JPS6227364B2 - - Google Patents

Info

Publication number
JPS6227364B2
JPS6227364B2 JP8313478A JP8313478A JPS6227364B2 JP S6227364 B2 JPS6227364 B2 JP S6227364B2 JP 8313478 A JP8313478 A JP 8313478A JP 8313478 A JP8313478 A JP 8313478A JP S6227364 B2 JPS6227364 B2 JP S6227364B2
Authority
JP
Japan
Prior art keywords
crystal
light
optical
wavelength
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8313478A
Other languages
Japanese (ja)
Other versions
JPS559575A (en
Inventor
Mitsukazu Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP8313478A priority Critical patent/JPS559575A/en
Priority to US06/044,373 priority patent/US4327971A/en
Publication of JPS559575A publication Critical patent/JPS559575A/en
Publication of JPS6227364B2 publication Critical patent/JPS6227364B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明は、光通信システムや光情報処理システ
ムにおいて伝搬光路を他の光路に切換える機能を
有する光スイツチに関し、特に電気的に制御して
光波の特定の波長毎に光路の切換えが可能な光ス
イツチに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical switch that has the function of switching a propagation optical path to another optical path in an optical communication system or an optical information processing system, and in particular electrically controlled optical This invention relates to an optical switch capable of switching.

光通信システムや光を用いた情報伝搬システム
では、伝送容量の拡大を目的として信号の高速化
が進められている。しかし、実際には光の変調速
度や光フアイバーの広帯域化には限界があり、信
号の高速化だけでは十分な容量は得られない。そ
こで、より大容量化するための方法として光波長
多重伝送システムが注目されている。光波長多重
伝送システムでは、複数の波長の光波をそれぞれ
独立に変調して同時に伝送するので端末装置や、
受信装置においては伝送された光を各波長毎に分
離して異なつた光路に結合するデイバイスが必要
とされる。さらに、電気的に光路間の切換えを行
い、複数の端末装置に高速に結合する光路間の交
換機が必要である。
In optical communication systems and information propagation systems using light, signal speeds are being increased with the aim of expanding transmission capacity. However, in reality, there are limits to the modulation speed of light and to the broadband optical fiber, and sufficient capacity cannot be obtained just by increasing the signal speed. Therefore, optical wavelength division multiplexing transmission systems are attracting attention as a method for increasing capacity. In an optical wavelength division multiplexing transmission system, light waves of multiple wavelengths are modulated independently and transmitted simultaneously, so it can be used for terminal equipment,
A receiving device requires a device that separates transmitted light for each wavelength and couples it to different optical paths. Furthermore, a switch between the optical paths is required to electrically switch between the optical paths and connect the optical paths to multiple terminal devices at high speed.

従来、波長分離機構をもつたデバイスとしては
誘電体膜を多層に重ねた干渉フイルター、屈折率
の波長分離を利用したプリズム形の分波器、回折
格子を利用した分波器等が知られている。しかし
上記のデバイスは全て波長毎に光路が固定されて
おり、光路間の切換えには別のデバイスが必要で
ある。しかも、各波長毎に光路を切換えるデバイ
スが必要となる。このようなデバイス数の増加は
装置を複数にし、その信頼性を下げてしまう。装
置の小型化、低価格化のためにはデバイス数はで
きるだけ少ない方が望ましい。
Conventionally, known devices with wavelength separation mechanisms include interference filters made of multiple layers of dielectric films, prism-shaped duplexers that utilize refractive index wavelength separation, and duplexers that utilize diffraction gratings. There is. However, in all of the above devices, the optical path is fixed for each wavelength, and a separate device is required to switch between optical paths. Furthermore, a device is required to switch the optical path for each wavelength. Such an increase in the number of devices increases the number of devices and reduces their reliability. In order to reduce the size and cost of the device, it is desirable to have as few devices as possible.

本発明の目的は上記の単なる光波長分離デバイ
スとは異なり、入射光を各波長毎に分離すると同
時に、異なつた光路に電気的に高速に切換えるこ
とが可能な光波長分離スイツチを提供することに
ある。
The purpose of the present invention is to provide an optical wavelength separation switch that is different from the above-mentioned simple optical wavelength separation device and is capable of separating incident light into each wavelength and at the same time electrically switching to different optical paths at high speed. be.

本発明の光波長分離スイツチは、電界を印加す
ると光学的な屈折率楕円体が回転する電気光学効
果を示す結晶表面上に、それぞれ互いに周期の異
なる複数個の電極を光の透過方向に沿つて順次設
け、この電極に電圧発生器を備え、前記結晶の出
射側に複屈折性の物質を備えた構成となつてい
る。
The optical wavelength separation switch of the present invention has a plurality of electrodes each having a different period along the light transmission direction on a crystal surface exhibiting an electro-optic effect in which an optical index ellipsoid rotates when an electric field is applied. These electrodes are provided one after the other, a voltage generator is provided on the electrode, and a birefringent substance is provided on the output side of the crystal.

一般に、タンタル酸リチウム結晶のX軸方向ま
たはY軸方向に電界を印加すると、電気的光学定
数Υ51またはΥ42により結晶の光学的な屈折率楕
円体が回転し、Z軸に垂直な面内を進む光波の結
晶主軸に平行な偏光成分はそれと直交する偏光成
分へわずかに変換される。光進行方向に沿つて上
記の電界の向きを周期的に反転し、その周期Λを
(1)式を満足する値に選ぶと、前記の互いに直交す
る偏光成分間の変換は加算され、その変換効率が
大きくなる。
Generally, when an electric field is applied in the X-axis or Y-axis direction of a lithium tantalate crystal, the optical index ellipsoid of the crystal rotates due to the electrical optical constant Υ 51 or Υ 42 , and in the plane perpendicular to the Z-axis. The polarization component of the light wave traveling parallel to the crystal principal axis is slightly converted into the polarization component perpendicular to it. The direction of the above electric field is periodically reversed along the light traveling direction, and the period Λ is
When a value that satisfies equation (1) is selected, the conversions between the mutually orthogonal polarization components are added, and the conversion efficiency increases.

2π/Λ=2π/λ(ne−np) ………(1) ここでλは真空中の光波長であり、np、ne
それぞれ結晶の常光、異常光に対する屈折率であ
る。
2π/Λ=2π/λ(ne − n p )……(1) Here, λ is the wavelength of light in vacuum , and n p and ne are the refractive index of the crystal for ordinary light and extraordinary light, respectively. .

上記の変換の行なわれる詳細な原理については
特願昭51−82095号明細書に記述されている。本
発明は、上記の偏光成分の変換が入射光の波長λ
の値に依存することを利用するものである。なお
上記の動作は、タンタル酸リチウム結晶だけに限
られるものではなく、他の同様な電気光学効果を
有する結晶でも得られる。
The detailed principle of the above conversion is described in Japanese Patent Application No. 82095/1982. In the present invention, the conversion of the polarization component described above is performed using the wavelength λ of the incident light.
This method takes advantage of the fact that it depends on the value of . Note that the above operation is not limited to lithium tantalate crystals, but can also be obtained with other crystals having similar electro-optic effects.

次に図面を参照して本発明の一実施例を説明す
る。第1図は本発明による光波長分離スイツチの
一実施例を示す斜視図である。
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing an embodiment of an optical wavelength separation switch according to the present invention.

第1図において、1はX面に平行に切り出し、
Y軸方向に光を透過させるように形成したタンタ
ル酸リチウム結晶(LiTaO3)である。入射光2
は、中心波長λと中心波長λの光波をれぞれ
独立に変調して伝送された合成波であり、かつ偏
光子を通過してZ軸方向の偏光成分のみをもつた
光波である。結晶1上には周期Λをもつたイン
ターデイジタル電極3と、周期Λをもつたイン
ターデイジタル電極4が第1図に示すように設置
されている。
In Figure 1, 1 is cut out parallel to the X plane,
It is a lithium tantalate crystal (LiTaO 3 ) formed to transmit light in the Y-axis direction. Incident light 2
is a composite wave that is transmitted by independently modulating light waves with center wavelength λ 1 and center wavelength λ 2 , and is a light wave that passes through a polarizer and has only a polarization component in the Z-axis direction. . An interdigital electrode 3 having a period Λ 1 and an interdigital electrode 4 having a period Λ 2 are placed on the crystal 1 as shown in FIG.

ここでΛは(1)式のλの値にλを代入して得
られる値であり、Λは同様にλを代入して得
られる値である。電極3には電圧発生器13によ
り電圧を印加し、電極4には電圧発生器14によ
り電圧を印加することによりX軸方向の電界を結
晶1の中に、Y軸方向に周期的に発生させること
ができる。結晶の出射側には複屈折性物質が設け
られている。
Here, Λ 1 is a value obtained by substituting λ 1 into the value of λ in equation (1), and Λ 2 is a value obtained by similarly substituting λ 2 . By applying a voltage to the electrode 3 by a voltage generator 13 and by applying a voltage to the electrode 4 by a voltage generator 14, an electric field in the X-axis direction is periodically generated in the crystal 1 in the Y-axis direction. be able to. A birefringent material is provided on the output side of the crystal.

結晶からの出射光5は電極3,4に電圧を印加
しないときには、もとのZ方向の偏光成分のみし
か有しない。しかし、電極3に電圧が印加された
ときには入射光2は波長λの成分のみX方向の
偏光成分に変換され、電極4に電圧が印加された
ときは波長λの成分のみX方向の偏光成分に変
換される。上述の動作で印加される電圧はそれぞ
れの波長で偏光成分が100%変換される値に選ば
れる。
When no voltage is applied to the electrodes 3 and 4, the emitted light 5 from the crystal has only the original polarization component in the Z direction. However, when a voltage is applied to the electrode 3, only the component of the wavelength λ 1 of the incident light 2 is converted into a polarized component in the X direction, and when a voltage is applied to the electrode 4, only the component of the wavelength λ 2 is polarized in the X direction. converted into components. The voltage applied in the above operation is selected to a value that allows 100% conversion of the polarization component at each wavelength.

λとλの値は分離可能な幅以上離れていな
ければならない。例えばλ=8500Å、電極3の
本数を200本とすると、有効に偏光成分の変換が
行なわれる波長幅は150Å以下、即ち分離可能な
幅は150Å以上となるので、この場合はλ
8150Åまたは8650Å<λであればよい。電極
3,4共に電圧が印加されたときには入射光2は
全てX方向の偏光成分に変換される。結晶1を通
過した光5はY−Z面内でY軸又はZ軸方向を除
く方向に光軸をもつ方解石やルチル等の複屈折性
物質6を通過することにより、Z軸方向の偏光成
分は出射光7に、X軸方向の偏光成分は出射光8
に分離される。
The values of λ 1 and λ 2 must be separated by at least a separable width. For example, if λ 1 = 8500 Å and the number of electrodes 3 is 200, the wavelength width in which polarization components are effectively converted is 150 Å or less, that is, the separation width is 150 Å or more, so in this case, λ 2 <
It is sufficient if 8150 Å or 8650 Å<λ 2 . When a voltage is applied to both electrodes 3 and 4, all incident light 2 is converted into polarized light components in the X direction. The light 5 that has passed through the crystal 1 passes through a birefringent substance 6 such as calcite or rutile, which has an optical axis in a direction other than the Y-axis or Z-axis direction in the Y-Z plane, thereby changing the polarization component in the Z-axis direction. is the output light 7, and the polarization component in the X-axis direction is the output light 8.
separated into

上記の動作により、電極3だけに電圧が印加さ
れたときは波長λの光波は出射光8に、波長λ
光の波は出射光7に分離される。逆に電極4だ
けに電圧が印加されたときは波長λの光波は出
射光7に、波長λの光波は出射光8となる。上
記の変換は電気的に行なわれるので、本実施例で
は波長を分離し、かつ伝搬光路を切換える動作を
高速に行なうことが可能である。
Due to the above operation, when a voltage is applied only to the electrode 3, the light wave with wavelength λ 1 becomes the emitted light 8, and the light wave with wavelength λ
The two light waves are separated into output light 7. Conversely, when a voltage is applied only to the electrode 4, the light wave with wavelength λ 1 becomes output light 7 and the light wave with wavelength λ 2 becomes output light 8. Since the above conversion is performed electrically, in this embodiment it is possible to separate the wavelengths and switch the propagation optical path at high speed.

第2図は本発明による他の実施例の原理構成図
である。第2図において、入射光22はそれぞれ
独立に変調された、λ、λの3つの波長成
分を含むZ軸方向に偏光した光波である。タンタ
ル酸リチウム結晶21上にそれぞれ周期Λ、Λ
、Λの3種のインターデイジタル電極23,
24,25が設置されそれらはそれぞれ電圧発生
器33,34,35により電圧を印加される。Λ
とλ、Λとλ、Λとλはそれぞれ(1)
式を満足する。電極23,24,25に電圧が印
加されたとき、それぞれ波長λ、λ、λ
光波成分をX軸方向の偏光成分に変換する。X軸
方向に変換された光波はタンタル酸リチウム結晶
21の出射側に設けた複屈折性物質26を通過す
ることによりZ軸方向の偏光成分と分離され微小
レンズ28により光フアイバー30に入射する。
一方結晶21を通過したZ軸方向の偏光成分は微
小レンズ29により光フアイバー31に入射す
る。本実施例においては電極33,34,35の
いずれかに電圧を印加したときその電極に対応す
る波長、例えば電極33であればλ、だけが光
フアイバー30に入射し、他の波長成分は光フア
イバー31に入射する。
FIG. 2 is a diagram showing the principle configuration of another embodiment according to the present invention. In FIG. 2, incident light 22 is a light wave polarized in the Z-axis direction including three wavelength components of 1 , λ 2 , and λ 3 that are each independently modulated. Periods Λ 1 and Λ are formed on the lithium tantalate crystal 21, respectively.
2 , three types of interdigital electrodes 23 of Λ 3 ,
24, 25 are installed and voltages are applied to them by voltage generators 33, 34, 35, respectively. Λ
1 and λ 1 , Λ 2 and λ 2 , Λ 3 and λ 3 are each (1)
satisfies the expression. When a voltage is applied to the electrodes 23, 24, and 25, the light wave components of wavelengths λ 1 , λ 2 , and λ 3 are respectively converted into polarized light components in the X-axis direction. The light wave converted in the X-axis direction passes through a birefringent material 26 provided on the output side of the lithium tantalate crystal 21, is separated from the polarized light component in the Z-axis direction, and enters the optical fiber 30 through a microlens 28.
On the other hand, the polarized light component in the Z-axis direction that has passed through the crystal 21 enters the optical fiber 31 through the microlens 29 . In this embodiment, when a voltage is applied to any of the electrodes 33, 34, and 35, only the wavelength corresponding to that electrode, for example, λ 1 for the electrode 33, enters the optical fiber 30, and the other wavelength components are The light enters the optical fiber 31.

なお、本発明において、変調媒体の厚さを小さ
くし、変調媒体を薄片化することによつて変調に
必要な電圧を低下せしめ、より高い変調効率を得
ることができる。
In the present invention, by reducing the thickness of the modulation medium and making the modulation medium thin, the voltage required for modulation can be lowered and higher modulation efficiency can be obtained.

上記の薄片化の手段としては、変調媒体を機械
的に研磨して薄くする方法、蒸着、スパツタ等に
より他の基板上に変調媒体を設置する方法、変調
媒体の表面に金属等を拡散せしめ、そこに光波を
通過せしめる方法、他の基板上に変調媒体薄膜を
結晶成長させる方法等がある。上記方法によつて
変調媒体薄膜の厚さを数十ミクロン以下にした場
合には、通常、薄膜光導波路と呼ばれ、光波が該
薄膜中に閉じ込められて進行することが知られて
いる。このとき、光波は複数個の伝搬モードに分
離されるので、対象とする伝搬モードの等価的な
屈折率を考慮して光変調器を設計しなければなら
ない。
The above-mentioned means for thinning include a method of mechanically polishing the modulation medium to make it thin, a method of placing the modulation medium on another substrate by vapor deposition, sputtering, etc., a method of diffusing metal etc. on the surface of the modulation medium, There are methods to pass light waves there, methods to grow crystals of a modulation medium thin film on another substrate, etc. When the thickness of the modulation medium thin film is reduced to several tens of microns or less using the above method, it is usually called a thin film optical waveguide, and it is known that light waves propagate while being confined within the thin film. At this time, since the light wave is separated into a plurality of propagation modes, the optical modulator must be designed in consideration of the equivalent refractive index of the target propagation mode.

以上述べたように本発明によれば、複数の波長
成分を含む光波を各波長毎に異なつた伝搬光路に
分離し、かつその伝搬光路を電気的に、かつ高速
に切換えることが可能な光波長分離スイツチを得
ることができる。
As described above, according to the present invention, it is possible to separate a light wave containing a plurality of wavelength components into different propagation optical paths for each wavelength, and to switch the propagation optical paths electrically and at high speed. A separate switch can be obtained.

本発明を実施する上での構成は、上述の実施例
に限定されるものではない。例えば、複数個の結
晶を用い、それぞれ異なつた周期の電極を設けて
構成することも可能である。また、結晶材料、直
交する偏光成分を分離する手段およびその形状は
上述の実施例に限定されるものではない。例えば
結晶材料としてはタンタル酸リチウムとニオブ酸
リチウムの混晶やニオブ酸鉛結晶等を用いること
ができ、直交する偏光成分を分離する手段として
はプリズム形状の複屈折性物質を用いることがで
きる。
The configuration for implementing the present invention is not limited to the above-described embodiments. For example, it is also possible to use a plurality of crystals and provide electrodes with different periods. Further, the crystal material, the means for separating orthogonal polarization components, and the shape thereof are not limited to the above-mentioned embodiments. For example, a mixed crystal of lithium tantalate and lithium niobate, a lead niobate crystal, or the like can be used as the crystal material, and a prism-shaped birefringent substance can be used as the means for separating orthogonal polarization components.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による光波長分離スイツチの一
実施例を示す斜視図、第2図は本発明による光波
長分離スイツチの他の実施例の原理構成図であ
る。 図において、1はタンタル酸リチウム結晶、
2,22は入射光、3,4,23,24,25は
インターデイジタル電極、13,14,33,3
4,35は電圧発生器、6,26は複屈折性物質
である。
FIG. 1 is a perspective view showing one embodiment of the optical wavelength separation switch according to the present invention, and FIG. 2 is a diagram showing the principle configuration of another embodiment of the optical wavelength separation switch according to the invention. In the figure, 1 is a lithium tantalate crystal,
2, 22 are incident lights, 3, 4, 23, 24, 25 are interdigital electrodes, 13, 14, 33, 3
4 and 35 are voltage generators, and 6 and 26 are birefringent substances.

Claims (1)

【特許請求の範囲】[Claims] 1 電界を印加すると光学的な屈折率楕円体の主
軸が回転する電気光学効果を示す電気光学結晶
と、該結晶の光透過方向に対して垂直な向きの電
界を光透過方向に周期的に該結晶中に印加するた
めに該結晶上に設置された複数の周期状電極と、
該電極にそれぞれ1:1に対応して接続された複
数の電圧発生器と、前記電気光学結晶から出射し
た光をその偏光方向に従つて伝播光路を変えるた
めの複屈折性物質とから成り、かつ、前記複数の
周期状電極の周期が互いに異なつていることを特
徴とする光波長分離スイツチ。
1 An electro-optic crystal exhibiting an electro-optic effect in which the principal axis of an optical index ellipsoid rotates when an electric field is applied, and an electric field perpendicular to the light transmission direction of the crystal is applied periodically in the light transmission direction. a plurality of periodic electrodes placed on the crystal for applying voltage into the crystal;
comprising a plurality of voltage generators connected to the electrodes in a 1:1 ratio, and a birefringent material for changing the propagation optical path of the light emitted from the electro-optic crystal according to its polarization direction, An optical wavelength separation switch characterized in that the periods of the plurality of periodic electrodes are different from each other.
JP8313478A 1978-06-05 1978-07-07 Light wave length separating switch Granted JPS559575A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP8313478A JPS559575A (en) 1978-07-07 1978-07-07 Light wave length separating switch
US06/044,373 US4327971A (en) 1978-06-05 1979-06-01 Electro-optical light modulators, light wavelength multiplex signal transmitting apparatus and light wavelength separating switches utilizing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8313478A JPS559575A (en) 1978-07-07 1978-07-07 Light wave length separating switch

Publications (2)

Publication Number Publication Date
JPS559575A JPS559575A (en) 1980-01-23
JPS6227364B2 true JPS6227364B2 (en) 1987-06-15

Family

ID=13793721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8313478A Granted JPS559575A (en) 1978-06-05 1978-07-07 Light wave length separating switch

Country Status (1)

Country Link
JP (1) JPS559575A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4983149B2 (en) * 2006-08-21 2012-07-25 富士通株式会社 Optical transmitter

Also Published As

Publication number Publication date
JPS559575A (en) 1980-01-23

Similar Documents

Publication Publication Date Title
US5002349A (en) Integrated acousto-optic filters and switches
CA1176093A (en) Tunable polarization independent wavelength filter
US4679893A (en) High switching frequency optical waveguide switch, modulator, and filter devices
JPS6019109A (en) Wavelength tunable te-tm optical mode converter
US4327971A (en) Electro-optical light modulators, light wavelength multiplex signal transmitting apparatus and light wavelength separating switches utilizing the same
US4668052A (en) Optical switch having low cross-talk for wide range of wavelengths
US6016216A (en) Polarization-independent acousto-optic tunable filter
EP0153312B1 (en) Electro-optical filter device
US4359268A (en) Light quantity control apparatus
US4027946A (en) Acousto-optic guided-light beam device
US3990775A (en) Thin-film optical waveguide
US4285569A (en) CCD Driven integrated optical modulator array
JPS5987B2 (en) Electro-optical switches and modulators
JP2646558B2 (en) Optical polarization control element
JPS6227364B2 (en)
JPH04328720A (en) Waveguide type optical device
Molchanov et al. Quasi-collinear tunable acousto-optic paratellurite crystal filters for wavelength division multiplexing and optical channel selection
JPH04172316A (en) Wave guide type light control device
JPS6343724B2 (en)
GB2151806A (en) An optical frequency converter device and a rate gyro containing such a device
JPS5770513A (en) Optical modulator
JPS6150287B2 (en)
EP0140578A1 (en) Light modulator comprising an optical resonator
JPH0422245B2 (en)
JPS6159573B2 (en)