JPH0670675B2 - Uranium enrichment measuring method and measuring device - Google Patents

Uranium enrichment measuring method and measuring device

Info

Publication number
JPH0670675B2
JPH0670675B2 JP58013782A JP1378283A JPH0670675B2 JP H0670675 B2 JPH0670675 B2 JP H0670675B2 JP 58013782 A JP58013782 A JP 58013782A JP 1378283 A JP1378283 A JP 1378283A JP H0670675 B2 JPH0670675 B2 JP H0670675B2
Authority
JP
Japan
Prior art keywords
uranium
rays
ray
concentration
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58013782A
Other languages
Japanese (ja)
Other versions
JPS59141086A (en
Inventor
▲しよう▼一 田仲
肇 矢野
信治 石黒
準 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP58013782A priority Critical patent/JPH0670675B2/en
Publication of JPS59141086A publication Critical patent/JPS59141086A/en
Publication of JPH0670675B2 publication Critical patent/JPH0670675B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/167Measuring radioactive content of objects, e.g. contamination

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Description

【発明の詳細な説明】 本発明はウラン溶液の235U濃縮度を非破壊測定する方法
に関し,特にインラインモニタリングにおいて235Uを連
続的に測定し得る方法に関する。
The present invention relates to a method for nondestructively measuring 235 U enrichment of uranium solution, and more particularly to a method capable of continuously measuring 235 U in in-line monitoring.

一般に核燃料製造工場や核燃料再処理工場などではその
各処理段階において取扱つている燃料や材料の235U濃縮
度が所定の範囲のものであるか否かを監視することが、
工程および品質の管理上必須なこととなつている。
Generally, in a nuclear fuel manufacturing plant or a nuclear fuel reprocessing plant, it is possible to monitor whether or not the 235 U enrichment of the fuel or material handled at each processing stage is within a predetermined range.
It is essential for process and quality control.

従来,ウラン濃縮度の測定には,質量スペクトルによる
測定法と非破壊測定法として用いられる放射線計測法が
ある。前者は一般に測定精度が高いけれども破壊測定で
あるので,非破壊を前提とするインラインモニタリング
には適さない。後者には,被測定ウランから発生する自
然崩壊放射線を利用したパツシブ(Passive)法と、中性
子照射等の外部照射源を必要とするアクテイブ(active)
法,例えば特開昭50−80880号の方法がある。
Conventionally, the measurement of uranium enrichment includes a measurement method using a mass spectrum and a radiation measurement method used as a nondestructive measurement method. The former generally has high measurement accuracy, but it is destructive, so it is not suitable for in-line monitoring that assumes nondestructive measurement. The latter includes a passive method that uses spontaneous decay radiation generated from uranium to be measured, and an active method that requires an external irradiation source such as neutron irradiation.
There is a method, for example, the method disclosed in JP-A-50-80880.

従来のパツシブ法には,特開昭48-8596号、同48-8597
号,同48-8598号などに記載の方法があるが,これらは
いずれもウラン濃縮度既知の基準試料による較正を必要
とする方法であるため,インラインモニタリングにおい
てウラン濃度が変化する場合には適さない方法である。
また,L.K.Kull"CATALOGUE OF NUCLEAR MATERIAL SA
FEGUARDS INSTRUMENTS"BNL-17165,1972;H.Ebeve et a
l., Journal of Nuclear Materials81,203-214(1979) に記載の方法は,それぞれウランの濃度が十分高い場合
とか,UO2粉末貯槽の濃縮度測定という特定の場合に適
用可能な方法である。これらの方法は,ウラン濃縮が数
百g/l以下の低濃度の場合にはパツシブγ線の試料中γ
線自己吸収に基づく測定誤差が大きくなつて正確な測定
が困難になる。
The conventional passive method is disclosed in JP-A-48-8596 and 48-8597.
No. 48-8598, etc., but these are all methods that require calibration with a reference sample with a known uranium enrichment, so they are suitable when the uranium concentration changes during in-line monitoring. There is no way.
Also, LKKull "CATALOG OF OF NUCLEAR MATERIAL SA
FEGUARDS INSTRUMENTS "BNL-17165,1972; H.Ebeve et a
The methods described in l., Journal of Nuclear Materials 81 , 203-214 (1979) are applicable to specific cases such as when the concentration of uranium is sufficiently high or when measuring the concentration of UO 2 powder storage tank. . In these methods, when the uranium enrichment is a low concentration of several hundred g / l or less, the
Accurate measurement becomes difficult because the measurement error due to the line self-absorption increases.

アクテイブ法は外部照射源を必要とするために,装置が
大掛りなものとならざるを得ないという不利な面はある
が照射放射線と被測定対象核種との核反応等による特定
の放射線を計測することによりパツシブ法では不可能な
測定を行うことができる。
Since the active method requires an external irradiation source, it has the disadvantage that the device has to be large-scaled, but it measures specific radiation due to nuclear reaction between irradiation radiation and the nuclide to be measured. By doing so, it is possible to perform a measurement that cannot be performed by the passive method.

従来のアクティブ法の比較的小型の外部照射源を用いる
ものとして特開昭54−140094号の方法がある。これは酸
化ウラン粉末等の固体状ウランを対象とし、ウラン濃縮
度既知の基準試料による較正を必要とする。従って、前
述パツシブ法と同様にインラインモニタリングには適さ
ない。
A method using a relatively small external irradiation source of the conventional active method is disclosed in JP-A-54-140094. It targets solid uranium, such as uranium oxide powder, and requires calibration with a reference sample of known uranium enrichment. Therefore, it is not suitable for in-line monitoring like the aforementioned passive method.

そこで本発明の目的は,アクテイブ法によるインライン
モニタリングに好適な,ウラン濃縮度の被破壊測定法を
提供することにある。
Therefore, an object of the present invention is to provide a destructive measurement method of uranium enrichment suitable for in-line monitoring by the active method.

ところで、ウラン濃度の変化のある溶液のインラインモ
ニタリングに必要な条件は235U特有のγ線の減弱が求め
られ、基準試料による較正がいらないこと、ウラン濃度
235U濃度が同時に測定できることがあげられる。
By the way, the conditions necessary for in-line monitoring of solutions with changes in uranium concentration are that attenuation of 235 U-specific γ-rays is required, calibration by reference sample is not required, and uranium concentration and 235 U concentration can be measured simultaneously. .

本発明の方法は,アクテイブ法に属する測定法であつ
て,基準試料を必要とせず、ウラン濃度と235U濃度が同
時に測定でき、また低ウラン濃度についても測定可能で
ある。本発明の方法は,被測定溶液が,ウラン以外の元
素としてN,F,O,H などの小原子番号のものしか実質的
に含んでいない場合に特に有用である。ただし本明細書
では、「小原子番号の元素」とは原子番号17(C1)以下
の元素を意味する。また、「実質的に含んでいない」と
は、原子番号の大きな元素(原子番号の大きな元素ほど
γ線の吸収が大きい)の量が、その元素のγ線吸収によ
る誤差が測定目的にとって許容できないほど多量でない
ことを意味する。
The method of the present invention is a measuring method belonging to the active method, which does not require a reference sample and can simultaneously measure the uranium concentration and the 235 U concentration, and also can measure the low uranium concentration. The method of the present invention is particularly useful when the solution to be measured contains substantially only elements having small atomic numbers such as N, F, O, and H as elements other than uranium. However, in the present specification, the “element having a small atomic number” means an element having an atomic number of 17 (C1) or less. Further, "substantially free" means that the amount of an element having a large atomic number (the larger the atomic number, the larger the absorption of γ-rays), the error due to the γ-ray absorption of the element is unacceptable for the purpose of measurement. It means not too much.

本発明の方法を簡潔に述べると、 (1)ウラン以外の元素が実質的に小原子番号の元素か
らなるウラン含有被測定溶液から放出される235U特有の
γ線の強度をγ線スペクトロメトリーによって測定し; (2)一方、前記235U特有のγ線とは異なる特定エネル
ギーのγ線を発する外部線源からγ線を前記溶液に照射
し、溶液を透過してきた特定エネルギーのγ線の強度を
γ線スペクトロメトリーによって測定してその測定値よ
り前記溶液中のウラン濃度を計算し、求めたウラン濃度
から、前記溶液及び前記溶液以外のγ線透過物質による
前記の235U特有のγ線の減弱及び幾何学的効果に対する
補正因子を計算し; (3)測定した235U特有のγ線の強度と前記補正因子を
用いて235U濃度を計算し; (4)求めたウラン濃度と235U濃度より235U濃縮度を求
めることを行う、既知の基準試料を用いることなくウラ
ン濃縮度を測定する方法である。
The method of the present invention is briefly described as follows: (1) The intensity of γ-rays peculiar to 235 U emitted from a uranium-containing solution to be measured in which elements other than uranium are substantially elements having a small atomic number is measured by γ-ray spectrometry. (2) On the other hand, the solution is irradiated with γ-rays from an external source that emits γ-rays of specific energy different from the γ-rays peculiar to 235 U, and The intensity is measured by γ-ray spectrometry to calculate the uranium concentration in the solution from the measured value, and from the obtained uranium concentration, the γ-ray peculiar to the 235 U by the solution and the γ-ray transmitting substance other than the solution. (3) Calculate the 235 U concentration using the measured 235 U-specific γ-ray intensity and the correction factor; and (4) Calculate the uranium concentration and 235 seeking 235 U enrichment than U concentration Do that, a method of measuring the uranium enrichment without using a known reference sample.

添付の図面に即して本発明を具体的に説明する。The present invention will be described in detail with reference to the accompanying drawings.

図1は本発明の方法の実施に使用するウラン濃縮度測定
装置例の概略を示す縦断面図である。図1で配管1は,
ウラン含有溶液2が流れている配管であり,ウラン含有
溶液2を被測定液としてそのウラン濃縮度を本発明の方
法により非破壊測定するために,配管1の外側にγ線検
出器3が配され,さらに配管1を挾んでγ線検出器3と
対向する位置に外部γ線線源4が配されている。線源4
と配管1の間,及び配管1とγ線検出器3の間には適当
なコリメータ5,6がそれぞれ設けられている。また,こ
の測定部全体が遮蔽体7で包囲され,外部からの放射線
の侵入を防いでいる。なお,遮蔽材7は周辺の放射線バ
ツクグラウンドが十分低い場合には必ずしも必要ではは
く,またコリメータ5、6と一体構造にすることもでき
る。この図1の例では,配管1が本発明における測定容
器であるが,測定容器の形式は,ウラン含有溶液(被測
定液)をサンプリングする単なる容器であつても勿論よ
い。インラインモニタリングを行う場合には,一般に図
1に例示するように,一定の処理系においてウラン含有
溶液が流れる配管等そのものが測定容器となろう。
FIG. 1 is a longitudinal sectional view showing an outline of an example of a uranium enrichment measuring apparatus used for carrying out the method of the present invention. In Figure 1, the pipe 1 is
A uranium-containing solution 2 is a pipe through which a γ-ray detector 3 is arranged outside the pipe 1 in order to perform nondestructive measurement of the uranium enrichment of the uranium-containing solution 2 by the method of the present invention. Further, an external γ-ray source 4 is arranged at a position facing the γ-ray detector 3 across the pipe 1. Source 4
Appropriate collimators 5 and 6 are provided between the pipe 1 and the pipe 1, and between the pipe 1 and the γ-ray detector 3, respectively. In addition, the entire measuring section is surrounded by the shield 7 to prevent intrusion of radiation from the outside. The shielding material 7 is not always necessary when the surrounding radiation background is sufficiently low, and can be integrated with the collimators 5 and 6. In the example of FIG. 1, the pipe 1 is the measurement container in the present invention, but the type of the measurement container may of course be a simple container for sampling the uranium-containing solution (measurement liquid). In the case of performing in-line monitoring, as shown in FIG. 1, generally, in a certain processing system, the pipe or the like through which the uranium-containing solution flows will be the measuring container.

またγ線検出器3は,図示されていない前置増幅器を経
てマルチチヤンネル波高分析器に至るいわゆるγ線スペ
クトロメータのγ線センサーであり,被測定液2から放
出される235U特有のγ線の強度はこのγ線スペクトロメ
ータにより計数値Nとして測定される。235U特有のγ線
としては,エネルギーが186KeV又は144KeVのものが適当
である。
The γ-ray detector 3 is a γ-ray sensor of the so-called γ-ray spectrometer leading to multi-channel pulse height analyzer through a preamplifier (not shown), 235 U specific γ-rays emitted from the target solution 2 Is measured as a count value N by this γ-ray spectrometer. As γ-rays peculiar to 235 U, those with energy of 186 KeV or 144 KeV are suitable.

上記計数値Nについては次の式Iが成立する。For the count value N, the following equation I is established.

N=cVaγKεt …(I) ここで,c:235Uの濃度(g/cm3) V:被測定液の有効体積(cm3) a:235Uの比放射能(dps/g) γ:235Uの1崩壊当りの特定エネルギーのγ線の放出
率 k:被測定液及びそれ以外のγ線透過物質(主に測定容
器)による特定エネルギーのγ線の減弱及び幾何学的効
果に対する補正因子 ε:特定エネルギーのγ線に対するγ線検出器の計数効
率 t:計数時間(sec) *特定エネルギーのγ線としては,上述のように186KeV
又は144KeVのものが適する。式Iの右辺のうちa,γは一
義的に決まり,V,εは測定装置が決まれば一定である。
それに対し,kは被測定液の組成,含まれる諸元素の濃
度,測定容器の材質に依存して変わる。被測定液のウラ
ン濃度が約1000g/l以上と十分に高い場合には,kはウラ
ン濃度の変動によつてほとんど影響を受けないため一定
とみなすことができ,Nの測定値から直ちに235Uの濃度c
を求めることができる。しかし,被測定液のウラン濃度
が数百g/l以下と低く,しかも諸元素特にウランのよう
な原子番号が大きい元素の濃度が変化する場合には,kは
かなり変動すため一定とみなすことはできない。ところ
が,被測定液がウラン以外の元素としてN,F,O,Hなど原
子番号が小さい元素がほとんどで、原子番号の大きい元
素の濃度が少ない場合にはこれら小原子番号の元素によ
るγ線の減弱係数はウランに比較して十分に小さくかつ
ほぼ同一であるため,被測定液のγ線減弱効果は近似的
に全ウラン濃度に専ら依存する結果となる。結局全ウラ
ン濃度を知ることができればkを求めることも可能とな
り、ひいてはNの測定から235Uの濃度cを求めることも
可能となる。全ウラン濃度co235U濃度cがわかれば,
ウラン濃縮度が求まる。本発明者はこの点に着目し,全
ウラン濃縮coを求めるために外部γ線線源を利用し,被
測定液を透過する透過γ線の強度即ちγ線スペクトロメ
ータによる計数値Noからcoを求めることとした。
N = cVa γKεt (I) where c: concentration of 235 U (g / cm 3 ) V: effective volume of the measured solution (cm 3 ) a: specific activity of 235 U (dps / g) γ: 235 Emission rate of γ-rays of specific energy * per decay of U k: Attenuation of γ-rays of specific energy by the measured liquid and other γ-ray transmitting materials (mainly measuring containers) and correction factors for geometric effects ε: Counting efficiency of the γ-ray detector for γ-rays with specific energy t: Counting time (sec) * As the γ-rays with specific energy, 186 KeV as described above
Or 144 KeV is suitable. In the right side of the formula I, a and γ are uniquely determined, and V and ε are constant if the measuring device is determined.
On the other hand, k changes depending on the composition of the liquid to be measured, the concentrations of the various elements contained, and the material of the measuring container. When the uranium concentration in the measured solution is sufficiently high at approximately 1000 g / l or higher, k can be considered to be constant because it is hardly affected by fluctuations in the uranium concentration, and 235 U can be immediately determined from the measured N value . Concentration c
Can be asked. However, when the concentration of uranium in the liquid to be measured is as low as several hundred g / l or less, and when the concentration of various elements, especially the element with a large atomic number such as uranium, changes, k should be regarded as constant because it fluctuates considerably. I can't. However, most of the elements to be measured other than uranium have a small atomic number such as N, F, O, and H, and when the concentration of the element with a large atomic number is low, the Since the attenuation coefficient is sufficiently small and almost the same as that of uranium, the γ-ray attenuation effect of the measured solution is approximately dependent on the total uranium concentration. After all, if it is possible to know the total uranium concentration, it is possible to obtain k, and it is also possible to obtain the concentration c of 235 U from the measurement of N. If the total uranium concentration co and the 235 U concentration c are known,
The uranium enrichment is obtained. The present inventor pays attention to this point, uses an external γ-ray source to obtain the total uranium enrichment co, and determines the intensity of the transmitted γ-rays that permeate the liquid to be measured, that is, from the count value No by the γ-ray spectrometer I decided to ask for o .

再び図1に戻る。外部γ線線源4からの特定エネルギー
のγ線で被測定液2を照射し,透過γ線の強度をγ線検
出器3で検知してγ線スペクトロメーターにより計数値
Noを測定する際,用いる特定エネルギーのγ線として
は,測定の対象とする235U特有のγ線のエネルギーを越
え,さらに他のγ線放出核種が被測定液に含まれている
場合にはそのγ線エネルギーと重ならず,しかも約1MeV
以下の範囲のものであつて半減期が長いものが好まし
い。例えば133Ba:336KeV,137Cs:662KeVなどがある。
Return to FIG. 1 again. The measured liquid 2 is irradiated with γ-rays of specific energy from the external γ-ray source 4, the intensity of the transmitted γ-rays is detected by the γ-ray detector 3, and the count value is obtained by the γ-ray spectrometer.
When measuring No, the specific energy γ-rays to be used are those that exceed the energy of the 235 U-specific γ-rays to be measured, and if other γ-ray emitting nuclides are contained in the measured liquid. It does not overlap with the gamma-ray energy, and is about 1 MeV
It is preferably within the following range and has a long half-life. For example, 133 Ba: 336 KeV, 137 C s : 662 KeV, etc.

Noについては次式IIが成り立つ。For No, the following formula II holds.

No=soγko′ko″εt …(II) ここで,so:外部γ線線源の線源強度(dps) γ:線源1崩壊当りの特定エネルギーのγ線の放出率 ko′:幾何学的効果の補正因子 ko″:被測定液及び測定容器による特定エネルギーのγ
線の減弱に対する補正因子 ε:特定エネルギーのγ線に対するγ線検出器の計数
効率 t:計数時間(sec) 式IIにおいて,右辺のso,γ,ko′,εは一定値と
して与えられる。ko″については次式IIIが成り立つ。
In N o = s o γ o k o 'k o "ε o t ... (II) here, s o: an external source strength of the γ-ray source (dps) γ o: line source 1 decay per the specific energy Emission rate of γ-rays k o ′: Correction factor for geometrical effects k o ″: γ of specific energy depending on the measured liquid and measuring container
Correction factor epsilon o for the attenuation of the line: counting efficiency t of gamma ray detectors for gamma-rays of a particular energy: in counting time (sec) formula II, the right side of the s o, γ o, k o ', ε o is a constant value Given as. The following equation III holds for k o ″.

ko″=(被測定液の減弱率)×(測定容器の減弱率) ここで,co:ウラン濃度(g/cm3) μ:ウランに対する特定エネルギーのγ線の質量減弱
係数(cm2/g) lo:被測定液中のγ線通過長さ(cm)(図1参照) ci:被測定液中のウラン以外の元素iの濃度(g/cm3) μ:元素iに対する特定エネルギーのγ線の質量減弱
係数(cm2/g) ω:測定容器の構成元素jの重量比 ρ:測定容器の密度(g/cm3) li:測定容器壁の片側のγ線通過厚さ(cm)(図1参照) l2:測定容器壁の反対側のγ線通過厚さ(cm)(図1参
照) 式IIIの右辺第1項において,元素iは原子番号が小さ
い元素であるためμはμに比較して十分に小さいの
で,被測定液の組成,濃度が変化してもこの第1項の
(被測定液の減弱率)は専らウラン濃縮coによつて決ま
る。第2項の(測定容器の減弱率)は一定である。した
がつて,補正項ko″はウラン濃度coの指数関数の逆数に
比例するとみなすことができる。よつて,一定の計数時
間tにおける計数率Noを測定すると,式II及びIIIから
ウラン濃度coを計算することができる。
k o ″ = (attenuation rate of measured liquid) x (attenuation rate of measurement container) Where co : uranium concentration (g / cm 3 ) μ o : mass attenuation coefficient of γ-ray of specific energy with respect to uranium (cm 2 / g) l o : γ-ray passage length (cm) in the measured solution (See Fig. 1) c i : Concentration of element i other than uranium in the measured liquid (g / cm 3 ) μ i : Mass attenuation coefficient of γ-ray of specific energy with respect to element i (cm 2 / g) ω j : Weight ratio of the constituent element j of the measurement container ρ: Density of the measurement container (g / cm 3 ) l i : γ-ray passing thickness (cm) on one side of the measurement container wall (see FIG. 1) l 2 : Measurement container wall Γ-ray passing thickness (cm) on the opposite side (see FIG. 1) In the first term on the right side of the formula III, since the element i is an element having a small atomic number, μ i is sufficiently smaller than μ o . the composition of the test solution, the concentration is also varied in the first term (test solution attenuation rate) of connexion determined by exclusively the uranium enrichment c o. The second item (attenuation rate of measurement container) is constant. Therefore, the correction term k o ″ can be regarded as being proportional to the reciprocal of the exponential function of the uranium concentration c o . Therefore, when the counting rate No at a constant counting time t is measured, the uranium concentration can be calculated from the formulas II and III. c o can be calculated.

coの値が求まれば,公知の数値解析によつて(例えばR.
E.Malenfant“QAD:A SERIES OF POINTKERNEL GENERAL-P
URPOSES SHIELDING PROGRAMS LA-3573(1967)参照) 式Iの補正項kが算出され,kの値とNの測定値から235U
の濃度cが式Iにより算出される。結局ウラン濃縮度E
は,式 により得られる。
Once the value of c o is found, it can be obtained by known numerical analysis (for example, R.
E. Malenfant “QAD: A SERIES OF POINTKERNEL GENERAL-P
URPOSES SHIELDING PROGRAMS Refer to LA-3573 (1967)) The correction term k of formula I is calculated, and 235 U is calculated from the value of k and the measured value of N.
The concentration c of is calculated by the formula I. After all, uranium enrichment E
Is the expression Is obtained by

本発明に使用するγ線検出器としては,対象とする被測
定液からの235U特有のエネルギーのγ線,及び外部線源
からの特定エネルギーのγ線を検出でき,かつ十分なエ
ネルギー分解能をもつものであればいずれも使用可能で
あり,例えばGe(Li)γ線検出器,Geγ線検出器等があげ
られる。なお被測定液からの235U特有のエネルギーのγ
線を測定するためのγ線スペクトロメータと,外部γ線
線源からのγ線で被測定液を透過して来たものを測定す
るためのγ線スペクトロメータとは同一であつてもよい
し,別個に設けてもよい。
The γ-ray detector used in the present invention is capable of detecting γ-rays of specific energy of 235 U from a target liquid to be measured and γ-rays of specific energy from an external radiation source, and has sufficient energy resolution. As long as it has it, any can be used, and examples thereof include a Ge (Li) γ-ray detector and a Geγ-ray detector. The γ of energy specific to 235 U from the measured liquid
The γ-ray spectrometer for measuring the X-rays and the γ-ray spectrometer for measuring the γ-rays from the external γ-ray source that have passed through the liquid to be measured may be the same. , May be provided separately.

被測定液は,ウランの硝酸溶液又はフツ酸溶液などであ
るが,ウラン以外の元素としては原子番号の大きい元
素,例えば金属元素などの濃度は低いことが好ましい。
これらの元素の濃度が高くなると妨害により誤差が大き
くなる。本発明の方法は,既に述べたようにウラン以外
の元素のほとんどないしはすべてがN,F,O,Hなど原子番
号の小さい元素である場合に最も有効である。また,被
測定液は,ウラン濃度数十g/l〜数百g/l程度のものが特
に適する。測定対象が液体の場合にはこの濃度を超える
ものは稀であり,またその場合には他の方法を利用する
ことができる。
The solution to be measured is a nitric acid solution of uranium or a hydrofluoric acid solution, but it is preferable that the element other than uranium has a low concentration of an element having a large atomic number, for example, a metal element.
If the concentration of these elements becomes high, the error becomes large due to interference. The method of the present invention is most effective when most or all of the elements other than uranium are elements having a small atomic number such as N, F, O, and H, as described above. The solution to be measured has a uranium concentration of several tens g / l to several hundreds g / l. It is rare that the concentration exceeds this concentration when the measurement target is a liquid, and in that case, another method can be used.

図面に示した実施例では,測定容器が処理系内のウラン
含有溶液輸送パイプであり,流路の途中で連続的モニタ
リングが可能である。勿論,被測定液がパイプ内を流れ
ている状態でも,その流れが停止している状態でも測定
を行うことができる。あるいは被測定液を所要量だけ測
定容器にサンプリングして,本発明の方法を実施するこ
ともできる。
In the embodiment shown in the drawings, the measurement container is a uranium-containing solution transport pipe in the processing system, and continuous monitoring is possible in the middle of the flow path. Of course, the measurement can be performed even when the liquid to be measured is flowing in the pipe or when the flow is stopped. Alternatively, it is also possible to carry out the method of the present invention by sampling a required amount of the liquid to be measured in a measuring container.

γ線検出器に入射したγ線は既知の方法にしたがつて増
幅され,マルチチヤンネル波高分析器で分析されると共
に,前記式I,II及びIIIに既知の数値を与えた電算機に
よるデータ処理を行ない濃縮度Eが直接求められるよう
にしておくと便利である。
The γ-rays incident on the γ-ray detector are amplified according to a known method, analyzed by a multichannel wave height analyzer, and processed by a computer that gives known values to the above equations I, II and III. It is convenient to carry out the above so that the concentration E can be directly obtained.

本発明により被破壊かつ迅速な235U濃縮度の測定が中性
子照射のごとき大がかりな装置も必要なく,簡単な装置
で可能となった。また、全ウラン濃度と235U濃度の測定
を1度に並行して簡単に行えるようになった。そのため
従来測定し得なかった低ウラン濃度の範囲まで,ウラン
濃度が変動する場合にもインラインで追跡が可能となつ
た。今後の235Uを含む系の工程,品質管理や臨界安全管
理において,本発明の方法は大きな効果を発揮するもの
である。
According to the present invention, it is possible to measure the concentration of 235 U by the simple method without the need for a large-scale device such as neutron irradiation for the destruction and rapid measurement of the 235 U concentration. Moreover, it became possible to easily measure the total uranium concentration and the 235 U concentration in parallel at one time. Therefore, even if the uranium concentration fluctuates up to the range of low uranium concentration that could not be measured in the past, in-line tracking is possible. The method of the present invention exerts a great effect in the process, quality control and criticality safety control of the system containing 235 U in the future.

実施例1 図2に示す装置を用いて,本発明の方法により測定を行
つた。配管8は,内径28mm,厚さ3mm,呼径25AのSUS304ス
テンレス鋼でできている。γ線検出器9としてGe(Li)検
出器を使用し,外部γ線線源10としては49.8μci 133Ba
(336KeV)を使用した。コリメータ11は鉛製で,γ線を
コリメートするとともにしやへいの役目を兼ねたもので
ある。γ線検出器9は前置増幅器12に接続され,該前置
増幅器12から得られた信号は,ケーブルを介して図示さ
れていないマルチチヤンネル波高分析器に送られ,計数
値を表示すると共にコンピューターによるデータ処理を
行う。デュワ瓶13には液体窒素が入つており,γ線検出
器9を冷却してその機能を維持する。以上述べた8〜13
の各要素は架台14に厳重に固定されている。
Example 1 Using the apparatus shown in FIG. 2, the measurement was performed by the method of the present invention. The pipe 8 is made of SUS304 stainless steel with an inner diameter of 28 mm, a thickness of 3 mm and a nominal diameter of 25A. A Ge (Li) detector is used as the γ-ray detector 9, and 49.8 μc i 133 Ba is used as the external γ-ray source 10.
(336 KeV) was used. The collimator 11 is made of lead and serves not only to collimate γ-rays but also as a shield. The γ-ray detector 9 is connected to a preamplifier 12, and the signal obtained from the preamplifier 12 is sent via a cable to a multichannel wave height analyzer (not shown) to display a count value and a computer. Data processing by. The Dewar bottle 13 contains liquid nitrogen and cools the gamma ray detector 9 to maintain its function. 8-13 described above
Each element of is firmly fixed to the mount 14.

試料液として,表1に示す3種の濃縮度既知のフツ化ウ
ラニル溶液を使用し,ループ状にした配管内を流量10l/
分で循環させながら測定を行つた。
As sample liquid, three kinds of uranyl fluoride solutions with known enrichment shown in Table 1 were used, and the flow rate in the looped pipe was 10 l /
The measurement was performed while circulating in minutes.

測定結果と濃縮度の計算結果を表2に示す。Table 2 shows the measurement results and the calculation results of the enrichment.

実施例2 測定容器として内径53mm,厚さ3.5mm,呼径50AのSUS304ス
テンレス鋼製配管を,外部γ線線源として53.8μci 137
Cs(662KeV)を用いたほかは,実施例1と同様の装置構
成で,表3に示す3種の既知硝酸ウラニル溶液の濃縮度
を測定した。但し試料液は循環させずに静止させた状態
で測定した。測定結果及び求めた濃縮度を表4に示す。
Example 2 A SUS304 stainless steel pipe having an inner diameter of 53 mm, a thickness of 3.5 mm, and a nominal diameter of 50 A was used as a measuring container, and 53.8 μc i 137 was used as an external γ-ray source.
The concentration of three known uranyl nitrate solutions shown in Table 3 was measured with the same device configuration as in Example 1 except that C s (662 KeV) was used. However, the sample solution was measured in a stationary state without being circulated. Table 4 shows the measurement results and the obtained degree of enrichment.

【図面の簡単な説明】 図1は,本発明に係るウラン濃縮度測定装置例の概略を
表す縦断面図で, 図2は,同じく別の装置例の側面図である。 1:配管(測定容器) 2:被測定液 3:γ線検出器 4:外部γ線線源 5,6:コリメータ 7:遮蔽体 8:測定配管(ウラン含有溶液) 9:Geγ線検出器 10:外部γ線線源 11:鉛製コリメータ(遮蔽体) 12:前置増幅器(マルチチヤンネル波高分析器に接続) 13:デュワ瓶 14:架台
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a vertical sectional view showing an outline of an example of an apparatus for measuring uranium enrichment according to the present invention, and FIG. 2 is a side view of another example of the apparatus. 1: Piping (measurement vessel) 2: Liquid to be measured 3: γ-ray detector 4: External γ-ray source 5,6: Collimator 7: Shield 8: Measurement pipe (solution containing uranium) 9: Ge γ-ray detector 10 : External γ-ray source 11: Lead collimator (shield) 12: Preamplifier (connected to multichannel wave height analyzer) 13: Dewar bottle 14: Stand

───────────────────────────────────────────────────── フロントページの続き (72)発明者 清水 準 茨城県那珂郡東海村大字村松4番地33 動 力炉・核燃料開発事業団東海事業所内 (56)参考文献 特開 昭54−140094(JP,A) 特公 昭50−20866(JP,B1) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Jun Shimizu 4-4 Muramatsu, Tokai-mura, Naka-gun, Ibaraki Prefecture Inside the Tokai Plant, Reactor and Nuclear Fuel Development Corp. (56) Reference JP 54-140094 (JP, JP, A) Japanese Patent Publication Sho 50-20866 (JP, B1)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】(1)ウラン以外には、小原子番号の元素
しか実質的に含有していないウラン含有被測定溶液から
放出される235U特有のγ線の強度をγ線スペクトロメト
リーによって測定し; (2)一方、前記235U特有のγ線とは異なる特定エネル
ギーのγ線を発する外部線源からγ線を前記溶液に照射
し、溶液を透過してきた特定エネルギーのγ線の強度を
γ線スペクトロメトリーによって測定してその測定値よ
り前記溶液中のウラン濃度を計算し、求めたウラン濃度
から、前記溶液及び前記溶液以外のγ線透過物質による
前記の235U特有のγ線の減弱及び幾何学的効果に対する
補正因子を計算し; (3)測定した235U特有のγ線の強度と前記補正因子を
用いて235U濃度を計算し; (4)求めたウラン濃度と235U濃度より235U濃縮度を求
めることを行う、既知の基準試料を用いることなくウラ
ン濃縮度を測定する方法。
(1) The intensity of γ-rays peculiar to 235 U emitted from a solution to be measured containing uranium, which substantially contains only elements having a small atomic number other than uranium, is measured by γ-ray spectrometry. (2) On the other hand, the solution is irradiated with γ-rays from an external source that emits γ-rays of specific energy different from the γ-rays peculiar to the 235 U, and the intensity of γ-rays of specific energy transmitted through the solution is changed. The uranium concentration in the solution was calculated from the measured values by γ-ray spectrometry, and the uranium concentration peculiar to the 235 U was attenuated by the solution and the γ-ray permeable substance other than the solution from the obtained uranium concentration. And a correction factor for the geometric effect is calculated; (3) 235 U concentration is calculated using the measured 235 U-specific γ-ray intensity and the correction factor; (4) Obtained uranium concentration and 235 U concentration Do more to determine 235 U enrichment , A method for measuring uranium enrichment without using a known reference sample.
【請求項2】ウラン以外には、小原子番号の元素しか実
質的に含有していないウラン含有被測定溶液を流通させ
る測定容器と、該容器の外側に配された235U特有のγ線
とは異なるγ線を発する外部線源と、前記容器内から放
出される235U特有のγ線及び前記外部γ線線源から発せ
られ前記容器内溶液を透過してきたγ線の強度を測定す
るために、前記容器の外側に配されたγ線スペクトロメ
ータとを具備してなる、既知の基準試料を用いることな
くウラン濃縮度を測定する装置。
2. A measuring vessel in which a uranium-containing solution to be measured containing substantially only a small atomic number element other than uranium is circulated, and 235 U-specific γ-rays arranged outside the vessel. Is for measuring the intensity of γ-rays that emit different γ-rays, 235 U specific γ-rays emitted from the inside of the container and γ-rays emitted from the external γ-ray source and transmitted through the solution in the container. A device for measuring uranium enrichment without using a known reference sample, which comprises a γ-ray spectrometer arranged outside the container.
【請求項3】特許請求の範囲第2項に記載の装置であっ
て、γ線スペクトロメータが測定容器内から放出される
235U特有のγ線測定用のスペクトロメータと、外部γ線
線源に由来するγ線測定用のスペクトロメータとからな
る装置。
3. The device according to claim 2, wherein the γ-ray spectrometer is emitted from the inside of the measuring container.
235 U An instrument consisting of a spectrometer for γ-ray measurement unique to 235 U and a spectrometer for γ-ray measurement derived from an external γ-ray source.
JP58013782A 1983-02-01 1983-02-01 Uranium enrichment measuring method and measuring device Expired - Lifetime JPH0670675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58013782A JPH0670675B2 (en) 1983-02-01 1983-02-01 Uranium enrichment measuring method and measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58013782A JPH0670675B2 (en) 1983-02-01 1983-02-01 Uranium enrichment measuring method and measuring device

Publications (2)

Publication Number Publication Date
JPS59141086A JPS59141086A (en) 1984-08-13
JPH0670675B2 true JPH0670675B2 (en) 1994-09-07

Family

ID=11842813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58013782A Expired - Lifetime JPH0670675B2 (en) 1983-02-01 1983-02-01 Uranium enrichment measuring method and measuring device

Country Status (1)

Country Link
JP (1) JPH0670675B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2972812B1 (en) * 2011-03-14 2014-02-07 Franco Belge Combustibles PHOTONIC SPECTROMETRY DEVICE, CORRESPONDING METHOD AND USE OF THE DEVICE
CN105181719A (en) * 2015-10-19 2015-12-23 核工业理化工程研究院 Online measurement method of centration of uranium in solution
EP3805808A1 (en) * 2019-10-11 2021-04-14 Umwelt- und Ingenieurtechnik GmbH Dresden Method and device for the quantification of radionuclides in liquid media

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5348142B2 (en) * 1973-06-25 1978-12-27
JPS54140094A (en) * 1978-04-24 1979-10-30 Toshiba Corp Method of measuring concentration of fissional material

Also Published As

Publication number Publication date
JPS59141086A (en) 1984-08-13

Similar Documents

Publication Publication Date Title
US5206174A (en) Method of photon spectral analysis
Terremoto et al. Gamma-ray spectroscopy on irradiated MTR fuel elements
WO2004059656A1 (en) Method and apparatus for carrying out a mox fuel rod quality control
JPH0434115B2 (en)
JPH0670675B2 (en) Uranium enrichment measuring method and measuring device
Rosenberg et al. An automatic uranium analyser based on delayed neutron counting
US4409480A (en) Method and system for the testing and calibration of radioactive well logging tools
US4515749A (en) Subcriticality measurement apparatus and method
JP2000221293A (en) Device and method for measuring burnup of fuel for nuclear reactor
Dragnev Intrinsically calibrated gamma and x-ray measurements of plutonium
Chung et al. Feasibility study of explosive detection for airport security using a neutron source
JPS6171341A (en) Component analyzing method
US5008539A (en) Process and apparatus for detecting presence of plant substances
Anilkumar et al. Estimation of 235 U concentration in some depleted uranium samples by high resolution gamma-ray spectrometry using 185 keV and 1001 keV gamma-energies of 235 U and 234m Pa
JPS6362694B2 (en)
JPH10185843A (en) Hydrogen content monitor
JPH04326095A (en) Criticality surveillance monitor for neutron multiplication system
Yusuf Gamma-ray spectrometry for linear attenuation coefficients and selfattenuation correction factors of the skimmed milk powder
JP2978103B2 (en) Active neutron measurement method and apparatus
RU2153663C2 (en) Device for detection of induced activity
RU2176785C1 (en) Device registering induced activity
Amiel et al. Radioactivation Analysis of Manganese by Counting Deuterium Photoneutrons
CN114740521A (en) Detection system and method based on beta-gamma coincidence
JPH02130458A (en) Method and apparatus for measuring concentration of solution
Bickerton Development of improved techniques for the neutron radiography of CF 188 flight control surfaces.