JPS62272530A - Mask for transferring photoelectron - Google Patents

Mask for transferring photoelectron

Info

Publication number
JPS62272530A
JPS62272530A JP61116411A JP11641186A JPS62272530A JP S62272530 A JPS62272530 A JP S62272530A JP 61116411 A JP61116411 A JP 61116411A JP 11641186 A JP11641186 A JP 11641186A JP S62272530 A JPS62272530 A JP S62272530A
Authority
JP
Japan
Prior art keywords
photoelectric
substance
gallium arsenide
photoelectron
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61116411A
Other languages
Japanese (ja)
Inventor
Akio Yamada
章夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61116411A priority Critical patent/JPS62272530A/en
Publication of JPS62272530A publication Critical patent/JPS62272530A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the uniformity and the stable intensity of a mask for transferring photoelectron by forming a thin film of nonphotoelectronic substance on the partial region of a photoelectronic substance single crystal having specific crystal azimuth. CONSTITUTION:When forming a thin film of nonphotoelectric substance on the partial region of a single crystal of a photoelectric substance having specific crystal azimuth, semiconductors such as gallium arsenide, phosphorus gallium arsenide, silicon, cesium telluride, antimony cesium are excellent as photoelectric substances, and refractory metals such as tungsten, tantalum, molybdenum are excellent as nonphotoelectric substances. The specific crystal azimuth depends upon the photoelectric substance to be used, and the gallium arsenide has (100) plane. In case of single crystal, when the wavelength of exciting light is suitably selected, photoelectron can be emitted perpendicularly to the surface in high probability, thereby improving the intensity of a photoelectron beam.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔概要〕 特定の結晶方位を有する光電物質、例えば、ガリウムヒ
素、ガリウムヒ素リン、シリコン、アンチモンセシウム
等の半導体等の単結晶体の一部領域に非光電物質の薄膜
を形成して構成された光電子転写用光電マスクである。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Summary] Photoelectric material having a specific crystal orientation, for example, a part of a single crystal such as a semiconductor such as gallium arsenide, gallium arsenide phosphide, silicon, antimony cesium, etc. This is a photoelectric mask for photoelectronic transfer, which is constructed by forming a thin film of a non-photoelectric material on a region.

〔産業上の利用分野〕[Industrial application field]

本発明は光電子転写用マスクの改良に関する。 The present invention relates to improvements in photoelectronic transfer masks.

特に、その安定性と一様性とを向上する改良に関する。In particular, it relates to improvements that improve its stability and uniformity.

〔従来の技術〕[Conventional technology]

半導体装置の製造方法においては、微細パターンを転写
するためリソグラフィー法が使用されるが、このリソグ
ラフィー法には一般にマスクが必要である。このマスク
としては、従来、ガラス等の基板上にクローム等の不透
光性物質の薄膜を形成し、その上にレジスト膜を形成し
、フォトマスクを介してこのレジスト膜を霧光した後現
像してレジスト膜よりなるエツチングマスクを形成し、
このエツチングマスクを使用してクローム等の不透光性
物質をエツチングして製造していた。
In a method of manufacturing a semiconductor device, a lithography method is used to transfer a fine pattern, but this lithography method generally requires a mask. Conventionally, this mask is made by forming a thin film of a non-light-transmitting substance such as chrome on a substrate such as glass, forming a resist film on top of the thin film, exposing the resist film to light through a photomask, and then developing it. to form an etching mask made of a resist film,
This etching mask was used to etch non-transparent materials such as chrome.

か\る光露光を使用して製造されるマスクにあっては、
フランホーファー回折の影響を避は難く、解像力や精度
に限界があった。
For masks manufactured using such light exposure,
It was difficult to avoid the effects of Fraunhofer diffraction, and there were limits to resolution and accuracy.

そこで、電子線をもって露光する電子線露光法が開発さ
れた。
Therefore, an electron beam exposure method was developed in which exposure is performed using an electron beam.

この電子線露光法の一つとして、光電転写法が開発され
た。この光電転写法においては、光電効果を有する光電
物質をもって形成されたパターンを有する光電マスクが
使用される。かかる光電マスクに光を照射して、光電物
質のみから(光電物質をもって構成されたパターンの領
域のみから)光電子を射出させ、光電物質をもって形成
されたパターン状に電子線を射出してパターン状に露光
するものである。
A photoelectric transfer method has been developed as one of these electron beam exposure methods. In this photoelectric transfer method, a photoelectric mask having a pattern formed of a photoelectric material having a photoelectric effect is used. The photoelectric mask is irradiated with light to emit photoelectrons only from the photoelectric material (only from the area of the pattern made up of the photoelectric material), and an electron beam is emitted in the pattern formed by the photoelectric material to form a pattern. It is something that is exposed to light.

この光電転写法において必須の光電マスクは。The photoelectric mask is essential in this photoelectric transfer method.

従来、パターニングした基板上に沃化セシュウム等の光
電物質を薄く蒸着したり、基板に蒸着した光電物質薄膜
に直接バターニングしたりして作られていた。。
Conventionally, photoelectric materials such as cesium iodide are deposited thinly on a patterned substrate, or by direct patterning on a thin film of photoelectric material deposited on a substrate. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、か\る光電マスクにあっては、蒸着膜が均一
に形成されにくく、また、異物も付着しやすく、要する
に一様性がなく、その結果、転写像に一様性がないとい
う欠点があり、また、蒸着膜と基板との結合が不十分で
あり、光やイオンの照射に曝されると、光電物質が容易
に剥離し。
However, such photoelectric masks have the drawback that the deposited film is difficult to form uniformly, and foreign matter is also likely to adhere, resulting in a lack of uniformity in the transferred image. Also, the bond between the deposited film and the substrate is insufficient, and the photoelectric material easily peels off when exposed to light or ion irradiation.

光電マスクとしての安定性が劣るという欠点があった。The drawback was that the stability as a photoelectric mask was poor.

本発明の目的は、この欠点を解消することにあり、一様
性と安定性のすぐれた光電子転写用光電マスクを提供す
ることにある。
An object of the present invention is to eliminate this drawback, and to provide a photoelectric mask for photoelectronic transfer with excellent uniformity and stability.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するために本発明が採った手段は、特
定の結晶方位を有する光電物質の単結晶体の一部領域に
非光電物質の一膜を形成して光電子転写用光電マスクを
構成することにある。
The means taken by the present invention to achieve the above object is to construct a photoelectric mask for photoelectronic transfer by forming a film of a non-photoelectric material on a partial region of a single crystal of a photoelectric material having a specific crystal orientation. It's about doing.

光電物質としては半導体例えばガリウムヒ素、カリウム
ヒ素リン、シリコン、セシウムテルル。
Photoelectric materials include semiconductors such as gallium arsenide, potassium arsenide phosphide, silicon, and cesium tellurium.

アンチモンセシウム等がすぐれており、非光電物質とし
てはタングステン、タンタル、モリブデン等のリフラク
トリメタルがすぐれており、特定の結晶方位は使用され
る光電物質によって異なるが、上記のガリウムヒ素の場
合は(100)面である。
Antimony cesium etc. are excellent, and as non-photoelectric materials, refractory metals such as tungsten, tantalum, and molybdenum are excellent.The specific crystal orientation varies depending on the photoelectric material used, but in the case of the above-mentioned gallium arsenide ( 100) surface.

光電物質の単結晶体はバルク結晶でも、また。Single crystals of photoelectric materials can also be bulk crystals.

他の基板上にMBE法等を使用して形成された結晶膜で
もよい、バルク結晶の場合は反射型がよく、薄い結晶膜
の場合は透過型が望ましい。
A crystal film formed on another substrate using the MBE method or the like may be used. In the case of a bulk crystal, a reflection type is preferable, and in the case of a thin crystal film, a transmission type is preferable.

〔作用〕[Effect]

光電物質のバルク結晶を使用する場合は一様性の問題も
安定性の問題もち然に解消され、結晶膜の場合も、結晶
膜と基板との化学的結合は強固であるから、安定性の問
題は解消される。また、一様性の問題も、従来技術に比
し、はるかにすぐれている。
When bulk crystals of photoelectric materials are used, problems of uniformity and stability are immediately solved, and in the case of crystalline films, the chemical bond between the crystalline film and the substrate is strong, so stability problems are easily solved. The problem will be resolved. Also, the problem of uniformity is much better than in the prior art.

単結晶の場合、励起光の波長を適当に選べば、光電子を
面に垂直方向に高い確率をもって放出することができ、
光電子ビームの輝度を向上しうる。
In the case of a single crystal, if the wavelength of the excitation light is appropriately selected, photoelectrons can be emitted with high probability in the direction perpendicular to the surface.
The brightness of the photoelectron beam can be improved.

〔実施例〕〔Example〕

以下1図面を参照しつ〜、本発明の一実施例に係る光電
子転写用マスクについてさらに説明する。
A photoelectronic transfer mask according to an embodiment of the present invention will be further described below with reference to one drawing.

第2図参照 反射型の場合厚さは任意であるが、透過型の場合は約1
000人の厚さに成長させ1表面の結晶方位は(100
)であるガリウムヒ素の単結晶基板l上に、真空蒸着法
またはスパッタ法を使用して。
For reflective type, the thickness is arbitrary, but for transmissive type, the thickness is about 1
The crystal orientation of one surface is (100
) using vacuum evaporation or sputtering on a single crystal substrate of gallium arsenide.

タングステン、タンタル、モリブデンの膜2を厚さ数百
〜数千人に形成する。
A film 2 of tungsten, tantalum, and molybdenum is formed to a thickness of several hundred to several thousand.

第1図参照 リソグラフィー法を使用して、タングステン、タンタル
、モリブデンの膜2を所望のパターンにパターニングし
て、光電マスクを製造する。
A photoelectric mask is manufactured by patterning a film 2 of tungsten, tantalum, and molybdenum into a desired pattern using a lithography method (see FIG. 1).

以上の工程をもって製造された光電マスクは。The photoelectric mask is manufactured using the above process.

一様性、安定性がすぐれている他に、励起光の波長を5
000人より長波長に選ぶことにより光電子が面に垂直
な方向に高い確率をもって放出されて輝度が高い、また
、適当な温度制御がなされ\ば、結晶面は高真空中にお
いても、安定であり、寿命も延びる。
In addition to excellent uniformity and stability, the wavelength of the excitation light can be adjusted to 5
By choosing a wavelength longer than 0,000, photoelectrons are emitted with a high probability in the direction perpendicular to the surface, resulting in high brightness. Also, if appropriate temperature control is performed, the crystal surface is stable even in a high vacuum. , lifespan is also extended.

〔発明の効果〕〔Effect of the invention〕

以上説明せるとおり、本発明に係る光電子転写用マスク
は、特定の結晶方位を有する光電物質、例えば、ガリウ
ムヒ素、ガリウムヒ素リン、シリコン、アンチモンセシ
ウム等の半導体等の単結晶体の一部領域に非光電物質の
薄膜を形成して構成されているので、一様性、安定性が
すぐれており、また、光電子が面に垂直な方向に高い確
率をもって放出されて輝度が高い、また、適当な温度制
御がなされ−ば、結晶面は高真空中においても、安定で
あり、寿命も延びる。
As explained above, the photoelectron transfer mask according to the present invention can be applied to a partial region of a photoelectric material having a specific crystal orientation, such as a single crystal of a semiconductor such as gallium arsenide, gallium arsenide phosphide, silicon, or antimony cesium. Since it is composed of a thin film of non-photoelectric material, it has excellent uniformity and stability, and photoelectrons are emitted with a high probability in the direction perpendicular to the surface, resulting in high brightness. If the temperature is controlled, the crystal plane will be stable even in high vacuum, and the lifetime will be extended.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は1本発明の一実施例に係る光電子転写用マスク
の断面図である。 第2図は、本発明の一実施例に係る光電子転写用マスク
の製造工程図である。 1・・・単結晶基板、 2・争・タングステン、タンタル、モリブデンの膜。 −J、
FIG. 1 is a sectional view of a photoelectronic transfer mask according to an embodiment of the present invention. FIG. 2 is a manufacturing process diagram of a photoelectronic transfer mask according to an embodiment of the present invention. 1...Single crystal substrate, 2.Tungsten, tantalum, molybdenum film. -J,

Claims (1)

【特許請求の範囲】 [1]光電物質の単結晶体よりなり該単結晶体の結晶方
位は特定の方位である基板上の一部領域に非光電物質の
薄膜が形成されてなることを特徴とする光電子転写用マ
スク。 [2]前記光電物質は半導体であり前記非光電物質はリ
フラクトリメタルであることを特徴とする特許請求の範
囲第1項記載の光電子転写用マスク。 [3]前記半導体は、ガリウムヒ素、ガリウムヒ素リン
、シリコン、セシウムテルル、および、アンチモンセシ
ウムの群から選ばれたものであり、前記リフラクトリメ
タルは、タングステン、タンタル、および、モリブデン
の群から選ばれたものであり、前記特定の結晶方位は、
〔100〕面であることを特徴とする特許請求の範囲第
2項記載の光電子転写用マスク。
[Claims] [1] A thin film of a non-photoelectric substance is formed in a partial region on a substrate, which is made of a single crystal of a photoelectric substance, and the crystal orientation of the single crystal is in a specific direction. Photoelectronic transfer mask. [2] The photoelectric transfer mask according to claim 1, wherein the photoelectric material is a semiconductor and the non-photoelectric material is a refractory metal. [3] The semiconductor is selected from the group of gallium arsenide, gallium arsenide phosphide, silicon, cesium tellurium, and antimony cesium, and the refractory metal is selected from the group of tungsten, tantalum, and molybdenum. and the specific crystal orientation is
The photoelectronic transfer mask according to claim 2, which has a [100] plane.
JP61116411A 1986-05-20 1986-05-20 Mask for transferring photoelectron Pending JPS62272530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61116411A JPS62272530A (en) 1986-05-20 1986-05-20 Mask for transferring photoelectron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61116411A JPS62272530A (en) 1986-05-20 1986-05-20 Mask for transferring photoelectron

Publications (1)

Publication Number Publication Date
JPS62272530A true JPS62272530A (en) 1987-11-26

Family

ID=14686397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61116411A Pending JPS62272530A (en) 1986-05-20 1986-05-20 Mask for transferring photoelectron

Country Status (1)

Country Link
JP (1) JPS62272530A (en)

Similar Documents

Publication Publication Date Title
KR940001552B1 (en) Reticle for photolithographic
JPS60502120A (en) Optically configured filter and method of manufacturing the same
US4329410A (en) Production of X-ray lithograph masks
JPS6318858B2 (en)
JPS62115166A (en) Photomask and manufacture thereof
JPH07159974A (en) Pattern transfer mask and its production
US4661426A (en) Process for manufacturing metal silicide photomask
EP0257528B1 (en) Photo cathodes for electron image projection
JPS62272530A (en) Mask for transferring photoelectron
JPH05144710A (en) Optical element and fabrication thereof
JPH0463349A (en) Photomask blank and photomask
JPH09306807A (en) Manufacture of x-ray exposing mask structure
JPH01237660A (en) Photomask
JPS635561A (en) Photoelectron beam transfer
JPS6222262B2 (en)
JPS63156319A (en) Photoelectron transferring mask and manufacture thereof
JP3639840B2 (en) Manufacturing method of ultrafine periodic structure
JPH11317345A (en) Transfer/working method for minute pattern
JPS61185925A (en) Mask for transfer of electron image
JPS63155726A (en) Photoelectron transferring and manufacture thereof
JPH01168024A (en) Photoelectron transfer mask and manufacture thereof
JPH01185632A (en) Mask for transfer and exposing transfer method using said mask for transfer
JP3219619B2 (en) X-ray mask, manufacturing method of the mask, and device manufacturing method using the mask
JPS6373623A (en) Mask for photoelectron replication
JPH0232524A (en) X-rays exposure mask