JPS62273479A - Radioactivity measuring apparatus - Google Patents

Radioactivity measuring apparatus

Info

Publication number
JPS62273479A
JPS62273479A JP61114621A JP11462186A JPS62273479A JP S62273479 A JPS62273479 A JP S62273479A JP 61114621 A JP61114621 A JP 61114621A JP 11462186 A JP11462186 A JP 11462186A JP S62273479 A JPS62273479 A JP S62273479A
Authority
JP
Japan
Prior art keywords
detector
radioactivity
container
radiation
storage container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61114621A
Other languages
Japanese (ja)
Inventor
Masahiro Kondo
正弘 近藤
Satoshi Kawasaki
川崎 智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61114621A priority Critical patent/JPS62273479A/en
Publication of JPS62273479A publication Critical patent/JPS62273479A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To achieve a shorter time for inspecting pollution and a lower cost of an inspector, by a method wherein radiation is measured turning a radioactive waste storage container and the results of the measurement are subjected to an arithmetic processing to enable simultaneous measurement of radioactivity on the surface of the container and that therein. CONSTITUTION:A radiation detector unit 5 is arranged on the circumference of a radioactive waste storage container 1. The detector unit 5 has two radiation detectors 7 and 8 integrated and the detector 7 (e.g. plastic detector) is arranged at the front of the container 1 and the detector 8 [e.g. NaI(Tl) detector], on the surface opposite to a light receiving surface of the detector 7. The detector unit 5 measures radiation emitted from the container turning the container 1, where emission gamma rays from radioactivity on the surface of the container and that therein can be measured with the detectors 7 and 8 while as to betarays, emission beta rays alone from the radioactivity on the surface can be measured with the detector 7. Counts as measured by both the detectors 7 and 8 are subjected to an arithmetic processing by a specified formula to determine the radioactivity on the surface of the container and that therein simultaneously.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は放射性廃棄物を充填した貯蔵容器の表面汚染と
容器内の放射能の強度を測定する装置に係り、特に表面
汚染と容器内の放射能強度を同時に、かつ遠隔で測定す
ることのできる放射能測定装置に関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a device for measuring the surface contamination of a storage container filled with radioactive waste and the intensity of radioactivity within the container. In particular, it relates to a radioactivity measuring device that can simultaneously and remotely measure surface contamination and radioactivity intensity inside a container.

〔従来の技術〕[Conventional technology]

従来、放射性廃棄物貯蔵容器の表面付着放射能を測定す
る方法として、例えば特開昭60−93980号公報に
示される様にスミア測定方法を自動化したものが知られ
ている。
Conventionally, as a method for measuring radioactivity adhered to the surface of a radioactive waste storage container, an automated method of measuring a smear is known, for example, as shown in Japanese Patent Application Laid-Open No. 60-93980.

また、該放射性廃棄物貯蔵容器内の放射能強度は貯蔵容
器囲りの空間線量率から同定する方法が知られている。
Furthermore, a method is known in which the radioactivity intensity within the radioactive waste storage container is identified from the air dose rate around the storage container.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術では、放射性廃棄物貯蔵容器の表面汚染度
と容器内の放射能の測定が同時にできず。
With the above conventional technology, it is not possible to simultaneously measure the degree of surface contamination of a radioactive waste storage container and the radioactivity within the container.

該貯蔵容器表面の汚染度と容器内の放射能を測定する場
合は2回の測定、つまり2台の計測装置が必要になり装
置の高価格化及び検査の長時間化になるという問題があ
った。
In order to measure the degree of contamination on the surface of the storage container and the radioactivity inside the container, two measurements, that is, two measuring devices, are required, which poses the problem of increasing the cost of the device and lengthening the inspection time. Ta.

本発明の目的は、放射性廃棄物貯蔵容器の表面汚染の如
何にかかわらず精度の高い表面汚染検査が可能と共に、
該放射性廃棄物貯蔵容器内の放射能測定が同時に実施で
き、かつ測定作業に当って人手を必要としない放射性廃
棄物貯蔵容器の汚染検査装置を提供することにある。
The purpose of the present invention is to enable highly accurate surface contamination inspection regardless of the surface contamination of a radioactive waste storage container;
It is an object of the present invention to provide a contamination testing device for a radioactive waste storage container that can simultaneously measure the radioactivity in the radioactive waste storage container and that does not require human labor for the measurement work.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、放射性廃棄物貯蔵容器の外周に2個の放射
線検出器を一体的に構成したもの、すなわち該放射性廃
棄物貯蔵容器前方に第1の放射線検出器を配置し、この
第1の放射線検出器の受光面と相反する第1の放射線検
出器の結晶面に第2の放射線検出器を設置する。放射性
廃棄物貯蔵容器を回転させながら上記放射線検出器で貯
蔵容器から放出される放射線を測定し、測定結果を演算
処理することにより達成される。
The above purpose is to integrate two radiation detectors around the outer periphery of a radioactive waste storage container, that is, a first radiation detector is placed in front of the radioactive waste storage container, and the first radiation detector is arranged in front of the radioactive waste storage container. A second radiation detector is installed on a crystal plane of the first radiation detector opposite to a light-receiving surface of the detector. This is achieved by rotating the radioactive waste storage container, measuring the radiation emitted from the storage container using the radiation detector, and calculating the measurement results.

〔作用〕[Effect]

放射性廃棄物貯蔵容器の表面付着放射能及び容器内放射
能から放出する放射線は、第1の放射線検出器に入射し
発光現象を起し放射線エネルギを消費する。ここで消費
されなかった放射線は第2の放射線検出器に入射し発光
現象を起す。放射性廃棄物貯蔵容器から放出される放射
線をβ線とγ線であるとすれば、表面付着放射能と容器
内放射能からの放出γ線は第1及び第2の放射線検出器
で測定できる。だが、β線は透過力が弱いため表面付着
放射能の放射β線のみ第1の放射線検出器で測定できる
Radiation emitted from the radioactivity attached to the surface of the radioactive waste storage container and the radioactivity inside the container enters the first radiation detector, causes a luminescence phenomenon, and consumes radiation energy. The radiation that is not consumed here enters the second radiation detector and causes a light emission phenomenon. Assuming that the radiation emitted from the radioactive waste storage container is β rays and γ rays, the radioactivity attached to the surface and the γ rays emitted from the radioactivity inside the container can be measured by the first and second radiation detectors. However, since β-rays have weak penetrating power, only the β-rays emitted from the radioactivity attached to the surface can be measured by the first radiation detector.

上記の動作現象により、第1の放射線検出器には該貯蔵
容器表面の付着放射能と容器内の放射能が放出するγ線
と、表面付着放射能の放出β線が測定される。また、第
2の放射線検出器には表面付着及び容器内の放射能によ
る放出γ線が測定される。
Due to the above-mentioned operating phenomenon, the first radiation detector measures the adhering radioactivity on the surface of the storage container, the gamma rays emitted by the radioactivity within the container, and the emitted beta rays from the surface adhering radioactivity. In addition, the second radiation detector measures gamma rays emitted due to surface adhesion and radioactivity within the container.

この2個の放射線検出器が測定した計数値を用い゛て各
放射線検出器ごとの方程式を連立させて解くことにより
β線線量が同定できる。つまり、放射性廃棄物貯蔵容器
表面の付着放射能強度が求まる。次に第2の放射線検出
器で測定したγ線スペクトルを解析することにより、放
射能の核種を判定する。この判定した核種の−β崩壊当
りのγ線放出率と表面付着放射能強度を用いて表面付着
放射能の放出γ線線量を算出し、第2の放射線検出器の
測定値から該算出γ線線量を差引くことで貯蔵容器内の
放射能強度を求めることができる。
The β-ray dose can be identified by simultaneously solving equations for each radiation detector using the count values measured by these two radiation detectors. In other words, the intensity of adhering radioactivity on the surface of the radioactive waste storage container is determined. Next, the radioactive nuclide is determined by analyzing the gamma ray spectrum measured by the second radiation detector. The emitted γ-ray dose of the surface-attached radioactivity is calculated using the γ-ray emission rate per −β decay of the determined nuclide and the surface-attached radioactivity intensity, and the calculated γ-ray dose is calculated from the measured value of the second radiation detector. By subtracting the dose, the radioactivity intensity inside the storage container can be determined.

〔実施例〕〔Example〕

以下、図に示す一実施例につき本発明の詳細な説明する
Hereinafter, the present invention will be described in detail with reference to one embodiment shown in the drawings.

第1図は本発明の一実施例の側面図、第2図は放射線検
出装置の断面図、第3図は放射線計測系及び演算制御部
のブロック線図を示す。
FIG. 1 is a side view of an embodiment of the present invention, FIG. 2 is a sectional view of a radiation detection device, and FIG. 3 is a block diagram of a radiation measurement system and an arithmetic control section.

被測定対象物である放射性廃棄物貯蔵容器1はガイドロ
ーラ9に沿って回転及び上下移動が可能なターンテーブ
ル3に設置される。そのターンテーブル3の軸心と貯蔵
容器1の回転軸心とが同心となる様にガイドローラ9が
架台6に設置されている。該ターンテーブル3の駆動軸
が上下回転制御駆動装置4に連結され、制御駆動装置4
の駆動の基に貯蔵容器1の位置を上下及び回転方向に自
在に変更できる。また、ターンテーブル3の上には貯蔵
容器1の総重量を測定する重量検出器2が設置されてい
る。廃棄物貯蔵容器1から放出される放射線を測定する
放射線検出装置5は架台6に固定され、貯蔵容器1の側
面と対抗する位置に設置されている。また、放射線検出
装置5は第2図に示す様に、2個の放射線検出器7,8
と放射線検出器7,8の受光面以外から入射する放射線
をシールドする遮蔽壁10と、幾何効率を決定するコリ
メータ13と、固定するケース11とから構成されてい
る。放射線検出装置5の開口部に第1の放射線検出器7
1例えばプラスチック検出器を配置し、そのプラスチッ
ク検出器7の受光面と相反する面に第2の放射線検出器
8、例えばNaI(TQ)検出器を配置する。上記プラ
スチック検出器7とNaI(TQ)検出器8とが一体加
工されたものが遮蔽壁1oに包まれている。遮蔽壁10
に包まれたプラスチック検出器7とNaI(”rc)検
出器8はケース11に固定されている。
A radioactive waste storage container 1, which is an object to be measured, is placed on a turntable 3 that can rotate and move up and down along guide rollers 9. A guide roller 9 is installed on the pedestal 6 so that the axis of the turntable 3 and the rotation axis of the storage container 1 are concentric. A drive shaft of the turntable 3 is connected to a vertical rotation control drive device 4.
The position of the storage container 1 can be freely changed in the vertical and rotational directions based on the drive of the storage container 1. Further, a weight detector 2 for measuring the total weight of the storage container 1 is installed on the turntable 3. A radiation detection device 5 that measures radiation emitted from the waste storage container 1 is fixed to a pedestal 6 and placed at a position facing the side surface of the storage container 1. Furthermore, the radiation detection device 5 includes two radiation detectors 7 and 8, as shown in FIG.
It is composed of a shielding wall 10 that shields radiation incident from other than the light-receiving surfaces of the radiation detectors 7 and 8, a collimator 13 that determines geometric efficiency, and a case 11 that fixes it. A first radiation detector 7 is installed in the opening of the radiation detection device 5.
1. For example, a plastic detector is placed, and a second radiation detector 8, such as a NaI (TQ) detector, is placed on a surface opposite to the light-receiving surface of the plastic detector 7. The plastic detector 7 and the NaI (TQ) detector 8 are integrally processed and are surrounded by a shielding wall 1o. Shielding wall 10
A plastic detector 7 and a NaI ("rc) detector 8 wrapped in a plastic detector are fixed to a case 11.

また、コリメータ13はプラスチック検出器7の前方に
設置されている。
Further, the collimator 13 is installed in front of the plastic detector 7.

貯蔵容器1から放出された放射線を測定するプラスチッ
ク検出器7とNaI(T(1)検出器8の出力信号の処
理過程を第3図に示す。プラスチック検出器7及びNa
I(TQ)検出器8の出力信号は各リニアアンプ12a
、L2bで波形整形されると共に波高値の増幅処理も実
施される。増幅したプラスチツク検出器7信号はカウン
タ14で計数値が測定される。また、NaI(TQ)検
出器8の出力信号が放射線波高分析器15に入力される
と、該波高分析器15で規定した放射線エネルギ範囲ご
とにその放射線計数値がカウントされる。カウンタ14
の出力と放射線波高分析器15の出力は自動的に演算器
16に取込まれ、演算器16で演算処理を起こすことで
貯蔵容器1の表面付着放射能と容器内放射能の強度同定
される。同定された放射能の強度結果は表示装置17に
出力されると共に記憶装置18に格納される。また、演
算器16はオペレータコンソール19からの指示に基づ
いて、既に測定した貯蔵容器1の表面付着放射能及び容
器内放射能の結果を記憶装置18から読み出し表示装置
17に出力する機能を持っている。その外、演算器16
は上下回転制御駆動装置4をコントロールし貯蔵容器1
と放射線検出装置5との相対位置を自在に変更できる。
FIG. 3 shows the process of processing the output signals of the plastic detector 7 and NaI (T(1) detector 8) that measure the radiation emitted from the storage container 1.
The output signal of the I(TQ) detector 8 is transmitted to each linear amplifier 12a.
, L2b performs waveform shaping and amplification processing of the peak value. The count value of the amplified plastic detector 7 signal is measured by a counter 14. Further, when the output signal of the NaI (TQ) detector 8 is input to the radiation pulse height analyzer 15, the radiation count value is counted for each radiation energy range defined by the pulse height analyzer 15. counter 14
The output of , and the output of the radiation wave height analyzer 15 are automatically taken into the computing unit 16, and by performing arithmetic processing in the computing unit 16, the intensity of the radioactivity attached to the surface of the storage container 1 and the radioactivity inside the container are identified. . The intensity results of the identified radioactivity are output to the display device 17 and stored in the storage device 18. Further, the computing unit 16 has a function of reading out the results of the already measured radioactivity on the surface of the storage container 1 and the radioactivity inside the container from the storage device 18 and outputting them to the display device 17 based on instructions from the operator console 19. There is. In addition, arithmetic unit 16
controls the vertical rotation control drive device 4 to rotate the storage container 1
The relative position between the radiation detecting device 5 and the radiation detecting device 5 can be freely changed.

また。Also.

演算器16はターンテーブル3上に設置した重量検出器
2の出力信号の読取り機能も有している。
The computing unit 16 also has a function of reading the output signal of the weight detector 2 installed on the turntable 3.

次に貯蔵容器1の表面付着放射能と容器内の放射能強度
の同定方法、つまり測定原理と演算処理の方法について
説明する。
Next, a method for identifying the radioactivity attached to the surface of the storage container 1 and the radioactivity intensity inside the container, that is, a measurement principle and a calculation method will be explained.

プラスチック検出器7の結晶をある程度の厚さにして置
けば、プラスチック検出器7に入射したβ線は結晶中で
全エネルギを消費し発光現象を起す。また、γ線はプラ
スチック検出器7で若干エネルギを失いNaI(TQ)
検出器8に入射する。
If the crystal of the plastic detector 7 is placed with a certain thickness, the β rays incident on the plastic detector 7 will consume all the energy in the crystal and cause a luminescence phenomenon. In addition, the γ-rays lose some energy in the plastic detector 7 and become NaI (TQ).
incident on the detector 8.

N a I’ (T Q )検出器8に入射したγ線は
、 NaI(TQ)結晶中で全エネルギを消費する。す
なわち、−入射γ線は2つの放射線検出器(プラスチッ
ク検出器7とNaI(TQ)検出器8)で発光現象を起
す。及びβ線はプラスチック検出器7のみで発光現象を
起す。
The γ-rays incident on the N a I' (T Q ) detector 8 consume all of their energy in the NaI (TQ) crystal. That is, the − incident γ-ray causes a luminescence phenomenon in two radiation detectors (plastic detector 7 and NaI (TQ) detector 8). The and β rays cause a luminescence phenomenon only in the plastic detector 7.

よって、上下回転制御駆動装置4を制御しターンテーブ
ル3を回転させ、ターンテーブル3上に設置しである貯
蔵容器1を回転しながら貯蔵容器1が放出する放射線を
測定する過程に於いて上記発光現象を利用する。この時
のプラスチック検出器7で測定した計数値をCp 、 
Na I (Tfl)検出器8で測定した計数値をCN
とし、ここに貯蔵容器1の内容物の密度分布を一定とし
、かつ表面付着放射能と容器内放射能の核種を等しいと
すればCp 、CNは次式で表現できる。
Therefore, in the process of controlling the vertical rotation control drive device 4 to rotate the turntable 3 and measuring the radiation emitted by the storage container 1 while rotating the storage container 1 installed on the turntable 3, Take advantage of phenomena. The count value measured by the plastic detector 7 at this time is Cp,
The count value measured by the Na I (Tfl) detector 8 is
If the density distribution of the contents of the storage container 1 is constant and the radioactivity attached to the surface and the radioactivity inside the container are equal, then Cp and CN can be expressed by the following equations.

Cp=Ao?1oω+A、?Joω−・−o)CN=A
oG (y)’+、c、++A、??、ω −(2)但
し、上式のAoは現在の測定位置に於ける貯蔵容器1の
表面付着放射能によるβ線とγ線の総光子数、A1は貯
蔵容器1内の放射能による放出γ線数である。及びη0
はプラスチック検出器7の計数効率、η□はNaI(T
Q)検出器8の計数効率、G(γ)は表面付着放射能の
−β崩懐に於ける放出β線とγ線の合計値に対する放出
γ線の割合、及びωは幾何効率である。この(1)。
Cp=Ao? 1oω+A,? Joω-・-o)CN=A
oG (y)'+,c,++A,? ? , ω - (2) However, Ao in the above equation is the total number of photons of β rays and γ rays due to the radioactivity attached to the surface of the storage container 1 at the current measurement position, and A1 is the emission due to the radioactivity inside the storage container 1. It is the number of gamma rays. and η0
is the counting efficiency of the plastic detector 7, η□ is NaI(T
Q) The counting efficiency of the detector 8, G(γ) is the ratio of emitted γ-rays to the total value of emitted β-rays and γ-rays in the −β decay of surface-attached radioactivity, and ω is the geometric efficiency. This (1).

(2)式を連立させて解けばAo とA□ を求めるこ
とができる。
By solving equations (2) simultaneously, Ao and A□ can be obtained.

次に上記(1)、(2)式の演算処理方式について述べ
る。(1)式と(2)式のη0.η、はそれぞれの放射
線検出器の結晶形状等で決定する因子なので予め計算し
て、演算器16内に記憶して置く。同じくωもコリメー
タ13の開口部形状によって決まる因子なので予め計算
し演算器16内に記憶して置く。演算器16は該η0.
η1とωを用いて(1)、(2)式を次の様に変形する
η0ω η1ω ここで(1′)式から(2′)式を減算しく3)式を得
る。
Next, the arithmetic processing method for the above equations (1) and (2) will be described. η0 in equations (1) and (2). Since η is a factor determined by the crystal shape of each radiation detector, it is calculated in advance and stored in the calculator 16. Similarly, ω is a factor determined by the shape of the opening of the collimator 13, so it is calculated in advance and stored in the calculator 16. The arithmetic unit 16 calculates the η0.
Using η1 and ω, transform equations (1) and (2) as follows: η0ω η1ω Here, subtract equation (2') from equation (1') to obtain equation 3).

この(3)式は測定位置に於ける貯蔵容器1表面の付着
放射能の検出β線量を意味する。つまり、表面付着放射
能の強度を示す。
This equation (3) means the detected β-dose of radioactivity attached to the surface of the storage container 1 at the measurement position. In other words, it indicates the intensity of radioactivity attached to the surface.

次に演算器16はNaI(TQ)検出器8で■り定した
γ線スペクトルのピーク検索処理を施しピークの中心エ
ネルギ値を判定し、演算器16内のテーブルで持ってい
る放射性物質のピークエネルギ値と該検索ピークエネル
ギ値とを比較して測定した放射能の核種を同定する。つ
まり、放射性物質ごとのG(γ)は一定なので、核種が
判明することにより表面付着放射能による放出γ線量A
 o G (γ)は次式で表現できる。
Next, the computing unit 16 performs peak search processing on the gamma ray spectrum determined by the NaI (TQ) detector 8, determines the central energy value of the peak, and determines the peak of the radioactive substance held in the table in the computing unit 16. The energy value and the search peak energy value are compared to identify the nuclide of the measured radioactivity. In other words, since G(γ) for each radioactive substance is constant, by identifying the nuclide, the amount of γ-rays released due to surface-attached radioactivity A
o G (γ) can be expressed by the following formula.

但し、(4)式のAo(β)は表面付着放射能の放出β
線量である。
However, Ao(β) in equation (4) is the release β of surface-attached radioactivity.
It is the dose.

(4)式を(2′)式に代入して演算処理を施こせばA
エ を求めることができる。
If we substitute equation (4) into equation (2') and perform the arithmetic processing, A
You can find d.

また、貯蔵容器1は通常200Qドラム管が使用されて
いることから貯蔵容器1の容積は既知である。ターンテ
ーブル3上の重量検出器2で貯蔵容器1の総重量を測定
し、その測定結果を演算器16に伝送する。演算器16
で貯蔵容器1の容積と重量から内容物の密度が求まる。
Further, since the storage container 1 is usually a 200Q drum pipe, the volume of the storage container 1 is known. The total weight of the storage container 1 is measured by the weight detector 2 on the turntable 3, and the measurement result is transmitted to the calculator 16. Arithmetic unit 16
The density of the contents is determined from the volume and weight of the storage container 1.

この算出した密度より放射線減衰率μ、を推定し、該A
□。
The radiation attenuation rate μ is estimated from this calculated density, and the A
□.

μ、用いると測定位置(断面)の貯蔵容器1内容物の放
射能強度Ioは次式で表現できる。
When μ is used, the radioactivity intensity Io of the contents of the storage container 1 at the measurement position (cross section) can be expressed by the following equation.

但し、μ2は貯蔵容器1の放射線減衰率、tは貯蔵容器
1の厚さ及びDは貯蔵容器1の内径である。
However, μ2 is the radiation attenuation rate of the storage container 1, t is the thickness of the storage container 1, and D is the inner diameter of the storage container 1.

よって、演算器16で(5)式を処理することにより貯
蔵容器1内の放射能強度を求めることができる。
Therefore, by processing equation (5) with the calculator 16, the radioactivity intensity within the storage container 1 can be determined.

ここで上下回転制御駆動装置4をコントロールし制御駆
動装置4と連結したターンテーブル3を上下移動させる
。すなわち、ターンテーブル3の上に設置した貯蔵容器
1と放射線検出装置5との相対位置を変化させ、その位
置(断面)に於ける貯蔵容器1表面の付着放射能と容器
内放射能を上記方法によって求める。この測定を貯蔵容
器1の全表面(断面)について連続的に実施することで
貯蔵容器1の全表面汚染度及び容器内の放射能強度を定
量できる。
Here, the vertical rotation control drive device 4 is controlled to move the turntable 3 connected to the control drive device 4 up and down. That is, the relative position between the storage container 1 placed on the turntable 3 and the radiation detection device 5 is changed, and the adhering radioactivity on the surface of the storage container 1 and the radioactivity inside the container at that position (cross section) are measured by the above method. Find it by By continuously performing this measurement on the entire surface (cross section) of the storage container 1, the degree of contamination of the entire surface of the storage container 1 and the radioactivity intensity within the container can be quantified.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に本発明によれば、放射性廃棄物貯蔵容
器の内容物の密度分布を一定とする仮定を置き、放射性
廃棄物貯蔵容器を回転しながら放射線を測定し、測定結
果について演算処理を施こすことにより、放射性廃棄物
貯蔵容器の表面付着放射能と容器内の放射能を同時に測
定することができるので汚染検査時間の短縮化及び汚染
検査装置の低価格の効果がある。また、汚染検査に於い
て人手を必要としないので被ばく量の低減にも効果があ
る。
As explained above, according to the present invention, radiation is measured while rotating the radioactive waste storage container on the assumption that the density distribution of the contents of the radioactive waste storage container is constant, and calculation processing is performed on the measurement results. By carrying out this method, the radioactivity attached to the surface of the radioactive waste storage container and the radioactivity inside the container can be measured simultaneously, which has the effect of shortening the time for contamination inspection and lowering the cost of the contamination inspection equipment. Furthermore, since no human labor is required for contamination inspection, it is effective in reducing the amount of radiation exposure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す側面図、第2図は放射
線検出装置の断面図、第3図は放射線計測系及び演算制
御部のブロック線図である。
FIG. 1 is a side view showing an embodiment of the present invention, FIG. 2 is a cross-sectional view of a radiation detection device, and FIG. 3 is a block diagram of a radiation measurement system and an arithmetic control section.

Claims (1)

【特許請求の範囲】[Claims] 1、被測定対象物から放出される放射線を測定する放射
線検出装置と、被測定対象物を上下及び回転移動させる
移動機構と、被測定対象物の重量を測定する重量計と、
放射線検出装置の出力信号を演算処理する演算装置と、
演算結果を表示する表示装置と、演算結果を記憶する記
憶装置とを備えたことを特徴とする放射能測定装置。
1. A radiation detection device that measures radiation emitted from an object to be measured, a movement mechanism that moves the object to be measured vertically and rotationally, and a scale that measures the weight of the object to be measured;
a calculation device that performs calculation processing on the output signal of the radiation detection device;
A radioactivity measuring device comprising: a display device that displays calculation results; and a storage device that stores calculation results.
JP61114621A 1986-05-21 1986-05-21 Radioactivity measuring apparatus Pending JPS62273479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61114621A JPS62273479A (en) 1986-05-21 1986-05-21 Radioactivity measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61114621A JPS62273479A (en) 1986-05-21 1986-05-21 Radioactivity measuring apparatus

Publications (1)

Publication Number Publication Date
JPS62273479A true JPS62273479A (en) 1987-11-27

Family

ID=14642438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61114621A Pending JPS62273479A (en) 1986-05-21 1986-05-21 Radioactivity measuring apparatus

Country Status (1)

Country Link
JP (1) JPS62273479A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1144768A (en) * 1997-07-25 1999-02-16 Toshiba Corp Radiation detector and radiation monitor using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1144768A (en) * 1997-07-25 1999-02-16 Toshiba Corp Radiation detector and radiation monitor using the same

Similar Documents

Publication Publication Date Title
US4897550A (en) Apparatus for the characterization of fissile material having at least one neutron radiation detector located in a gamma radiation detection scintillator
CN104820230B (en) A kind of Low background α, β activity analysis instrument
WO2013031897A1 (en) Food product inspection system
WO2009114992A1 (en) Integrated system and integrated method for x-ray radiation imaging and radioactive matter monitoring
JP6524484B2 (en) Radiation measurement method and radiation measurement apparatus
JPH08220029A (en) Apparatus and method for non-destructive inspection for radioactively contaminated material
CN204705719U (en) A kind of portable radioactive contamination meter
JP5071813B2 (en) Radiation dose measuring method and radiation dose measuring apparatus
JP3009358B2 (en) Measuring method of contamination distribution inside radioactively contaminated piping
JPS62273479A (en) Radioactivity measuring apparatus
JPH05333155A (en) Radioactive concentration measuring method for artificial radioactive nuclide in concrete
JPH068859B2 (en) Device for measuring β-radionuclide content in food
JPH0551873B2 (en)
JPH04235379A (en) Measuring method of radioactivity
JPH04194772A (en) Radiation measuring device
JP7154154B2 (en) Radioactive dust monitor and method for measuring radioactivity concentration
JPH10185843A (en) Hydrogen content monitor
JP6478754B2 (en) Radioactivity measuring device
JP6139391B2 (en) Radioactivity inspection apparatus and method
JPS6345583A (en) Surface contamination inspecting equipment
CN115436987B (en) Gamma-beta joint monitoring system and method for I-131 in air
JP2019066202A (en) Radioactivity measuring device
JPH04130290A (en) Method and device for inspection radioactive waste
JPH0670675B2 (en) Uranium enrichment measuring method and measuring device
JPH04326095A (en) Criticality surveillance monitor for neutron multiplication system