を1.15%
とした。 CrはMnと同様に焼入性を向上させる元素であ
り、かつ炭化物球状化を促進させる元素でもあ
り、少なくとも0.50%以上含有させる必要があ
る。しかし、多く含有させると炭化物が粗大化し
て、切削性を劣化させるので上限を1.60%とし
た。 Pは転がり寿命、靭性を低下させる元素であり
その含有量をできるだけ低下させる必要があり、
上限を0.010%とした。 SはMnと結合して硫化物系介在物を生成し、
切削性を改善する元素であるが、反面、耐久寿
命、冷間鍛造性を著しく低下させる元素である。
本発明においては耐久寿命、切削性を考慮し、上
限を0.008%とした。 Oは鋼中においてAl2O3、SiO2などの酸化物系
介在物を生成し、転動寿命特性、切削性および冷
間鍛造性を著しく劣化させる元素である。 本発明においては、非金属介在物量を大幅に低
減させるとともに介在物の大きさを規制すること
により、耐久寿命、切削性、冷間鍛造性を大幅に
改善させるものであり、その含有量を抑制する必
要があり、上限を0.0008%とした。 TiはNと結合してTiN介在物として鋼中に在
残し、その含有量が多くなると大きな介在物を生
成し、耐久寿命、切削性、冷間鍛造性を大幅に劣
化させる元素であり、その含有量を低下させる必
要があり上限を0.0025%とした。 Pb、Te、Se、Caは切削性を改善する元素であ
り、Pbは0.05%、Teは0.01%、Seは0.01%、Ca
は0.001%以上含有させる必要がある。しかし、
Pb、Te、Se、Caは耐久寿命、冷間鍛造性を劣化
させる元素でもあり上限をPb、Te、Seは0.15%、
Caは0.01%とした。 本発明方法において、先ず、塩基度が3〜6の
高塩基性スラグの存在下で、かつ圧力が1〜2気
圧の不活性の雰囲気下で行う還元精錬は、スラグ
中の成分の解離によつて、溶鋼中のOが上昇する
のを防ぐとともに、脱硫能を増大させることによ
り、シリカ、アルミナ系介在物や硫化物をスラグ
に吸着せしめてトータル酸素量およびSを極力低
減させるとともに、合金鋼成分の粗調整を行うた
めの工程であつて、例えば平均で温度が1500℃の
溶鋼を電極加熱により浴温をほぼ一定に保持する
ように温度調整して、大気中のOが溶鋼中に入ら
ないようにアルゴン等の不活性ガスを下部より溶
鋼中に吹き込んで強撹拌を行う。この工程により
溶鋼中の全O量が低下するとともにS量が低下す
る。この工程での溶鋼温度上昇は95℃程度であ
る。 スラグの塩基度を3〜6としたのは、3未満で
は還元反応及び脱硫反応が十分に進行せず、本発
明で規定しているO、Sの範囲を満足させること
が難しくなるためであり、6を越えるとスラグの
流動性が悪くなり、スラグ−溶鋼間の反応が却つ
て悪くなるので、上限を6とした。 不活性雰囲気の圧力を1〜2気圧としたのは、
溶鋼を大気と接触させないためには還元精錬装置
内を大気圧以上に保ち、空気が炉内に侵入しなく
する必要があるからであり、2気圧以下としたの
はあまり気圧を上げすぎると高価な不活性ガスが
多量に必要となるためである。 次に還流式真空脱ガス装置によつて行う真空脱
ガス精錬は、真空ポンプにより装置内の圧力を低
下せしめることにより、溶鋼の脱酸をさらに行つ
て高級アルミナ系介在物を減少するとともに、脱
ガスを行う工程であつて、例えば平均で温度が
1600℃の溶鋼を、溶鋼の温度がほぼ40℃程度低下
するまで、リフトガス流量の制御により、処理時
間の2/3を強還流させ、1/3を弱還流させる工程で
ある。この強還流により溶鋼は強く撹拌され、こ
れにより、溶鋼中に溶けこんでいるN、Hは溶湯
の小塊を破裂させながら放出されるとともにアル
ミナ系介在物は早期に凝集浮上してスラグに吸収
除去される。また弱還流により強撹拌では除去し
きれない比較的小さなアルミナ系介在物が容易に
浮上してスラグに吸収除去される。尚、ここでい
う弱撹拌とは、強撹拌の1/2程度の強さの撹拌で
ある。 さらに常圧の還元性雰囲気下での還元精錬は、
アルミナ系介在物を最大限に浮上させて除去する
ことを目的とする工程であつて、例えば平均で温
度が1550℃の溶鋼を、溶鋼の温度がほぼ15℃程度
低下するまで、アルゴン等の不活性ガスにより弱
撹拌して、溶鋼を安定させながら還元精錬を行
い、全O量のさらなる低減と、S量およびTiの
低減を図るものである。この工程でOは0.0008%
以下に低下し、S量は0.008%以下に低下し、P
量は0.010%以下に低下する。 (実施例) つぎに、本発明鋼の特徴を従来鋼、比較鋼と比
べて実施例でもつて明らかにする。 第1、2表はこれらの供試鋼の化学成分を示す
ものである。
(Field of Industrial Application) The present invention is suitable for ball bearings, roller bearings, etc. used in automobiles and various industrial machines, and has a long lifespan.
This invention relates to a bearing steel with excellent machinability and cold forgeability, and a manufacturing method thereof. (Prior art) Bearings used in automobiles and industrial machinery are
In order to improve the performance of these devices, bearings are used under high loads and speeds, and durability has become important, and steel that can further improve durability has been developed. . Conventionally, methods have been implemented to reduce the amount of oxide-based inclusions such as Al 2 O 3 in order to improve the durability life. (Problems to be Solved) However, in the method of reducing Al 2 O 3 in steel, it has not been possible to obtain a satisfactory durability life under high loads and high speeds. In addition, the inner and outer rings that make up the bearing are formed by hot forging, then heat treated, and then finished by cutting, but in recent years, as processing technology has rapidly advanced and high-speed cutting has increased, In addition to durability, machinability has also come to be desired. However, the conventionally used SUJ 2 does not have sufficient cutting performance, and the cutting tool wears quickly during high-speed cutting, making it necessary to replace the cutting tool early.
There were problems such as low productivity. Conventionally, S was added at 0.080% to improve machinability.
Although machinability is improved by adding S, the increase in sulfide-based inclusions has the drawback of significantly decreasing durability and cold forgeability. (Means for Solving the Problems) The present invention was made in view of the drawbacks of conventional steels, and the present inventors have developed various alloy elements with improved durability, machinability, and cold forgeability. As a result of research on the effects of Ti on carbonitrides, it was found that alumina-based oxides sometimes form large inclusions among oxide-based inclusions, significantly reducing durability, machinability, and cold forgeability. It was discovered that impurity elements such as P also have a negative effect on the durability life. Based on these findings, the present invention reduces the amount of O to 0.0008%.
Below, we have reduced Ti to 0.0025% or less, an element that creates inclusions that impede durability, machinability, and cold forgeability, as much as possible, and further reduced the S content to 0.008% or less compared to conventional steel, and further reduced impurities. Also about elements
By reducing P0.010% or less, the amount of nonmetallic inclusions [JIS (A + B + C)] present in steel can be reduced.
0.030% or less, and its size is approximately 27μm or less on average, resulting in a significantly superior durability life, with both the rated life (B 10 ) and average life (B 50 ) more than double that of conventional steel. This is what I was able to successfully obtain. In the present invention, low oxygen, low sulfur, and low
We carefully select raw materials to produce high-clean Ti steel.
The molten steel that has been oxidized and refined in an electric furnace is tapped into a ladle, subjected to deP treatment during or after tapping, and the oxidized slag on the molten steel is sucked into a vacuum slag cleaner, and then the basicity is reduced. High basicity slag with a
CaO/SiO 2 /Al 2 O 3 = 0.3 to 0.4 slag with excellent desulfurization ability) is slaged by electrode heating, and while adjusting the bath temperature, inert gas is blown in with a double porous brick to form molten steel. Reduction refining is carried out with strong stirring to achieve S of 0.008% or less, O of 0.0020% or less, and low Ti, and then high reflux is carried out for 2/3 of the processing time using a reflux type vacuum degassing device. It has been discovered that bearing steel of high purity can be obtained by subjecting the remaining 1/3 to vacuum degassing refining using weak reflux to further reduce the O and H contents, and further performing gas-insulated casting. The steel of the present invention will be explained in detail below. The first invention steel has C0.70 to 1.10% by weight,
Si0.15~1.60%, Mn0.15~1.15%, P0.010% or less,
S0.008% or less, Cr0.50~1.60%, O0.0008% or less,
Contains Ti0.0025% or less, and Pb0.05~0.15
%, Te0.01~0.15%, Se0.01~0.15% and Ca0.001
Containing one or two or more of ~0.01%,
It has improved hardenability and machinability, and is the second
In the invention, when manufacturing the above-mentioned steel, the basicity is 3 to 6.
in the presence of highly basic slag and at a pressure of 1 to 2
Reduction refining is performed under an inert atmosphere at atmospheric pressure with strong stirring while adjusting the bath temperature, followed by high reflux (2/3 of the processing time) using a reflux type vacuum degassing device.
This is a bearing steel manufacturing method characterized by performing vacuum degassing refining with weak reflux (1/3 of the processing time). The reasons for limiting the composition of the steel of the present invention will be explained below. C is the hardness H R required for steel for rolling bearings.
An element necessary to ensure C60 or higher, 0.70%
The above content is necessary. However, if the content exceeds 1.10%, giant carbides are likely to be formed, and durability life, cold forgeability, and impact fatigue are reduced, so the upper limit was set at 1.10%. Si is an element that improves deoxidation and hardenability as well as durability and impact fatigue, and is 0.15%
The above content is necessary. However, if the content exceeds 1.60%, rolling life characteristics and machinability will deteriorate, so the upper limit was set at 1.60%. Mn is an element that improves deoxidizing action and hardenability, and must be contained at 0.15% or more. However, even if the content is increased, the improvement in effectiveness is small, and MnS is generated, reducing rolling life, so the upper limit is set at 1.15%.
And so. Like Mn, Cr is an element that improves hardenability and is also an element that promotes carbide spheroidization, and must be contained in an amount of at least 0.50%. However, if the content is too large, the carbides become coarse and the machinability deteriorates, so the upper limit was set at 1.60%. P is an element that reduces rolling life and toughness, so it is necessary to reduce its content as much as possible.
The upper limit was set at 0.010%. S combines with Mn to generate sulfide inclusions,
It is an element that improves machinability, but on the other hand, it is an element that significantly reduces durability life and cold forgeability.
In the present invention, the upper limit was set at 0.008% in consideration of durability and machinability. O is an element that forms oxide inclusions such as Al 2 O 3 and SiO 2 in steel, and significantly deteriorates rolling life characteristics, machinability, and cold forgeability. In the present invention, by significantly reducing the amount of nonmetallic inclusions and regulating the size of the inclusions, durability life, machinability, and cold forgeability are significantly improved, and the content is suppressed. The upper limit was set at 0.0008%. Ti is an element that combines with N and remains in steel as TiN inclusions, and when its content increases, it forms large inclusions, which significantly deteriorates durability, machinability, and cold forgeability. It was necessary to lower the content, so the upper limit was set at 0.0025%. Pb, Te, Se, Ca are elements that improve machinability, Pb is 0.05%, Te is 0.01%, Se is 0.01%, Ca
must be contained at 0.001% or more. but,
Pb, Te, Se, and Ca are elements that deteriorate durability and cold forgeability, so the upper limit for Pb, Te, and Se is 0.15%.
Ca was set at 0.01%. In the method of the present invention, first, reduction refining is carried out in the presence of a highly basic slag with a basicity of 3 to 6 and under an inert atmosphere at a pressure of 1 to 2 atmospheres, due to the dissociation of components in the slag. In addition to preventing O from rising in the molten steel, by increasing the desulfurization ability, silica, alumina-based inclusions and sulfides are adsorbed to the slag, reducing the total oxygen content and S as much as possible. This is a process for rough adjustment of the components, for example, the temperature of molten steel with an average temperature of 1500°C is adjusted by electrode heating to keep the bath temperature almost constant, so that O in the atmosphere does not enter the molten steel. Inert gas such as argon is blown into the molten steel from the bottom to ensure strong stirring. Through this process, the total amount of O in the molten steel decreases, as well as the amount of S. The molten steel temperature rise in this process is about 95℃. The basicity of the slag is set to 3 to 6 because if it is less than 3, the reduction reaction and desulfurization reaction will not proceed sufficiently, making it difficult to satisfy the O and S ranges specified in the present invention. If it exceeds 6, the fluidity of the slag will worsen and the reaction between the slag and molten steel will worsen, so the upper limit was set at 6. The pressure of the inert atmosphere was set to 1 to 2 atmospheres because
This is because in order to prevent molten steel from coming into contact with the atmosphere, it is necessary to maintain the pressure inside the reduction refining equipment above atmospheric pressure to prevent air from entering the furnace. This is because a large amount of inert gas is required. Next, vacuum degassing refining is performed using a reflux type vacuum degassing equipment. By lowering the pressure inside the equipment with a vacuum pump, the molten steel is further deoxidized and high alumina inclusions are reduced. A process in which gas is used, for example, when the average temperature is
This is a process in which molten steel at 1600°C is strongly refluxed for 2/3 of the processing time and weakly refluxed for 1/3 of the processing time by controlling the lift gas flow rate until the temperature of the molten steel drops by approximately 40°C. The molten steel is strongly stirred by this strong reflux, and as a result, the N and H dissolved in the molten steel are released while bursting small lumps of the molten metal, and alumina inclusions quickly aggregate and float to the surface and are absorbed into the slag. removed. Also, due to the weak reflux, relatively small alumina-based inclusions that cannot be removed by strong stirring easily float to the surface and are absorbed and removed by the slag. It should be noted that the weak stirring referred to here means stirring with a strength that is about 1/2 that of strong stirring. Furthermore, reductive refining under a reducing atmosphere at normal pressure
This is a process that aims to remove alumina-based inclusions by levitating them to the maximum extent. Reduction refining is performed while the molten steel is stabilized by weak stirring with active gas, and the aim is to further reduce the total O content, S content, and Ti content. O in this process is 0.0008%
The S content decreased to below 0.008%, and the P
The amount decreases to below 0.010%. (Example) Next, the characteristics of the steel of the present invention will be clarified in Examples by comparing it with conventional steel and comparative steel. Tables 1 and 2 show the chemical composition of these test steels.

【表】【table】

【表】 第1、2表においてA、B鋼は従来鋼でA鋼は
SUJ2、B鋼はSUJ3、C〜F鋼は比較鋼で、R〜
V鋼は本発明鋼で、前述の溶解法により溶製した
ものである。 第3表は第1、2表の供試鋼について、850℃
×30分油冷、170℃×90分空冷の焼入、焼もどし
処理を施し、非金属介在物量およびその平均の長
さ、耐久寿命、切削製、冷間鍛造性を調査し、そ
の結果を示したものである。 非金属介在物量およびその平均長さについて
は、上記処理を施した65φ圧延材より切り出し調
査したもので、従来鋼であるA鋼を1とした指数
で示したものである。耐久寿命については森式ス
ラスト型耐久寿命試験機を用い、外径65φ×内径
18φ×厚さ10mmの試片を製作し、前A鋼を1とし
た指数で示したものである。切削性については40
mmφ×10mmの素材を、5個用意し、切削工具とし
て5φSKH9ストレート・ドリルを用いて、回転数
1140rpm、推力30Kg(重錘自由落下法)によつて
ドリル穿孔時間を測定して評価した。 冷間鍛造性については20mmφ×30mmの据込率75
%における割れの発生率を調べたものである。
[Table] In Tables 1 and 2, A and B steels are conventional steels, and A steels are
SUJ2, B steel is SUJ3, C~F steel is comparison steel, R~
The V steel is a steel of the present invention, which is produced by the above-mentioned melting method. Table 3 shows the test steels in Tables 1 and 2 at 850°C.
After quenching and tempering with oil cooling for 30 minutes and air cooling at 170°C for 90 minutes, we investigated the amount of nonmetallic inclusions, their average length, durability life, machinability, and cold forgeability. This is what is shown. The amount of nonmetallic inclusions and their average length were investigated by cutting out a 65φ rolled material subjected to the above treatment, and are expressed as an index with the conventional steel A steel being 1. For the durability life, we used a Mori thrust type durability life tester, and the outer diameter 65φ x inner diameter
A specimen of 18φ x 10mm thickness was manufactured, and the index is shown with the former A steel set as 1. 40 for machinability
Prepare 5 pieces of mmφ×10mm material, use a 5φSKH9 straight drill as a cutting tool, and
The drilling time was measured and evaluated using 1140 rpm and a thrust of 30 kg (weight free fall method). Regarding cold forgeability, the upsetting rate of 20mmφ×30mm is 75
This is an investigation of the incidence of cracking in %.

【表】 第3表より知られるように、比較鋼であるC鋼
は冷間鍛造性についてはすぐれているが、非金属
介在物量については0.69平均長さについては1、
耐久寿命については定格寿命(B10)で1.51、平
均寿命(B50)で1.53と非金属介在物、耐久寿命
ともに満足し得るものではなかつた。 また、D、E鋼についてはO、S含有量がA、
B鋼に比べて低いことによつて耐久寿命について
は定格寿(B10)で1.92、1.51と相当向上してい
るがまだ満足し得るものではなく、冷間鍛造性に
ついても割れ発生率が20%以上と低いものであ
る。さらに、F鋼については冷間鍛造性について
は優れているが、耐久寿命が満足し得るものでは
なかつた。 これらに対して、本発明鋼であるR〜V鋼は、
O量を0.0008%以下、S量を0.008%以下とする
とともにTi量を低下させることによつて、非金
属介在物量については従来鋼であるA鋼の1/3〜
1/2、その平均長さについては0.9〜0.75倍と非金
属介在物についてはA鋼に比べて大幅に優れたも
のであり、かつ耐久寿命については定格寿命平均
寿命ともにA、B鋼の2倍以上であり、また切削
性については本発明鋼はS量が0.008%以下と低
いものであるが、酸化物系介在物を大幅に低減さ
せたことにより、従来鋼に比べて1.3倍程度の切
削性を有するものであり、さらに冷間鍛造性につ
いても据込率75%における割れ発生率は0であ
り、従来鋼に比べて優れているものである。 このように本発明鋼であるR〜V鋼は非金属介
在物、耐久寿命、切削性および、冷間加工性につ
いてはA、B鋼は比べて大幅優れたものである。 このように、本発明鋼は、C、Si、Mn、CrE
を適宜含有させるとともにP、S、O、Ti量を
低下させて、酸化物系、硫化物系介在物量を低下
させることによつて本発明鋼は従来鋼に比べて定
格寿命、平均寿命ともに2倍以上と優れた耐久寿
命を得ることに成功したものであり、かつ切削
性、冷間鍛造性についても優れたもので、産業機
械、産業車両等の高度化にともなう高負荷、高速
化に対応し得る玉軸受、ローラ軸受等に適した高
品質軸受鋼およびその製造法で産業上寄与すると
ころ極めて大である。
[Table] As is known from Table 3, steel C, which is a comparative steel, has excellent cold forgeability, but the amount of nonmetallic inclusions is 0.69, the average length is 1,
Regarding the durable life, the rated life (B 10 ) was 1.51 and the average life (B 50 ) was 1.53, which were not satisfactory in terms of nonmetallic inclusions and durable life. In addition, for D and E steels, the O and S contents are A,
Compared to B steel, the durability is considerably improved by rated life (B 10 ) of 1.92 and 1.51, but it is still not satisfactory, and the cracking incidence rate is 20 in terms of cold forgeability. %, which is low. Furthermore, although F steel has excellent cold forgeability, its durability is not satisfactory. In contrast, R to V steels, which are the steels of the present invention, are
By reducing the O content to 0.0008% or less, the S content to 0.008% or less, and reducing the Ti content, the amount of nonmetallic inclusions can be reduced to 1/3 to 1/3 of that of conventional steel A steel.
1/2, the average length is 0.9 to 0.75 times, and non-metallic inclusions are significantly superior to A steel, and the rated life and average life are both 2 times higher than that of A and B steels. In terms of machinability, the steel of the present invention has a low S content of 0.008% or less, but by significantly reducing oxide inclusions, it has a machinability that is about 1.3 times that of conventional steel. It has excellent machinability and cold forgeability, with a cracking rate of 0 at an upsetting rate of 75%, which is superior to conventional steel. As described above, steels R to V, which are the steels of the present invention, are significantly superior to steels A and B in terms of nonmetallic inclusions, durable life, machinability, and cold workability. In this way, the steel of the present invention contains C, Si, Mn, CrE
By appropriately containing P, S, O, and Ti, and reducing the amount of oxide-based and sulfide-based inclusions, the steel of the present invention has a rating life and an average life of 2% compared to conventional steel. It has succeeded in achieving an excellent durability life of more than twice as long, and also has excellent machinability and cold forgeability, making it compatible with the high loads and speeds associated with the increasing sophistication of industrial machinery and vehicles. The present invention will greatly contribute to the industry by providing high-quality bearing steel suitable for ball bearings, roller bearings, etc., and its manufacturing method.

Claims (1)

【特許請求の範囲】 1 重量比にしてC0.70〜1.10%、Si0.15〜1.60
%、Mn0.15〜1.15%、P0.010%以下、S0.008%以
下、Cr0.50〜1.60%、O0.0008%以下、Ti0.0025
%以下を含有し、さらにPb0.05〜0.15%、Te0.01
〜0.15%、Se0.01〜0.15%及びCa0.001〜0.01%の
うち1種ないし2種以上を含有し、残部Feなら
びに不純物元素からなり、JIS G 0555に規定す
る「鋼の非金属介在物の顕微鏡試験方法」による
A系介在物、B系介在物及びC系介在物の介在物
量が0.030%以下であることを特徴とする軸受鋼。 2 重量比にしてC0.70〜1.10%、Si0.15〜1.60
%、Mn0.15〜1.15%、P0.010%以下、S0.008%以
下、Cr0.50〜1.60%、O0.0008%以下、Ti0.0025
%以下を含有し、さらにPb0.05〜0.15%、Te0.01
〜0.15%、Se0.01〜0.15%及びCa0.001〜0.01%の
うち1種ないし2種以上を含有し、残部Feなら
びに不純物元素からなる鋼を製造するに際し、塩
基度が3〜6の高塩基性スラグの存在下で、かつ
圧力が1〜2気圧の不活性雰囲気下で、電極加熱
で浴温度の調整を行いつつ、強撹拌しながら還元
精錬を行い、ついで還流式真空脱ガス装置によつ
て、処理時間の2/3を高還流し、1/3を弱還流によ
り真空脱ガス精錬を行うことを特徴とする軸受鋼
の製造法。
[Claims] 1. C0.70 to 1.10%, Si 0.15 to 1.60 by weight
%, Mn0.15~1.15%, P0.010% or less, S0.008% or less, Cr0.50~1.60%, O0.0008% or less, Ti0.0025
% or less, and further contains Pb0.05~0.15%, Te0.01
~0.15%, Se0.01~0.15%, and Ca0.001~0.01%, and the remainder consists of Fe and impurity elements, and is a nonmetallic inclusion in steel specified in JIS G 0555. 1. A bearing steel characterized in that the amount of A-based inclusions, B-based inclusions, and C-based inclusions is 0.030% or less according to the microscopic test method of 1. 2 C0.70~1.10%, Si0.15~1.60 by weight
%, Mn0.15~1.15%, P0.010% or less, S0.008% or less, Cr0.50~1.60%, O0.0008% or less, Ti0.0025
% or less, and further contains Pb0.05~0.15%, Te0.01
~0.15%, Se0.01~0.15%, and Ca0.001~0.01%, and the balance is Fe and impurity elements. In the presence of basic slag and in an inert atmosphere with a pressure of 1 to 2 atmospheres, reduction refining is performed with strong stirring while adjusting the bath temperature by electrode heating, and then transferred to a reflux type vacuum degassing device. Therefore, a method for manufacturing bearing steel is characterized in that vacuum degassing refining is performed by high reflux for 2/3 of the processing time and weak reflux for 1/3 of the processing time.
JP20389285A 1985-09-13 1985-09-13 Bearing steel and its production Granted JPS6263651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20389285A JPS6263651A (en) 1985-09-13 1985-09-13 Bearing steel and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20389285A JPS6263651A (en) 1985-09-13 1985-09-13 Bearing steel and its production

Publications (2)

Publication Number Publication Date
JPS6263651A JPS6263651A (en) 1987-03-20
JPH0585629B2 true JPH0585629B2 (en) 1993-12-08

Family

ID=16481444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20389285A Granted JPS6263651A (en) 1985-09-13 1985-09-13 Bearing steel and its production

Country Status (1)

Country Link
JP (1) JPS6263651A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2885829B2 (en) * 1988-07-11 1999-04-26 日本精工株式会社 Rolling bearing
JP2657420B2 (en) * 1989-07-21 1997-09-24 日本精工株式会社 Rolling bearing
JP4839658B2 (en) * 2005-03-31 2011-12-21 Jfeスチール株式会社 Refining method of bearing steel
JP4641022B2 (en) * 2006-11-28 2011-03-02 株式会社神戸製鋼所 Manufacturing method of high cleanliness steel
PL1978124T3 (en) 2007-04-05 2015-02-27 Kobe Steel Ltd Forging steel, forging and crankshaft
CN104087844B (en) * 2014-08-01 2016-05-18 宁国市南方耐磨材料有限公司 A kind of ball mill high chrome ball
CN108453154A (en) * 2018-02-06 2018-08-28 南通东海机床制造集团有限公司 A kind of veneer reeling machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541910A (en) * 1978-09-14 1980-03-25 Kawasaki Steel Corp High carbon chromium bearing steel of long life
JPS55145158A (en) * 1979-04-28 1980-11-12 Daido Steel Co Ltd Free cutting bearing steel and its manufacture
JPS5616622A (en) * 1979-07-19 1981-02-17 Sanyo Tokushu Seikou Kk Manufacture of steel for ball-and-roller bearing
JPS5743929A (en) * 1980-08-29 1982-03-12 Sanyo Tokushu Seikou Kk Production of pipe of bearing steel
JPS60208452A (en) * 1984-03-30 1985-10-21 Sanyo Tokushu Seikou Kk Steel for bearing having long life

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541910A (en) * 1978-09-14 1980-03-25 Kawasaki Steel Corp High carbon chromium bearing steel of long life
JPS55145158A (en) * 1979-04-28 1980-11-12 Daido Steel Co Ltd Free cutting bearing steel and its manufacture
JPS5616622A (en) * 1979-07-19 1981-02-17 Sanyo Tokushu Seikou Kk Manufacture of steel for ball-and-roller bearing
JPS5743929A (en) * 1980-08-29 1982-03-12 Sanyo Tokushu Seikou Kk Production of pipe of bearing steel
JPS60208452A (en) * 1984-03-30 1985-10-21 Sanyo Tokushu Seikou Kk Steel for bearing having long life

Also Published As

Publication number Publication date
JPS6263651A (en) 1987-03-20

Similar Documents

Publication Publication Date Title
JPH045742B2 (en)
CN107904492B (en) Low-silicon high-carbon chromium bearing steel and hot rolling production method thereof
CN108611562B (en) Sulfur-aluminum-containing killed non-quenched and tempered steel and sulfide morphology control method thereof
CN112981236B (en) Steel for inner raceway of constant velocity universal joint and production method thereof
JP5803824B2 (en) Method of melting carburized bearing steel
EP0236505B1 (en) Case-hardening steel and process for its production
CN106048415B (en) A kind of Ni microalloyings stone oil drill collar steel and preparation method thereof
CN112981233B (en) Low-silicon medium-carbon gear steel suitable for cold forging processing and manufacturing method thereof
JPH01168848A (en) Universal free cutting steel for automobile parts and its production
CN109930063B (en) Steel for engineering machinery crawler chassis wheel body and production method thereof
CN113684420B (en) Calcium-tellurium-rare earth composite treated super free-cutting stainless steel and preparation method thereof
JPH0585629B2 (en)
CN112442629B (en) Medium-carbon steel for mechanical structure and manufacturing method thereof
JPS6263650A (en) Bearing steel and its production
CN115449704B (en) New energy automobile hub bearing steel and production method thereof
JPS62294150A (en) High-quality bearing steel and its production
JPS62274055A (en) Bearing steel
JPS62274052A (en) Case-hardening steel for bearing
CN115917014A (en) Method for manufacturing high-cleanliness steel
KR100206353B1 (en) Method of high purity carbonization bearing steel and the same product
CN114635092B (en) Novel material for automobile hub bearing and preparation method
JP6984803B1 (en) Manufacturing method of slabs used as a material for high fatigue strength steel
WO2021256159A1 (en) Method for producing cast slab that serves as material for steel with high fatigue strength
CN118516619A (en) Bearing steel for vehicle hub and manufacturing method thereof
CN117467890A (en) High-temperature carburized bearing steel and manufacturing method thereof