JPS62272421A - Electron emitting element - Google Patents

Electron emitting element

Info

Publication number
JPS62272421A
JPS62272421A JP61113514A JP11351486A JPS62272421A JP S62272421 A JPS62272421 A JP S62272421A JP 61113514 A JP61113514 A JP 61113514A JP 11351486 A JP11351486 A JP 11351486A JP S62272421 A JPS62272421 A JP S62272421A
Authority
JP
Japan
Prior art keywords
metal
conductive material
electron
electron emission
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61113514A
Other languages
Japanese (ja)
Inventor
Masahiko Okunuki
昌彦 奥貫
Takeo Tsukamoto
健夫 塚本
Akira Shimizu
明 清水
Akira Suzuki
彰 鈴木
Masao Sugata
菅田 正夫
Isamu Shimoda
下田 勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61113514A priority Critical patent/JPS62272421A/en
Publication of JPS62272421A publication Critical patent/JPS62272421A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Abstract

PURPOSE:To exceedingly improve the efficiency in an electron emission by forming minute projections on the electron emitting surface of a conductive material at the interface between the insulating layer and the conductive material. CONSTITUTION:When a voltage V is applied between a conductive material 1 and metal 4, a strong electric field is generated on minute projections 2. Electrons emitted from the minute projections 2 tunnel through an insulating layer 3 and are emitted from the electron emitting portion W of the metal 4. The tunneling electrons accelerated by the strong electric field has high enough to exceed the energy level in vacuum regardless of the scattering and energy loss in the insulating layer 2 and metal 4. Since a high probability of having the energy electric field is concentrated at the minute projections 2 and the concentration of the electric field at other portions is softened, almost no current flows which does not contribute to the electron emission. Therefore, it is possible to exceedingly improve the efficiency in the electron emission.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [産業上の利用分野] 本発明は、導電性材料上に絶縁体を挟んで金属材料が積
層された構造を有し、前記導電性材料および金属材料間
に電圧を印加することで、前記金属材料の表面から電子
を放出する電子放出素子(以下、HIM型電子放出素子
とする。)に係り、特に電子放出効率の向上および長寿
命化を企図した電子放出素子に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention has a structure in which a metal material is laminated on a conductive material with an insulator interposed therebetween, and the conductive material and an electron-emitting device that emits electrons from the surface of the metal material by applying a voltage between the metal materials (hereinafter referred to as a HIM-type electron-emitting device), particularly improving electron emission efficiency and extending the lifespan. The present invention relates to an electron-emitting device intended for.

[従来技術およびその聞題点] 第4図は、111%型電子放出素子の一般的な構成を示
す模式図である。
[Prior art and its issues] FIG. 4 is a schematic diagram showing a general configuration of a 111% electron-emitting device.

MIX型の電子放出素子は、同図に示すように、金属M
l上に薄い絶縁層1を介して薄い金属N2が積層形成さ
れた構造を有している。そして、金属M2の仕°1覧関
数φlより大きな電圧Vを金属M1および112間に印
加することによって、絶縁層■をトンネルした量子のう
ち真空準位より大きなエネルギを有するものが金属M2
表面から放出される。
As shown in the figure, the MIX type electron-emitting device is made of metal M
It has a structure in which a thin metal N2 is laminated on top of the metal N2 with a thin insulating layer 1 interposed therebetween. Then, by applying a voltage V larger than the functional function φl of the metal M2 between the metals M1 and 112, among the quanta tunneled through the insulating layer 2, those having energy higher than the vacuum level are transferred to the metal M2.
released from the surface.

このような素子で高い電子放出効率を得るためには、絶
縁層■を絶縁破壊を生じない範囲で、また金属M2を電
流が十分流れる範囲で、各々できる限り薄く形成するこ
とが望ましい。
In order to obtain high electron emission efficiency in such a device, it is desirable to form the insulating layer (2) as thin as possible within a range that does not cause dielectric breakdown, and within a range that allows sufficient current to flow through the metal M2.

第5図は、従来のHIM型電子放出素子の概略的断面図
である。同図に示すように、電子放出効率では金属M2
が錦く形成され、電子放出効率を高めている。
FIG. 5 is a schematic cross-sectional view of a conventional HIM type electron-emitting device. As shown in the figure, in terms of electron emission efficiency, metal M2
is formed in a brocade pattern, increasing electron emission efficiency.

しかしながら、このような従来の構造では、電子放出部
−以外の部分でも金属旧から絶縁層■をトンネルして金
IAM2に到達する電子が存在し、このような電子放出
部W以外での電流は電子放出にほとんど寄与していない
、このために、電子放出素子に流れる電流に比べて電子
放出量が小さくなり、電子放出効率を向上させることが
できなかった。
However, in such a conventional structure, there are electrons that tunnel from the metal layer through the insulating layer (2) and reach the gold IAM2 even in parts other than the electron-emitting part W, and the current in parts other than the electron-emitting part W is It hardly contributes to electron emission, and therefore the amount of electron emission becomes smaller than the current flowing through the electron-emitting device, making it impossible to improve electron emission efficiency.

C問題点を解決するための手段] 本発明による電子放出素子は。Measures to solve problem C] The electron-emitting device according to the present invention is as follows.

導電性材料上に絶縁体を挟んで金属材料が!!i層され
た構造を有し、前記導電性材料および金属材料間に電圧
を印加することで、前記金属材料の表面から電子を放出
する電子放出素子において、前記導電性材料の前記絶縁
体界面であって電子放出面に相当する部分に微小突起部
が形成されていることを特徴とする。
Metal material sandwiched between an insulator and a conductive material! ! In the electron emitting device, which has an i-layer structure and emits electrons from the surface of the metal material by applying a voltage between the conductive material and the metal material, at the insulator interface of the conductive material. It is characterized in that minute protrusions are formed in a portion corresponding to the electron emitting surface.

[作用] このような導電性材料の微小突起部が絶縁体を介して金
属材料と対向しているために、導電性材料と金属材料間
に電圧を印加すると、微小突起部に高電界が集中し、そ
の結果、微小突起部分の電流が増大するとともに、電子
放出に寄与しないそれ以外の部分の電流が抑えられ、電
子放出効率が大幅に向上する。
[Function] Since the microprotrusions of such conductive material face the metal material through the insulator, when a voltage is applied between the conductive material and the metal material, a high electric field is concentrated on the microprotrusions. As a result, the current in the microprotrusion portion increases, and the current in other portions that do not contribute to electron emission is suppressed, resulting in a significant improvement in electron emission efficiency.

[実施例] 以下、本発明の実施例を図面に基づいて詳細に説明する
[Example] Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図は、本発明による電子放出素子の第一実施例の概
略的断面図である。
FIG. 1 is a schematic cross-sectional view of a first embodiment of an electron-emitting device according to the present invention.

同図において、導電性材料1表面であって電子放出?B
−に相当する部分には、14m以下の多数の微小突起か
ら成る微小突起部2が形成されている。更に、導電性材
料1上に厚さ50−150人程鹿の絶縁層3を挟んで金
属4が積層形成され、金属へのQい部分は厚さ20〜3
50人程度に形成され。
In the same figure, is the surface of the conductive material 1 emitting electrons? B
In the portion corresponding to -, a microprotrusion portion 2 consisting of a large number of microprotrusions of 14 m or less is formed. Furthermore, a metal 4 is laminated on the conductive material 1 with an insulating layer 3 of about 50 to 150 layers sandwiched in between, and the portion where the metal is connected has a thickness of 20 to 3
It was formed to about 50 people.

電子放出部Wとなっている。電子放出効率の幅は50鉢
m以ドである。
This is an electron emitting section W. The range of electron emission efficiency is 50 meters or more.

導電性材料上 体である。また、絶縁層3は、導電性材料lがA1?ア
J’LlfA1203 、 Siテアh4fSiO2’
*17)酸化絶縁物であることが製造とからも望ましい
、更に、金属4は、A1、Au又はpt等が用いられる
The upper body is made of conductive material. Further, in the insulating layer 3, the conductive material l is A1? AJ'LlfA1203, Si tear h4fSiO2'
*17) An oxide insulator is preferable from the viewpoint of manufacturing. Furthermore, the metal 4 may be A1, Au, PT, or the like.

このような本実施例において、導電性材料lおよび金属
4間に電圧Vを印加すると、微小突起部2に強い電界が
生じ、電子は微小突起部2から絶縁層3をトンネルして
、金属4の電子放出部Wから放出される。
In this embodiment, when a voltage V is applied between the conductive material 1 and the metal 4, a strong electric field is generated in the microprotrusions 2, and electrons tunnel from the microprotrusions 2 through the insulating layer 3 to reach the metal 4. The electrons are emitted from the electron emitting section W.

その際、強い電界によってトンネルした電子は、絶縁M
!:2および金属4での散乱やエネルギ損失にも拘らず
、真空準位より十分高いエネルギを有する割合が高くな
る。更に、微小突起部2にのみ高電界が集中し、その他
の部分での電界集中が緩和されるために、電子放出に寄
与しない電流はほどんで流れなくなる。
At that time, the electrons tunneled by the strong electric field are
! Despite scattering and energy loss in :2 and metal 4, the proportion of energy sufficiently higher than the vacuum level increases. Furthermore, since a high electric field is concentrated only on the microprotrusions 2 and electric field concentration on other parts is relaxed, currents that do not contribute to electron emission loosen and stop flowing.

これらの現象によって、従来例と同じ電圧Vを印加して
も、従来より効率的な電子放出が可壷となる。逆に、低
い印加電圧で電子放出が11俺となるために、絶縁層3
の絶縁破壊を防1ヒすることができ、ノー命を大幅に延
ばすことができる。
Due to these phenomena, even if the same voltage V as in the conventional example is applied, electron emission can be performed more efficiently than in the conventional example. On the other hand, since the electron emission becomes 11 at low applied voltage, the insulating layer 3
It can prevent dielectric breakdown and greatly extend the life expectancy.

第2図は、本発明の第二実施例の概略的断面図である。FIG. 2 is a schematic cross-sectional view of a second embodiment of the invention.

同図に示すように、絶縁層3上にフラットな金属5を形
成しても、微小突起8112の部分だけに高電界が集中
するために、第一実施例と同様に限られた範囲の電子放
出部Wを得ることができる。
As shown in the figure, even if a flat metal 5 is formed on the insulating layer 3, a high electric field is concentrated only in the portion of the microprotrusion 8112, so that the electrons in a limited range are A discharge part W can be obtained.

次に、微小突起部2の形成方法について説明する。Next, a method for forming the minute protrusions 2 will be explained.

第3図(A)および(B)は、微小突起部の形成方法の
一例を示す概略的工程図である。
FIGS. 3(A) and 3(B) are schematic process diagrams showing an example of a method for forming microprotrusions.

まず、同図(A)に示すように、導電性材料1の表面上
に14m程度のマスク材8をパターニング形成する。
First, as shown in FIG. 2A, a mask material 8 of about 14 m is patterned on the surface of the conductive material 1.

続いて、適当な条件でエツチングを行い、導電性材料上 1ルm以下の微小突起を多数有する微小突起部2を形成
することができる。
Subsequently, etching is performed under appropriate conditions to form microprotrusions 2 having a large number of microprotrusions of 1 lumen or less on the conductive material.

[発明の効果] 以上詳細に説明したように、本発明による電子放出素子
は、導電性材料の微小突起部が絶縁体を介して金属材料
と対向しているために、導電性材料と金属材料間に電圧
を印加すると、微小突起部と金属間に高い電界が集中す
る。その結果、微小突起部分の電流が増大するとともに
、電子放出に寄与しないそれ以外の部分の電流が抑えら
れ、電子放出効率を大幅に向上させることができる。
[Effects of the Invention] As explained in detail above, in the electron-emitting device according to the present invention, since the minute protrusions of the conductive material face the metal material via the insulator, the conductive material and the metal material When a voltage is applied between them, a high electric field is concentrated between the microprotrusions and the metal. As a result, the current in the microprotrusion portion increases, and the current in other portions that do not contribute to electron emission is suppressed, making it possible to significantly improve electron emission efficiency.

また、低い印加電圧で電子放出が可能となるために薄い
絶縁層を用いることができ、電子放出効率を向上させる
ことができるととも、絶縁層の絶縁破壊を防止すること
ができ、寿命を大幅に延ばすことができる。
In addition, since electron emission is possible with a low applied voltage, a thin insulating layer can be used, improving electron emission efficiency and preventing dielectric breakdown of the insulating layer, significantly extending the lifespan. can be extended to

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による電子放出効率の第一実施例の概
略的断面図、 第2図は、本発明の第二実施例の概略的断面図、 第3図(A)およびCB)は、微小突起部の形成方法の
一例を示す概略的工程図、 第4図は、HIM型電子放出素子の一般的な構成を示す
模式図、 第5図は、従来のMIX型電子電子放出素子略的断面図
である。 l・・・導電性材料 2・・・微小突起部 3・・・絶縁層 4.5・・・金属 代理人  弁理士 山 下 穣 子 箱1図 第2図 を 第 3図
FIG. 1 is a schematic cross-sectional view of a first embodiment of electron emission efficiency according to the present invention, FIG. 2 is a schematic cross-sectional view of a second embodiment of the present invention, and FIG. 3 (A) and CB) are , a schematic process diagram showing an example of a method for forming microprotrusions, FIG. 4 is a schematic diagram showing the general configuration of a HIM type electron-emitting device, and FIG. 5 is a schematic diagram of a conventional MIX-type electron-emitting device. FIG. l...Conductive material 2...Minute protrusions 3...Insulating layer 4.5...Metal agent Patent attorney Minoru Yamashita Child box 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)導電性材料上に絶縁体を挟んで金属材料が積層さ
れた構造を有し、前記導電性材料および金属材料間に電
圧を印加することで、前記金属材料の表面から電子を放
出する電子放出素子において、 前記導電性材料の前記絶縁体界面であっ て電子放出面に相当する部分に微小突起部が形成されて
いることを特徴とする電子放出素子。
(1) It has a structure in which a metal material is layered on a conductive material with an insulator in between, and by applying a voltage between the conductive material and the metal material, electrons are emitted from the surface of the metal material. An electron-emitting device, characterized in that a minute protrusion is formed in a portion of the insulator interface of the conductive material that corresponds to an electron-emitting surface.
JP61113514A 1986-05-20 1986-05-20 Electron emitting element Pending JPS62272421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61113514A JPS62272421A (en) 1986-05-20 1986-05-20 Electron emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61113514A JPS62272421A (en) 1986-05-20 1986-05-20 Electron emitting element

Publications (1)

Publication Number Publication Date
JPS62272421A true JPS62272421A (en) 1987-11-26

Family

ID=14614266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61113514A Pending JPS62272421A (en) 1986-05-20 1986-05-20 Electron emitting element

Country Status (1)

Country Link
JP (1) JPS62272421A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5202605A (en) * 1988-10-31 1993-04-13 Matsushita Electric Industrial Co., Ltd. Mim cold-cathode electron emission elements
EP1302964A1 (en) * 2001-10-12 2003-04-16 Hewlett-Packard Company Field-enhanced MIS/MIM electron emitters

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5202605A (en) * 1988-10-31 1993-04-13 Matsushita Electric Industrial Co., Ltd. Mim cold-cathode electron emission elements
EP1302964A1 (en) * 2001-10-12 2003-04-16 Hewlett-Packard Company Field-enhanced MIS/MIM electron emitters
US6822380B2 (en) 2001-10-12 2004-11-23 Hewlett-Packard Development Company, L.P. Field-enhanced MIS/MIM electron emitters

Similar Documents

Publication Publication Date Title
US5192240A (en) Method of manufacturing a microelectronic vacuum device
US5214346A (en) Microelectronic vacuum field emission device
US5606215A (en) Field emission device arc-suppressor
JPH10149778A (en) Fine cold cathode tube and driving method therefor
JPH05182582A (en) Multipolar field electron emission device and manufacture thereof
JP2000090809A (en) Electric field emission cathode, electron emission element, and manufacture for electric field emission cathode
JP2001237461A (en) Semiconductor light-emitting element
US3184636A (en) Cold cathode
US5656883A (en) Field emission devices with improved field emission surfaces
JP3580930B2 (en) Electron emission device
JPS62272421A (en) Electron emitting element
US3535598A (en) Solid state tunnel cathode emitter having an improved thin film insulating barrier
JPS63141234A (en) Electron emitting element
JP3232195B2 (en) Electron-emitting device
JPS63257157A (en) Electron emitting element
JPH07161286A (en) Field emission cold cathode and its manufacture
JP3320603B2 (en) Field emission cold cathode device and method of manufacturing the same
JPS61182260A (en) Gate turn-off thyristor
JPS63124327A (en) Electron emitting element
JPS59130423A (en) Particle beam lithography mask and method of producing same
JPH02170327A (en) Electron releasing element
JP3603682B2 (en) Field emission electron source
JP3405773B2 (en) Micro field emission cathode device and method of manufacturing the same
JPH0199266A (en) Semiconductor light emitting device
JP3539305B2 (en) Field emission type electron source and method of manufacturing the same