JP5071813B2 - Radiation dose measuring method and radiation dose measuring apparatus - Google Patents

Radiation dose measuring method and radiation dose measuring apparatus Download PDF

Info

Publication number
JP5071813B2
JP5071813B2 JP2009014790A JP2009014790A JP5071813B2 JP 5071813 B2 JP5071813 B2 JP 5071813B2 JP 2009014790 A JP2009014790 A JP 2009014790A JP 2009014790 A JP2009014790 A JP 2009014790A JP 5071813 B2 JP5071813 B2 JP 5071813B2
Authority
JP
Japan
Prior art keywords
average value
moving average
radiation dose
count
count rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009014790A
Other languages
Japanese (ja)
Other versions
JP2010169645A (en
Inventor
勝範 渡井
貴志 鎌田
芳幸 白川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Radiological Sciences
Original Assignee
National Institute of Radiological Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Radiological Sciences filed Critical National Institute of Radiological Sciences
Priority to JP2009014790A priority Critical patent/JP5071813B2/en
Publication of JP2010169645A publication Critical patent/JP2010169645A/en
Application granted granted Critical
Publication of JP5071813B2 publication Critical patent/JP5071813B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Radiation (AREA)

Description

本発明は、原子力発電所や素粒子・高エネルギーに関する研究所あるいは医療機関の放射線治療室など放射線の放射を伴う環境下における安全性を確保するため、放射性物質による汚染等の有無およびその汚染レベルを見落とすことなく検出ないし測定する放射線量測定装置および測定方法に関する。   In order to ensure safety in an environment accompanied by radiation emission such as a nuclear power plant, a laboratory for elementary particles and high energy, or a radiotherapy room of a medical institution, the presence or absence of contamination by radioactive materials and the contamination level thereof The present invention relates to a radiation dose measuring apparatus and a measuring method for detecting or measuring without overlooking the screen.

放射性物質を取扱う環境下にあっては、従来より空間線量モニタリングの繃線測定器、放射性物質による表面汚染モニタリングのゲートモニタやハンドフットクロスモニタなどを用いて、当該環境における放射線の線量率ないし計数率(単位時間当たりの線量ないし出力パルスカウント数)の測定が適時実施される。   In an environment where radioactive substances are handled, the radiation dose rate or counting in the environment is conventionally performed by using an X-ray measuring instrument for air dose monitoring, a gate monitor or hand foot cross monitor for monitoring surface contamination by radioactive substances, etc. Measurement of the rate (dose per unit time or output pulse count) is performed in a timely manner.

測定はまず、検出器に備わるプローブ等を被測定物に対してたとえば移動させながらバックグラウンドを有意に超す値を持つ汚染箇所を探査し、発見された汚染箇所において更に一定時間そのプローブを保持したまま測定装置の指針が安定してからこれを最終的な線量率ないし計数率(以下、適宜「最終応答値」ともいう。)として行われるのが一般的である。   First of all, the probe located in the detector is moved with respect to the object to be measured, for example, to search for a contaminated portion having a value that significantly exceeds the background, and the probe is held for a certain period of time at the detected contaminated portion. In general, the guideline of the measuring apparatus is stabilized and this is performed as a final dose rate or counting rate (hereinafter also referred to as “final response value” as appropriate).

このような測定に供される放射線量測定器として、たとえばシンチレーション検出器を用いたサーベイメータなどがよく知られる。   As a radiation dose measuring device used for such measurement, for example, a survey meter using a scintillation detector is well known.

ところで、上記のような放射線量測定装置に備わる電気回路は、コンデンサや抵抗を配して構成されるのが普通である。   By the way, the electric circuit provided in the radiation dose measuring apparatus as described above is usually configured by arranging a capacitor and a resistor.

このため計器の応答がいわゆる一次遅れ系の遅延を呈し、放射線量の正確な測定には少なくとも時定数に応じた測定時間を要するのが現状である。   For this reason, the response of the instrument presents a so-called first-order delay system, and the present situation is that an accurate measurement of radiation dose requires a measurement time corresponding to at least a time constant.

しかしながら、実際には被測定物に対して少なくとも毎秒50mm程度の移動速度に対応できないようでは実働に堪え得るものとは謂い難く、また緊急被曝事故等の発生時にあって空間線量率や汚染箇所の計数率を測定するに際して、異常と検知した箇所においてプローブ等を静止させてから上記時定数に応じた測定時間を待っていては、最終応答値を得るまでに膨大な時間を要してしまい安全を確保することはできない。   However, in reality, if it is not possible to cope with a moving speed of at least about 50 mm per second with respect to the object to be measured, it is difficult to be able to withstand actual work. When measuring the counting rate, if you wait for the measurement time according to the above time constant after stopping the probe etc. at the point where it is detected as abnormal, it takes a lot of time to obtain the final response value, and it is safe Cannot be secured.

そして汚染箇所の発見のためにプローブを移動させながらサーベイメータの測定値を読む場合、仮に測定対象との距離10mm、時定数10秒、移動速度毎秒50mmとするとその出力は静止時の最終応答値の10%から15%程度に急減し、熟練者以外では特に軽微な汚染箇所において有意な変化を認識することが困難なのが実情である。   And, when reading the survey meter measurement value while moving the probe to detect the contaminated part, if the distance to the measurement object is 10 mm, the time constant is 10 seconds, and the moving speed is 50 mm per second, the output is the final response value at rest. The actual situation is that it suddenly decreases from 10% to 15%, and it is difficult for non-experts to recognize significant changes especially in lightly contaminated areas.

特に事故時にあっては、放射性物質による人体の汚染検査に関し一人当たりに長い時間がかかると、特に被験者数が多数の場合には、検査の遅延から被験者の被曝量を把握できず深刻な問題となることがある。   Especially in the case of an accident, it takes a long time per person to examine contamination of the human body with radioactive substances. Especially when there are a large number of subjects, the exposure of the subject cannot be determined due to the delay in the examination, which is a serious problem. May be.

さらに日常の放射線管理においても、測定箇所が多数であれば必然的に検査時間が長時間に及ぶために安全管理が不充分となり、他方検査時間を短縮すべくプローブ等の移動速度を上げると、上記時定数の問題から、正確な放射線量測定が行えず、いずれにしても当該管理環境下の安全性の確保が困難であるとの問題があった。   Furthermore, even in daily radiation management, if there are a large number of measurement points, the inspection time will inevitably take a long time, so safety management will be insufficient, and on the other hand, if the moving speed of the probe etc. is increased to shorten the inspection time, Due to the problem of the time constant, there is a problem that accurate radiation dose measurement cannot be performed, and in any case, it is difficult to ensure safety in the management environment.

国際出願PCT/JP2006/302748International Application PCT / JP2006 / 302748 特開2008−101922JP2008-101922

そこで本発明は、従来の放射線量測定装置が有する上記の問題点に鑑み、放射線量測定装置の最終応答値を時定数の経過を待たずに予測演算して表示する放射線量測定方法および予測対応型放射線量測定装置を提供することを課題とする。   Therefore, in view of the above-mentioned problems of the conventional radiation dose measuring device, the present invention predicts and displays the radiation dose measuring method and prediction response of the final response value of the radiation dose measuring device without waiting for the time constant to elapse. It is an object to provide a type radiation dose measuring apparatus.

上記の課題を解決することを目的としてなされた本発明放射線量測定方法の構成は、放射性物質の放射線量を測定する方法であって、適宜サンプリング・タイムΔtによって得られた複数のカウント毎秒計数率に基づき移動平均値を算出するステップと、算出された移動平均値を現移動平均値とし、一つ前の移動平均値を前移動平均値として、現移動平均値および前移動平均値ならびに予測演算された前カウント毎分計数率に基づき現カウント毎分計数率を次式N0=60×(M0−M-1)/Δt+N-1(ここでN0:現カウント毎分計数率、N-1:前カウント毎分計数率、M0:現移動平均値、M-1:前移動平均値、Δt:サンプリング・タイム)により予測演算するステップと、予測演算された現カウント毎分計数率を適宜の表示手段により表示するステップとを備えたことを特徴とするものである。 The constitution of the radiation dose measurement method of the present invention made for the purpose of solving the above problems is a method for measuring the radiation dose of a radioactive substance, and a plurality of counts per second obtained at a sampling time Δt as appropriate. Calculating the moving average value based on the current moving average value, the calculated moving average value as the current moving average value, and the previous moving average value as the previous moving average value. The current count per minute count rate is expressed by the following formula N 0 = 60 × (M 0 −M −1 ) / Δt + N −1 (where N 0 is the current count per minute count rate, N -1 : Pre-count per minute count rate, M 0 : Current moving average value, M -1 : Previous moving average value, Δt: Sampling time) A step of displaying by an appropriate display means; It is characterized in that it comprises.

本発明放射線量測定方法の前記移動平均値は、3〜10個程度のカウント毎秒計数率に基づく移動平均値であるのが望ましく、また各カウント毎秒計数率のうち現時点により近い過去のカウント毎秒計数率へより大きな重みを付与してなる加重移動平均値として算出することも可能である。   The moving average value of the radiation dose measuring method of the present invention is preferably a moving average value based on a count rate of about 3 to 10 counts per second, and the past counts per second counted closer to the present time among the counts per second count rates. It is also possible to calculate as a weighted moving average value obtained by assigning a greater weight to the rate.

上記の課題を解決することを目的としてなされた本発明放射線量測定装置の構成は、放射線の入射により出力パルスを発生する出力部と、前記出力パルスの到達をカウントし適宜サンプリング・タイムTによってカウント毎秒計数率を算出する計数率演算部と、複数の前記カウント毎秒計数率に基づき移動平均値を算出する移動平均値演算部と、移動平均値算出部が算出した移動平均値を現移動平均値とし、一つ前の移動平均値を前移動平均値として、現移動平均値および前移動平均値ならびに前カウント毎分計数率に基づき現カウント毎分計数率を次式N0=60×(M0−M-1)/Δt+N-1(ここでN0:現カウント毎分計数率、N-1:前カウント毎分計数率、M0:現移動平均値、M-1:前移動平均値、Δt:サンプリング・タイム)により予測する予測演算部と、予測演算された現カウント毎分計数率を表示する表示部とを備えたことを特徴とするものである。 The configuration of the radiation dose measuring device of the present invention, which has been made for the purpose of solving the above-mentioned problems, includes an output unit that generates an output pulse by the incidence of radiation, and counts arrival of the output pulse and appropriately counts by a sampling time T A count rate calculation unit for calculating a count rate per second, a moving average value calculation unit for calculating a moving average value based on the plurality of counts per second count rate, and a moving average value calculated by the moving average value calculation unit as a current moving average value And the current moving average value, the previous moving average value, and the previous count per minute count rate based on the previous moving average value as the previous moving average value, the current count per minute count rate is expressed by the following formula: N 0 = 60 × (M 0 −M −1 ) / Δt + N −1 (where N 0 : current count per minute count rate, N −1 : previous count per minute count rate, M 0 : current moving average value, M −1 : previous moving average value) , Δt: Sampling time) And a display unit for displaying a count rate per minute of the current count that has been predicted and calculated.

本発明放射線量測定器の前記移動平均値演算部は、3〜10個程度の適宜個数のカウント毎秒計数率に基づき移動平均値を算出するのが望ましく、また各カウント毎秒計数率のうち現時点により近い過去のカウント毎秒計数率へより大きな重みを付与してなる加重移動平均値によって演算処理を行うよう構成することも可能である。   The moving average value calculation unit of the radiation dose measuring device according to the present invention preferably calculates a moving average value based on an appropriate number of counts per second of about 3 to 10 counts. It is also possible to perform a calculation process using a weighted moving average value obtained by assigning a greater weight to the count rate per second in the near past.

本発明放射線量測定方法ないし放射線量測定装置によれば、入射する放射線のカウント毎秒計数率の移動平均値に基づく最終応答値を簡易な計算処理によって予測することができるため、複雑な演算処理過程や機械的構成を要することなく測定時間を大幅に短縮し、測定器における毎秒50mm以上の移動速度にも対応することができる。   According to the radiation dose measuring method or the radiation dose measuring apparatus of the present invention, the final response value based on the moving average value of the counting rate per second of the incident radiation can be predicted by a simple calculation process. Measurement time can be greatly shortened without requiring a mechanical structure, and it is possible to handle moving speeds of more than 50 mm per second.

また、移動平均値をとるに際しカウント毎秒計数率のサンプルを3〜10個程度とるよう構成することで、計器の応答速度を高く維持しつつノイズによる揺らぎを抑えることもできる。   Further, by taking about 3 to 10 samples at a count rate per second when taking the moving average value, it is possible to suppress fluctuations due to noise while maintaining a high response speed of the instrument.

そして、移動平均値を算出するに際し現時点により近い過去のカウント毎秒計数率に対してより大きな重みを付与して加重移動平均値とすることによって、平均値をとるためのサンプル(カウント毎秒計数率)を多く設定したときにあっても計器の応答が鈍くなることのないよう補正し得るとの効果を有する。   Then, when calculating the moving average value, a sample for taking the average value (counting rate per second) is obtained by assigning a larger weight to the past counting rate per second that is closer to the present time to obtain a weighted moving average value. Even when a large number is set, there is an effect that the response of the instrument can be corrected so as not to become dull.

本発明方法による予測応答型の測定装置の構成を例示した模式図。The schematic diagram which illustrated the composition of the prediction response type measuring device by the method of the present invention. 本発明測定装置および測定方法の演算処理工程を示すブロック図。The block diagram which shows the arithmetic processing process of this invention measuring device and a measuring method. 放射線源に対して測定されたカウント毎秒計数率およびその各種サンプル数で算出される移動平均値を例示したグラフ。The graph which illustrated the moving average value calculated by the count rate per second measured with respect to the radiation source, and its various sample number.

つづいて、本発明装置及び方法の実施の形態例を図により説明する。   Next, embodiments of the apparatus and method of the present invention will be described with reference to the drawings.

図1は本発明方法による予測応答型の測定装置(たとえばサーベーメータ)の構成を例示した模式図、図2は本発明測定装置の演算処理工程を示したブロック図、図3は放射線源に対して測定されたカウント毎秒計数率およびその各種サンプル数に基づいて算出される移動平均値を例示したグラフである。   FIG. 1 is a schematic diagram illustrating the configuration of a predictive response type measuring apparatus (for example, a survey meter) according to the method of the present invention, FIG. 2 is a block diagram showing the arithmetic processing steps of the measuring apparatus of the present invention, and FIG. 5 is a graph exemplifying a moving average value calculated based on a count rate per second and a number of various samples thereof.

図1において、1は本発明に係るサーベイメータの一例であって、表示部Dを有する装置本体とシンチレータSおよび光電子増倍管Tを有するプローブPを備えてなる。   In FIG. 1, reference numeral 1 denotes an example of a survey meter according to the present invention, which includes an apparatus main body having a display unit D, a scintillator S, and a probe P having a photomultiplier tube T.

シンチレータSとしては、タリウム活性化ナトリウムNaI(TI)や銀活性化硫化亜鉛ZnS(Ag)、あるいはプラスチックシンチレータなどいずれのシンチレータも本発明測定装置には適用可能である。   As the scintillator S, any scintillator such as thallium activated sodium NaI (TI), silver activated zinc sulfide ZnS (Ag), or plastic scintillator can be applied to the measuring apparatus of the present invention.

はじめに、汚染箇所にある放射性物質(線源)Rから放射された放射線が、測定を開始した本発明測定装置1のプローブPの入射窓(図示せず)に入射すると、シンチレータSの蛍光作用により生じた蛍光が光電子増倍管Tにおいて光電面から電子として放出された後に増幅されて電気信号パルスに変換され、出力部14より計数率演算部10へ出力パルスとして出力される。   First, when the radiation emitted from the radioactive substance (radiation source) R in the contaminated area is incident on the incident window (not shown) of the probe P of the measurement device 1 of the present invention which has started measurement, the scintillator S causes fluorescence. The generated fluorescence is emitted as electrons from the photocathode in the photomultiplier tube T, then amplified and converted into electric signal pulses, and output from the output unit 14 to the count rate calculation unit 10 as output pulses.

計数率演算部10では、上記出力パルスを受けて、1秒間にカウントされた出力パルスのカウント数をカウント毎秒計数率CPSとして、適宜のサンプリング・タイムΔt(本実施例においてたとえば0.1秒とするが、これに限られない)ごとに算出する。   The count rate calculation unit 10 receives the output pulse and counts the number of output pulses counted per second as the count per second count rate CPS, and an appropriate sampling time Δt (in this embodiment, for example, 0.1 sec. , But not limited to this).

時間の経過とともに計数率演算部10において算出されたカウント毎秒計数率CPSは、移動平均値演算部11にて順次、加重移動平均値Mのサンプルとして供される。   The count per second count rate CPS calculated by the count rate calculation unit 10 over time is sequentially supplied as a sample of the weighted moving average value M by the moving average value calculation unit 11.

すなわち、仮に3つのカウント毎秒計数率CPSを移動平均のサンプル値として設定した場合においては、下式により、たとえば現在のカウント毎秒計数率(現カウント毎秒計数率CPS0)に対して3の加重を付与し、その一つ前のカウント毎秒計数率(前カウント毎秒計数率CPS-1)に対しては2の加重を付与し、そのさらに一つ前のカウント毎秒計数率(前々カウント毎秒計数率CPS-2)に対しては加重を付与することなく(1の加重で)移動平均値Mを算出することができる。 In other words, if three counts per second count rate CPS is set as a moving average sample value, a weight of 3 is applied to the current count per second count rate (current count per second count rate CPS 0 ) according to the following formula, for example: A weight of 2 is given to the previous count per second count rate (previous count per second count rate CPS -1 ), and the previous count per second count rate (previous count per second count rate) For CPS- 2 ), the moving average value M can be calculated without applying a weight (with a weight of 1).

なお、移動平均値Mのサンプルとされるカウント毎秒計数率CPSは3つに限られるものではなく、また加重移動平均Mの加重方法も上記実施例に限定されない。   The count per second count rate CPS used as a sample of the moving average value M is not limited to three, and the weighting method of the weighted moving average M is not limited to the above embodiment.

移動平均値Mが、加重の付与されない(全ての重みが1である)単純移動平均値Mなどであってよいことも言うまでもない。   It goes without saying that the moving average value M may be a simple moving average value M to which no weight is applied (all weights are 1).

予測演算部12では、上記の移動平均値Mを用いてカウント毎分計数率N(最終応答値N)が下式により予測演算される。   In the prediction calculation unit 12, the count rate N per minute (final response value N) is predicted and calculated by the following equation using the above moving average value M.

すなわち現在の移動平均値(現移動平均値M0)とその一つ前の移動平均値(前移動平均値M-1)を利用して、上記サンプリング・タイムΔtの間におけるカウント毎秒計数率CPSから算出された移動平均値Mの増減率がサンプリング・タイムΔt間にそのまま維持されたと仮定することによって現在のカウント毎分計数率Nを予測演算することができる。 That is, using the current moving average value (current moving average value M 0 ) and the previous moving average value (previous moving average value M −1 ), the count rate CPS per second during the sampling time Δt. Assuming that the increase / decrease rate of the moving average value M calculated from the above is maintained as it is during the sampling time Δt, the current count rate N per minute can be predicted.

なお、測定開始直後のカウント毎分計数率Nについては、最初に測定されたカウント毎秒計数率CPSを単に60倍して換算するなど適宜の方法によって求めることが可能である。   Note that the count per minute count rate N immediately after the start of measurement can be obtained by an appropriate method, such as by simply multiplying the count per second count rate CPS measured first by 60.

これにより、従来の時定数を含む一次遅れ系のサーベイメータに比して、きわめて短時間のうちに最終応答値であるカウント毎分計数率Nを予測演算することができる。しかもこの予測演算は前示のとおりきわめて簡易な演算式によって行われるため、複雑な演算処理プログラムあるいは機械的構成を必要とすることなく迅速な測定を実現し得る。   As a result, the count rate N per count, which is the final response value, can be predicted and calculated in a very short time compared to a conventional first-order lag survey meter including a time constant. In addition, since the prediction calculation is performed by a very simple calculation formula as described above, it is possible to realize a quick measurement without requiring a complicated calculation processing program or a mechanical configuration.

また、予測演算の基礎とする値は入射線に対するカウント毎秒計数率CPSの移動平均値Mであるため、通常環境下および汚染環境下に存するノイズ等への過剰な反応による揺らぎに対してもこれを効果的に抑制することを実現し得る。   In addition, since the value used as the basis for the prediction calculation is the moving average value M of the count rate CPS per second for the incident line, this is also effective for fluctuations caused by excessive reactions to noise, etc. in normal and contaminated environments. Can be effectively suppressed.

図3は、ポジション300(Position 300)において線源Rを有する被測定物に沿って本発明測定装置1のプローブPを走らせたとき、移動平均値演算部11での演算の基礎とするカウント毎秒計数率CPSのサンプル数をそれぞれ3,10,30,100に設定した場合の(単純)移動平均値Mの推移にカウント毎秒計数率CPSの生のデータを重ねて表示したグラフである。   FIG. 3 shows a count per second as a basis for calculation in the moving average value calculation unit 11 when the probe P of the measurement device 1 of the present invention is run along the measurement object having the radiation source R at the position 300 (Position 300). It is a graph in which the raw data of the count rate CPS per second is superimposed on the transition of the (simple) moving average value M when the number of samples of the count rate CPS is set to 3, 10, 30, 100, respectively.

図3に示すグラフからも明らかなとおり、単に算出されたカウント毎秒計数率CPSを60倍にしてカウント毎分計数率へ換算すると、生のデータに散見される測定値の揺らぎの影響を大きく受けることになってしまう。   As is clear from the graph shown in FIG. 3, when the calculated count rate per second CPS is simply multiplied by 60 and converted to the count rate per minute, it is greatly affected by fluctuations in the measurement values that are scattered in the raw data. It will be.

これに対して、カウント毎秒計数率CPSのサンプル数を3〜10程度の適宜個数に設定しこれらを基礎に移動平均値を取得した場合には、生のデータの揺らぎについて効果的に抑制し得ると共に、生データと移動平均値Mとが著しく乖離し又測定計器の応答速度を鈍らせるということがない。   On the other hand, when the number of samples of the count rate per second CPS is set to an appropriate number of about 3 to 10 and the moving average value is obtained based on these, the fluctuation of the raw data can be effectively suppressed. At the same time, the raw data and the moving average value M are not significantly deviated and the response speed of the measuring instrument is not slowed.

本発明の予測方法については、入射した放射線量の増加分のみならず減少分についてもほぼ正確な数値を予測演算し得ることは図3の示すとおりである。   With respect to the prediction method of the present invention, as shown in FIG. 3, it is possible to predict and calculate a substantially accurate numerical value not only for an increase in incident radiation dose but also for a decrease.

なお、本発明の技術思想は、本実施例のサーベイメータのように蛍光作用を利用したものに限定されることはなく、GM計数管などの気体、又は半導体検出器などの固体における電離作用を利用した測定装置および測定方法にも適用可能であることは勿論であり、また可搬式のものに限られることもない。   In addition, the technical idea of the present invention is not limited to the one using the fluorescence action like the survey meter of the present embodiment, but uses the ionization action in the gas such as the GM counter or the solid such as the semiconductor detector. Needless to say, the present invention is also applicable to the measuring apparatus and measuring method described above, and is not limited to a portable type.

本発明は以上の通りであって、入射する放射線のカウント毎秒計数率の移動平均値に基づく最終応答値をきわめてシンプルな演算処理によって予測することができるため、複雑な演算処理過程や機械的構成を要することなく測定時間を大幅に短縮し、測定器における毎秒50mm以上の移動速度にも対応することができ、移動平均値をとるに際してはカウント毎秒計数率のサンプルを3〜10程度の適宜個数に設定して構成すれば、計器の応答速度を高く維持しつつもノイズによる揺らぎを抑えることができ、また現時点により近い過去のカウント毎秒計数率に対し適度な重みを付与した加重移動平均値とすることによっては平均値をとるためのサンプル数を多く設定したときにあっても計器の応答が鈍くなることのないよう補正を施すことができるとの効果を有するから放射線量測定装置および測定方法に適用してきわめて有用である。   The present invention is as described above, and the final response value based on the moving average value of the counting rate of incident radiation per second can be predicted by a very simple calculation process. The measurement time can be greatly shortened without requiring measurement, and it is possible to handle moving speeds of more than 50 mm per second in the measuring instrument. When taking a moving average value, an appropriate number of samples with a count rate of about 3 to 10 per second is counted. If set to, it is possible to suppress fluctuations due to noise while maintaining a high response speed of the instrument, and a weighted moving average value giving an appropriate weight to the count rate per second in the past that is closer to the present time and By doing so, even when a large number of samples are set to obtain the average value, the instrument response can be corrected so as not to become dull. Therefore, it is extremely useful when applied to a radiation dose measuring apparatus and measuring method.

1 本発明放射線量測定装置
10 計数率演算部
12 予測演算部
13 表示部
14 出力部
P プローブ
T 光電子増倍管
S シンチレータ
R 放射線源
D 表示窓
1 Radiation dose measuring device of the present invention
10 Count rate calculator
12 Prediction calculator
13 Display
14 Output section
P probe
T photomultiplier tube
S scintillator
R Radiation source
D Display window

Claims (10)

放射性物質の放射線量を測定する方法であって、
適宜サンプリング・タイムΔtによって得られた複数のカウント毎秒計数率に基づき適宜個数の移動平均値を算出するステップと、
算出された移動平均値を現移動平均値とし、一つ前の移動平均値を前移動平均値として、現移動平均値および前移動平均値ならびに予測演算された前カウント毎分計数率に基づき現カウント毎分計数率を次
により予測演算するステップと、
予測演算された現カウント毎分計数率を適宜の表示手段により表示するステップと
を備えた放射線量測定方法。
A method for measuring the radiation dose of a radioactive substance,
Calculating an appropriate number of moving average values based on a plurality of counts per second count rate obtained by an appropriate sampling time Δt;
The calculated moving average value is the current moving average value, and the previous moving average value is the previous moving average value. Based on the current moving average value, the previous moving average value, and the predicted count rate per minute previously calculated, counts per minute count rate the following equation:
Predicting with
A radiation dose measuring method comprising: a step of displaying a count rate of the current count per minute calculated by prediction using an appropriate display means.
前記移動平均値は、直近の3〜10程度の適宜個数のカウント毎秒計数率に基づく移動平均値である請求項1の放射線量測定方法。   2. The radiation dose measuring method according to claim 1, wherein the moving average value is a moving average value based on an appropriate number of counts per second of about 3 to 10 in the latest period. 前記移動平均値は、それぞれのカウント毎秒計数率に対して任意の重みを付与した加重移動平均値である請求項1または2の放射線量測定方法。   3. The radiation dose measurement method according to claim 1, wherein the moving average value is a weighted moving average value obtained by assigning an arbitrary weight to each count rate per second. 前記加重移動平均値は、それぞれのカウント毎秒計数率のうちより新しいものに対してより大きな重みを付与してなる請求項3の放射線量測定方法。   4. The radiation dose measuring method according to claim 3, wherein the weighted moving average value gives a greater weight to a newer one of the counts per second. 前記移動平均値は直近のm個のカウント毎秒計数率に対して古いものから順にそれぞれ1,2,…mの重みを付与した加重移動平均値とし、次
により算出する請求項1〜4のいずれかの放射線量測定方法。
The moving average value in turn respectively 1,2 Oldest respect nearest of m counts per second count rate, ... and the weighted moving average value obtained by applying a weight of m, the following formula
The radiation dose measuring method according to claim 1, which is calculated by:
放射線の入射により出力パルスを発生する出力部と、
前記出力パルスの到達をカウントし適宜サンプリング・タイムΔtによってカウント毎秒計数率を算出する計数率演算部と、
複数の前記カウント毎秒計数率に基づき移動平均値を算出する移動平均値演算部と、
移動平均値算出部が算出した移動平均値を現移動平均値とし、一つ前の移動平均値を前移動平均値として、現移動平均値および前移動平均値ならびに前カウント毎分計数率に基づき現カウント毎分計数率を次式
により予測する予測演算部と、
予測演算された現カウント毎分計数率を表示する表示部と
を備えた放射線量測定装置。
An output unit that generates an output pulse upon incidence of radiation;
A counting rate calculating unit that calculates a count per count rate by the output pulse reaches the counting appropriate sampling time delta t of,
A moving average value calculation unit that calculates a moving average value based on a plurality of counts per second counting rate;
Based on the current moving average value, the previous moving average value, and the previous count per minute count rate, with the moving average value calculated by the moving average value calculation unit as the current moving average value and the previous moving average value as the previous moving average value Current count per minute count rate:
A prediction calculation unit for predicting by
A radiation dose measuring device comprising: a display unit that displays a count rate per minute of the current count that is predicted and calculated.
前記移動平均値演算部は、直近の3〜10程度の適宜個数のカウント毎秒計数率に基づく移動平均値を算出する請求項6の放射線量測定装置。   7. The radiation dose measuring apparatus according to claim 6, wherein the moving average value calculating unit calculates a moving average value based on a count number of counts per second, which is about the latest 3 to 10 in number. 前記移動平均値演算部は、それぞれのカウント毎秒計数率に対して任意の重みを付与した加重移動平均値を算出する請求項6または7の放射線量測定装置。   8. The radiation dose measuring apparatus according to claim 6, wherein the moving average value calculation unit calculates a weighted moving average value obtained by assigning an arbitrary weight to each count rate per second. 前記移動平均値演算部は、それぞれのカウント毎秒計数率のうちより新しいものに対してより大きな重みを付与して加重移動平均値を算出する請求項8の放射線量測定装置。   9. The radiation dose measuring apparatus according to claim 8, wherein the moving average value calculation unit calculates a weighted moving average value by assigning a greater weight to a newer one of the counts per second. 前記移動平均値演算部は直近のm個のカウント毎秒計数率に対して古いものから順にそれぞれ1,2,…mの重みを付与した加重移動平均値を次
により算出する請求項6〜9のいずれかの放射線量測定装置。
The moving average value calculating unit in turn respectively 1,2 Oldest respect nearest of m counts per second count rate, ... following equation weighted moving average value obtained by applying a weight of m
The radiation dose measuring apparatus according to claim 6, which is calculated by:
JP2009014790A 2009-01-26 2009-01-26 Radiation dose measuring method and radiation dose measuring apparatus Active JP5071813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009014790A JP5071813B2 (en) 2009-01-26 2009-01-26 Radiation dose measuring method and radiation dose measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009014790A JP5071813B2 (en) 2009-01-26 2009-01-26 Radiation dose measuring method and radiation dose measuring apparatus

Publications (2)

Publication Number Publication Date
JP2010169645A JP2010169645A (en) 2010-08-05
JP5071813B2 true JP5071813B2 (en) 2012-11-14

Family

ID=42701922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009014790A Active JP5071813B2 (en) 2009-01-26 2009-01-26 Radiation dose measuring method and radiation dose measuring apparatus

Country Status (1)

Country Link
JP (1) JP5071813B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6857174B2 (en) * 2016-04-28 2021-04-14 株式会社堀場製作所 Radiation detection device and signal processing device for radiation detection
JP6843350B2 (en) * 2016-11-29 2021-03-17 地方独立行政法人東京都立産業技術研究センター Radiation amount measuring device, radiation amount measuring method and radiation amount measuring system
CN107122534B (en) * 2017-04-18 2020-09-18 中广核研究院有限公司 Method and device for calculating power multiplication period of nuclear reactor
CN109472395B (en) * 2018-10-15 2021-04-02 中广核(深圳)运营技术与辐射监测有限公司 Radiation dose prediction method and terminal during nuclear power station overhaul

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839973A (en) * 1981-09-02 1983-03-08 Mitsubishi Electric Corp Radiant ray measuring instrument
JPH0666946A (en) * 1992-05-13 1994-03-11 Fuji Electric Co Ltd Counting rate meter
JPH06324150A (en) * 1993-05-17 1994-11-25 Toshiba Corp Radioactive ray monitor
JPH07181263A (en) * 1993-12-24 1995-07-21 Yazaki Corp Radioactive ray measuring instrument

Also Published As

Publication number Publication date
JP2010169645A (en) 2010-08-05

Similar Documents

Publication Publication Date Title
EP3076873B1 (en) System for generating spectral computed tomography projection data
JP5911585B2 (en) Radioactivity analyzer
JP5779819B2 (en) Radiation detector
JP5071813B2 (en) Radiation dose measuring method and radiation dose measuring apparatus
JP5843315B2 (en) Positron annihilation characteristic measuring apparatus and positron annihilation characteristic measuring method
JP2004536284A (en) X-ray fluorescence analyzer
JP2018146319A5 (en)
Farsoni et al. Real-time pulse-shape discrimination and beta–gamma coincidence detection in field-programmable gate array
JP6524484B2 (en) Radiation measurement method and radiation measurement apparatus
JPH1164529A (en) Dust monitor
JP5994169B2 (en) Radioactive substance measuring method and measuring apparatus therefor
US20150309185A1 (en) Extremity radiation monitoring systems and related methods
KR102159254B1 (en) Apparatus for analysis of fine dust and method for analysis of fine dust
JP2007225507A (en) Radioactivity inspection method and device
JP4265813B2 (en) Prediction method of radiation detection value, prediction response type radiation detector and radiation monitoring method
KR102663201B1 (en) Apparatus for radiation measurement and operation method thereof
US11079222B2 (en) Radiation-based thickness gauge
JP3807652B2 (en) Radiation measurement apparatus and method
JP2001194460A (en) Radiation monitor
KR101964099B1 (en) A radiation detecting devece for detecting a radionuclide in a water pipe, a water purifier including the same, and a method for detecting a radionuclide using the same
JP4485612B2 (en) Radiation measurement equipment
JP4686328B2 (en) Radiation monitoring device
JP2008268075A (en) Non-destructive inspection method, and non-destructive inspection device
JP2020091103A (en) Radiation measurement device and radiation measurement method
JP7183206B2 (en) Radioactivity inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120809

R150 Certificate of patent or registration of utility model

Ref document number: 5071813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250