JPS622720Y2 - - Google Patents

Info

Publication number
JPS622720Y2
JPS622720Y2 JP9736178U JP9736178U JPS622720Y2 JP S622720 Y2 JPS622720 Y2 JP S622720Y2 JP 9736178 U JP9736178 U JP 9736178U JP 9736178 U JP9736178 U JP 9736178U JP S622720 Y2 JPS622720 Y2 JP S622720Y2
Authority
JP
Japan
Prior art keywords
pulse
stage
clock
counting
generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9736178U
Other languages
Japanese (ja)
Other versions
JPS5593099U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9736178U priority Critical patent/JPS622720Y2/ja
Publication of JPS5593099U publication Critical patent/JPS5593099U/ja
Application granted granted Critical
Publication of JPS622720Y2 publication Critical patent/JPS622720Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Arrangements For Transmission Of Measured Signals (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Description

【考案の詳細な説明】 本考案は、血圧、心電等の生体現象をFM変調
方式のテレメータで遠隔測定する場合に受信機の
復調器に使用する医用テレメータ用パルス平均形
周波数弁別回路に関するものである。
[Detailed description of the invention] The present invention relates to a pulse average frequency discrimination circuit for a medical telemeter used in a receiver demodulator when biological phenomena such as blood pressure and electrocardiogram are remotely measured using an FM modulation telemeter. It is.

医用テレメータの復調器には低周波波形を忠実
に再生することの外に、しばしば絶対値(直流
分)も忠実に再生することが要求される。
In addition to faithfully reproducing low-frequency waveforms, demodulators for medical telemeters are often required to faithfully reproduce absolute values (DC components) as well.

このため従来よりこの種の復調器には第1図に
示すようなパルス平均形周波数弁別回路が用いら
れている。例えば観血式テレメータ血圧計の送信
機において血圧信号で周波数変調されて送信さ
れ、受信機で受信されたキヤリアもしくはサブキ
ヤリア(第3a図)は、パルス形成部1でパルス
に変換される(第3b図)。これは微分部2で微
分されてパルス後縁の負部分はクリツプされる
(第3c図)。パルス前縁の微分パルスはパルス発
生部3としての単安定マルチバイブレータをトリ
ガーし、出力にはCR時定数により規定される一
定時間巾の短形波パルス(第3d図)が発生す
る。このパルスは血圧信号に応じて発生頻度が異
り、低域通過フイルタ4へ供給されて高周波成分
が除去されると、直流分に重畳した低周波の血圧
信号が再生される(第3e図)。
For this reason, a pulse average type frequency discrimination circuit as shown in FIG. 1 has conventionally been used in this type of demodulator. For example, the carrier or subcarrier (Fig. 3a) which is frequency-modulated and transmitted with a blood pressure signal by the transmitter of an invasive telemeter blood pressure monitor and received by the receiver is converted into a pulse by the pulse forming section 1 (Fig. 3b). figure). This is differentiated by the differentiator 2, and the negative part of the trailing edge of the pulse is clipped (Fig. 3c). The differential pulse at the leading edge of the pulse triggers a monostable multivibrator as the pulse generator 3, and a rectangular wave pulse (FIG. 3d) with a constant time width defined by the CR time constant is generated at the output. The frequency of occurrence of this pulse varies depending on the blood pressure signal, and when it is supplied to the low-pass filter 4 and the high frequency component is removed, a low frequency blood pressure signal superimposed on the DC component is reproduced (Figure 3e). .

この場合CR時定数による単安定マルチバイブ
レーダのパルス時間幅の温度に対する安定度は、
せいぜい2×10-3/10℃程度であり、観血式テレ
メータ血圧計については、例えば絶対値の安定度 =パルス幅の安定度/FM変調の深さ=2×10−3
/10℃/5%/100mmHg =4mmHg/10℃となる。このことは、特に小さ
な血圧値の測定密度に大きく影響を及ぼすことに
なる。
In this case, the stability of the pulse time width of the monostable multivibrator with respect to temperature using the CR time constant is:
At most, it is about 2 × 10 -3 /10°C, and for invasive telemeter blood pressure monitors, for example, stability of absolute value = stability of pulse width / depth of FM modulation = 2 × 10 -3
/10℃/5%/100mmHg = 4mmHg/10℃. This greatly affects the measurement density, especially for small blood pressure values.

本考案は、この点に鑑みてパルス形成部の出力
パルスの時間幅をより安定にして生体現象の測定
精度を一層向上させることを目的とする。
In view of this point, the present invention aims to further improve the accuracy of measuring biological phenomena by making the time width of the output pulse of the pulse forming section more stable.

以下、本考案を図示の実施例を基に説明する。 Hereinafter, the present invention will be explained based on the illustrated embodiments.

先づ本考案によるパルス形成部を簡単に説明す
ると、微分回路2からの微分パルス(第4a図)
が、計数段5へ加えられると、計数段5はリセツ
トされ、水晶発振器を用いたクロツク発生段6か
らのクロツク信号を新たにカウントし始める(第
4b図)。計数値が予め規定したnに達すると、
計数段5はセツトパルスをパルス発生段7へ供給
し、さらに規定数のクロツク信号を計数して計数
値mに達するとリセツトパルスを供給する。した
がつてパルス発生段7は短形波パルス(第4c
図)を発生し、低域フイルタ4へ供給する。
First, to briefly explain the pulse forming section according to the present invention, the differential pulse from the differential circuit 2 (Figure 4a)
is applied to the counting stage 5, the counting stage 5 is reset and starts counting anew the clock signal from the crystal oscillator clock generation stage 6 (FIG. 4b). When the count value reaches a predefined n,
Counting stage 5 supplies a set pulse to pulse generating stage 7, further counts a specified number of clock signals, and when a count value m is reached, supplies a reset pulse. Therefore, the pulse generation stage 7 generates a rectangular wave pulse (4th c
) is generated and supplied to the low-pass filter 4.

さらに詳述するとこの場合、微分パルスとクロ
ツクパルスは同期していないため、最切のカウン
トパルスを基準にして短形波を発生させると、最
大1クロツク間隔に相当する時間分だけパルス時
間幅に娯差を生じるので計数段5は少くとも1ク
ロツク遅延して(リセツト後2番目以降のクロツ
ク信号で)セツトパルスを発生し得るようにす
る。これによりクロツク周波数を低くすることが
可能になり、パルス時間幅への影響は回避でき
る。しかし、計数段5の微分パルスに対するクロ
ツク信号を基準とした短形波パルスの発生時間関
係に1クロツク分の不確定時間が有り、これは低
域通過フイルタ出力のリツプルの許容値に影響す
るからクロツク周波数の最低値が制限される。ま
た短形波パルスの時間幅は無信号時の微分パルス
の周期のほぼ50%にしておくとパルス発生段7の
出力を直流もしくは低周波信号として平均化して
取出すときに好都合となる。
More specifically, in this case, the differential pulse and the clock pulse are not synchronized, so if a rectangular wave is generated based on the nearest count pulse, the pulse time width will be modified by a time corresponding to a maximum of one clock interval. Because of this difference, the counting stage 5 is delayed by at least one clock (on the second or later clock signal after reset) so that it can generate the set pulse. This makes it possible to lower the clock frequency and avoid affecting the pulse time width. However, there is an uncertainty time of one clock in the generation time relationship of the rectangular wave pulse based on the clock signal with respect to the differential pulse of the counting stage 5, and this affects the ripple tolerance of the low-pass filter output. The minimum value of the clock frequency is limited. Furthermore, it is convenient to set the time width of the rectangular wave pulse to approximately 50% of the period of the differential pulse when there is no signal, when the output of the pulse generation stage 7 is averaged and taken out as a direct current or low frequency signal.

さらにリセツトパルスmは、入力信号に応じて
微分パルスの周期が短くなつた場合に、重量する
程、後に発生させてはならない。これらの要素を
基に実施例では観血式無線テレメータ血圧計にお
ける血圧信号0〜30Hzのサブキヤリア2KHz(主
搬送波は150MHz)に対してクロツク周波数を3M
Hzに設定する。つまり無変調時の微分パルス間に
1500個のクロツク信号が存在し、計数段5は2進
カウンタとしたのでn=256及びm=1024に設定
することによりパルス幅変動が無く、リツプルが
許容値以下のパルス幅約50%の短形波が常に安定
に得られる。
Furthermore, the reset pulse m must not be generated so late that it becomes heavier when the period of the differential pulse becomes shorter in accordance with the input signal. Based on these factors, in this example, the clock frequency is set to 3M for the subcarrier of 2KHz (the main carrier is 150MHz) of the blood pressure signal from 0 to 30Hz in the invasive wireless telemeter blood pressure monitor.
Set to Hz. In other words, between the differential pulses when there is no modulation,
There are 1500 clock signals, and the counting stage 5 is a binary counter, so by setting n = 256 and m = 1024, there is no pulse width fluctuation, and the ripple is below the allowable value and the pulse width is about 50% short. Shape waves can always be obtained stably.

本考案によるパルス発生部のクロツク周波数
は、以上の説明から明らかなように、直流もしく
は低周波である生体現象のFM変調キヤリア周波
数に対して前記要素を考慮して設定する場合、お
のずと回路構成上も好適な周波数領域に定まる。
また計数段5及びパルス発生段7は、通常の理論
回路に基づく新規なICカウンタとして集積化可
能である。
As is clear from the above explanation, when the clock frequency of the pulse generator according to the present invention is set in consideration of the above factors with respect to the FM modulation carrier frequency of biological phenomena, which is direct current or low frequency, it naturally depends on the circuit configuration. is also determined in a suitable frequency range.
Furthermore, the counting stage 5 and the pulse generating stage 7 can be integrated as a novel IC counter based on a conventional theoretical circuit.

水晶発振素子の周波数安定度は1×10-5/10℃
は容易に得られるから、冒頭に述べたCR時定数
の単安定マルチバイブレータの例に対して本考案
によれば絶対値の安定度は =1×10−5/0.05/100mmHg=0.02mmHg
/10℃ となり、周波数弁別器の安定度は大巾に改善され
る。
The frequency stability of the crystal oscillator is 1×10 -5 /10℃
can be easily obtained, so for the example of the monostable multivibrator with the CR time constant mentioned at the beginning, according to the present invention, the stability of the absolute value is = 1 × 10 -5 / 0.05 / 100 mmHg = 0.02 mmHg
/10°C, and the stability of the frequency discriminator is greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のパルス平均形周波数弁別回路、
第2図は本考案によるパルス平均形周波数弁別回
路、第3a〜e図は第1図による弁別回路の各部
波形及び第4a〜c図は第2図による弁別回路の
各部波形を示す。 1……パルス形成部、2……微分部、3……パ
ルス発生部、4……低域通過フイルタ、5……計
数段、6……クロツク発生段、7……パルス発生
段。
Figure 1 shows a conventional pulse average type frequency discrimination circuit.
2 shows a pulse average type frequency discriminator circuit according to the present invention, FIGS. 3a to 3e show waveforms of various parts of the discriminator circuit according to FIG. 1, and FIGS. 4a to 4c show waveforms of various parts of the discriminator circuit according to FIG. 2. DESCRIPTION OF SYMBOLS 1... Pulse forming section, 2... Differentiating section, 3... Pulse generating section, 4... Low pass filter, 5... Counting stage, 6... Clock generating stage, 7... Pulse generating stage.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 生体信号により周波数変調されたキヤリアもし
くはサブキヤリアのパルス形成部と、パルス形成
部からのパルスのパルス縁で始動され、かつ一定
の時間幅のパルスを発生するパルス発生部と、パ
ルス発生部に後続の低域フイルタとを有する医用
テレメータ用パルス平均形周波数弁別回路におい
て、パルス発生部が水晶発振器を用いたクロツク
発生段と、パルス形成部からのパルスのパルス縁
でリセツトされ、かつ前記クロツク発生段からの
クロツク信号を計数する計数段とを備え、前記計
数段はリセツト後2番目以降の規定のクロツク信
号で発生し、かつさらに規定数のクロツク信号を
計数すると消滅するパルスを発生させ得ることを
特徴とする医用テレメータ用パルス平均形周波数
弁別回路。
A carrier or subcarrier pulse forming section whose frequency is modulated by a biological signal, a pulse generating section which is started at the pulse edge of the pulse from the pulse forming section and generates a pulse with a constant time width, and a pulse generating section subsequent to the pulse generating section. In a pulse average type frequency discriminator circuit for a medical telemeter having a low-pass filter, a pulse generating section includes a clock generating stage using a crystal oscillator, and is reset at the pulse edge of a pulse from the pulse forming section, and a counting stage for counting clock signals, and the counting stage is characterized in that the counting stage is capable of generating a pulse that is generated at the second and subsequent prescribed clock signals after a reset, and that disappears when a prescribed number of clock signals are further counted. Pulse average type frequency discrimination circuit for medical telemeter.
JP9736178U 1978-07-17 1978-07-17 Expired JPS622720Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9736178U JPS622720Y2 (en) 1978-07-17 1978-07-17

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9736178U JPS622720Y2 (en) 1978-07-17 1978-07-17

Publications (2)

Publication Number Publication Date
JPS5593099U JPS5593099U (en) 1980-06-27
JPS622720Y2 true JPS622720Y2 (en) 1987-01-22

Family

ID=29032123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9736178U Expired JPS622720Y2 (en) 1978-07-17 1978-07-17

Country Status (1)

Country Link
JP (1) JPS622720Y2 (en)

Also Published As

Publication number Publication date
JPS5593099U (en) 1980-06-27

Similar Documents

Publication Publication Date Title
US4538119A (en) Clock extraction circuit using an oscillator and phase-locked programmable divider
JPS622720Y2 (en)
JPS6035860B2 (en) Synchronous monitor circuit
GB1526917A (en) Digital fsk demodulator
US4592075A (en) Phase-shift keying demodulator
EP0276868A3 (en) Demodulation circuit
US4180777A (en) Tuning meter for use with a pulse count FM demodulation circuit
JPH0650883B2 (en) Demodulation circuit for DPSK modulation data
JPS6131919B2 (en)
JPS623944Y2 (en)
SU794768A1 (en) Discrete information receiving device
SU1381404A1 (en) Digital method of measuring frequency deviation of a frequency-modulated signal with harmonic modulation
JPH01243608A (en) Detector
JPS6329442B2 (en)
JPS6319808Y2 (en)
JPS5822346Y2 (en) phase synchronized oscillator
SU647839A1 (en) Demodulator
JPS6315531A (en) Clock recovery circuit
JPH0722291B2 (en) Demodulator for frequency modulated signal
JPS628567Y2 (en)
JPS6122501B2 (en)
JPS5951786B2 (en) timing signal detection circuit
JPS583643U (en) Pulse transmitter
JPS60172465U (en) Vertical synchronization integration circuit
JPS592216A (en) Data demodulator