JPS6227196B2 - - Google Patents

Info

Publication number
JPS6227196B2
JPS6227196B2 JP56028121A JP2812181A JPS6227196B2 JP S6227196 B2 JPS6227196 B2 JP S6227196B2 JP 56028121 A JP56028121 A JP 56028121A JP 2812181 A JP2812181 A JP 2812181A JP S6227196 B2 JPS6227196 B2 JP S6227196B2
Authority
JP
Japan
Prior art keywords
layer
conductive
particles
synthetic resin
colored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56028121A
Other languages
Japanese (ja)
Other versions
JPS57140153A (en
Inventor
Yoshitake Fukui
Yoshisato Myamoto
Jinichi Tsurumi
Shuji Shimane
Toshihiko Egawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lonseal Corp
Original Assignee
Lonseal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lonseal Corp filed Critical Lonseal Corp
Priority to JP56028121A priority Critical patent/JPS57140153A/en
Publication of JPS57140153A publication Critical patent/JPS57140153A/en
Publication of JPS6227196B2 publication Critical patent/JPS6227196B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Finishing Walls (AREA)
  • Floor Finish (AREA)
  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、新規な建築物用内装材、更に詳しく
はすぐれた装飾性と共にすぐれた導電性を有する
内装材を製造する方法に関するものである。 従来、壁装材、床敷体などの建築物用内装材
は、プラスチツクス、特に軟質や硬質の塩化ビニ
ル樹脂が多用されて来ているが、最近における需
要として、電算室に適した内装材の必要性がさけ
ばれている。電算室における内装材は従来の内装
材の特性、例えば装飾性、居住性、耐水性、耐摩
耗性、耐汚染性といつた一般特性の他に電気伝導
性、即ち導電性が要求される。これは電算機本体
から生じる微量の静電気を放散、消失させるため
と、これら内装材から生じる静電気を電算機に伝
えないためと、更に電算室で電算機を操作するオ
ペレーターの衣服、その他から発生する静電気を
電算機に伝えずアースに放散、消失させるという
3つの目的からである。 しかし乍ら従来の内装材はこれらの目的に添つ
て開発されたものでないため、全くこれらの特
性、即ち導電性を持つていない。壁装材の場合は
特にこの特性をもつものは皆無であつて、僅かに
床敷材の分野に散見できるのみであつた。 これは医療分野において用いられるもので、手
術の際に用いる電気メスの火花や、医師、看護婦
の衣服からの静電気の放電火花が麻酔ガスに引火
し爆発事故を起こさぬための目的で用いられてい
る。 従来、これらの用途に用いられている導電床は
大別して三種類があるが、いずれも後述するよう
な欠点を有し満足のゆく製品ではなく、まして高
い居住性が要求される電算室には到底適さない。 即ち、 (1) 床面に金属目地棒を露出させ、その金属棒の
間隙をセメントなどで塗りこんだもの (2) 導電性カーボンブラツクをセメントに練りこ
み床面仕上げとしたもの (3) 導電性カーボンブラツクを軟質塩ビ又はゴム
中に練りこみ、タイル状に加工したものを床コ
ンクリート面に貼着したもの がある。しかし乍らこれらの導電床すなわち(1)の
ものは金属棒の部分のみ導電性があり、他の部分
は導電性が全くなく、接触確率が小さく静電気の
放散がスムーズでない。(2)のものはセメントにカ
ーボンブラツクを練りこんだものを用いるので床
面の色は黒一色か黒を基調とした色に限定される
ので、手術室に適した色彩が得られない。(3)のも
のは(1)や(2)のものの欠点をカバーしたものと言え
るが色彩的には黒が基本色となるため(2)のものと
同様の欠点があり、更には30×30cm、又は25×25
cmの寸法のタイル状であるためそれを貼着する際
に各タイル間にアースをとる必要があり極めて面
倒であるという欠点があつた。 最近、電算室用としてアルミニウム製のタイル
状の床敷材が市販されているがこれも前記(3)と同
様の欠点があり、且つ極めて高価なものである。 本発明はかかる欠点、不備を除去した美麗で且
つすぐれた導電性を有する広幅で長尺のシート状
の内装材を提供せんとするもので、その実施の一
例を図面について説明すると、導電性カーボンブ
ラツク粉末を含有する黒色層と、通常の任意の着
色層とよりなる二層構造の導電性熱可塑性合成樹
脂粒子を、離型帯上に所定の厚さに展延し、加熱
下で押圧ロール間で圧縮し緻密化シートとした
後、離型帯を剥離すること及びこの緻密化シート
を表面層としてその表面層の裏面に良導電性裏打
材を積層することを特徴とする導電性内装材の製
造方法であり、前記導電性熱可塑性合成樹脂粒子
Aは層aと層bの2層構造のものであつて、層a
は導電性カーボンブラツク粉末を含有する黒色層
で、層bより軟化溶融温度の低い熱可塑性合成樹
脂組成物よりなり、層bは、白色、赤色、緑色、
黄色、青色、茶色など、内装材として好適な任意
の着色が施された非導電性の着色層であつて黒色
層aよりも軟化溶融温度が高い熱可塑性合成樹脂
組成物よりなる層である。黒色層aにおける導電
性カーボンの混入量は使用するカーボン種類及び
カーボン粉末の粉径によつて異なるが要は黒色層
a自体の体積固有抵抗値を105〜102Ω・cm程度に
なるように混入すべきで、通常の場合、概ねカー
ボン混入量は配合組成物の10重量パーセント以上
である。 導電性熱可塑性合成樹脂粒子Aの粒径は、内装
材の用途、例えば壁装材として使用するのか、床
敷材として使用するのか、あるいは帯電防止性作
業台のテーブルトツプとして使用されるのか等、
によつて変つてくるが一般的に0.5〜5.0mmの範囲
であれば、製品として0.4〜2.5mm厚の帯電防止性
を有する導電性内装材が得られる。 黒色層aと着色層bの厚さは粒子A自体の厚さ
の内分比でもつて議論されるべき粒子Aの厚さが
1.0mmの場合、黒色層aは0.1〜0.5mm、着色層bは
0.9〜0.5mmの範囲、即ち層a:層bの厚さの比率
が1:9〜1:1の範囲が適している。黒色層a
の厚さが1:1を超えるものは、製品になつた後
の外観が全体的に黒色に近いものとなり、前記の
従来品3と同じものか、それに近いものとなり、
使用上好ましくない。 また黒色層aの厚さが1:9以下になると、装
飾性の点では明色化が得られるので有利である
が、導電性の点では不安定となり、不利となる。 導電性熱可塑性合成樹脂粒子Aは、単色系であ
つても、多色系であつても良い。単色系とは着色
層bが茶色の場合、黒―茶の二層構造の粒子のみ
で表面層Bを構成したものを意味し、多色系とは
着色層bとして茶、赤、緑、白などを用いた粒
子、即ち茶―黒、赤―黒、緑―黒、白―黒の各導
電性粒子を作つておき、使用に先だつて、これら
を適宜の量を混合した混合粒子でもつて表面層B
を構成したものを意味する。これらの組合せは内
装材の用途、及びカラーデザインにより決定され
るべきである。 黒色層aの厚さと着色層bの厚さは前述した通
りであるが、表面層Bの裏面に良導電性裏打材C
を積層することによつて、表面層Bの厚さ方向に
導電性があればよく、したがつて層aも1:9〜
2:8と比較的薄い組合せですぐれた導電性が得
られるし、その結果、黒色層aの存在があまり気
にならない明色系の内装材が得られる。更にこの
場合、二層構造の導電性粒子Aと共に非導電性の
着色熱可塑性合成樹脂粒子A′を混合することも
出来る。カーボンブラツク粉末を30%含有し、黒
色層a対着色層bの厚さ比率が2:8の導電性粒
子Aと、非導電性着色粒子A′との混合比率が
1:1の場合、表面層B単独では表面方向の導電
性は全くないが、良導電性裏打材Cを積層すると
104Ω・cmの体積固有抵抗値のものが得られる。
この事は、「導電性内装材即黒色系内装材」とい
つた従来の考えを全く覆すものであつて、カーボ
ンブラツクによる黒色層aの存在を、ひとつの模
様としてむしろ効果的に利用することが出来る。
この結果、得られる内装材は明色系で花崗岩様の
外観を有するものとなり床敷体は勿論の事、静電
気の発生や帯電が嫌われる精密部品組立工場やエ
レクトロニクス関係の工場の壁装材や作業台トツ
プとして用いることが可能となる。 本発明の製造方法に使用される熱可塑性合成樹
脂はポリ塩化ビニル樹脂及び塩化ビニル共重合
体、エチレン―酢酸ビニル共重合体、塩素化ポリ
エチレン、ABSやMBSなどの三元共重合体樹
脂、NBRなどの熱可塑性合成ゴムなど、一般に
用いられている軟質系の熱可塑性合成樹脂であれ
ば、いずれでも良く特に限定されるものではない
し、これらを相互に混合したポリマーブレンド系
でも良い。またこれらの熱可塑性合成樹脂に、一
般に「配合剤」又は「添加剤」と呼ばれている可
塑剤、安定剤、充填剤、酸化防止剤、粘結剤等の
添加・配合は必要に応じて任意に行い得るもので
あつて特に限定するものではない。 黒色層aと着色層bとは、夫々熱可塑性合成樹
脂として同一の樹脂を用いる場合は、層aには可
塑剤を多く添加することにより層bよりも軟化溶
融温度を低くすることが出来るし、また同一種類
の樹脂の場合、その重合度を変えた樹脂、例えば
ポリ塩化ビニル樹脂の場合、層aには重合度800
位のものを用い、層bとして重合度2000位のもの
を用い、更に可塑剤量を変えることで、かなり軟
化溶融温度の異なる配合物にすることが出来る。
最も有効なのは、塩化ビニル―酢酸ビニル共重合
体を用いることで、同じ重合度で同一可塑剤添加
量である場合、軟化溶融温度に10〜15℃の差を生
じさせることが出来る。本発明においてこの事は
極めて重要な事であつて、合成樹脂粒子Aを離型
帯上に所定の厚さ層状に展延し加熱下で、金属ロ
ールとバツクアツプゴムロールとから構成され且
つ金属ロールが必要温度に加熱され、更に金属ロ
ールとバツクアツプゴムロールとの間の間隙が所
定の間隙に調節されたクリアランスエンボツサー
の如き押圧ロール間を通して圧縮し緻密化する
際、層a又は層bのいずれかが軟化溶融温度が低
くないと、充分な緻密化が行われず、空隙の多い
シートしか得られない。しかし乍ら層a又は層b
のいずれか一方が軟化溶融温度が低い場合、押圧
ロール間を通して押圧力を加えると軟化溶融温度
の低い層が変形して粒子間に流れ込み、空隙を充
填し緻密な表面層Bとなる。一方軟化溶融温度の
高い層は、押圧力が加わつても変形することが少
なく粒子形状を保持するをもつて模様効果が発現
される。本発明の場合、カーボンブラツク粉末を
含有する黒色層aが着色層bよりも軟化溶融温度
の低い層で、且つ着色層bよりも厚さの薄い層と
することにより、より明色化の内装材が得られる
結果となる。 本発明に用いる離型帯は、離型紙や、トリコツ
トなど緻密な薄で織物にシリコン樹脂を焼付けた
離型性クロスなど、剛直で加熱状態下でも軟化し
ない離型帯を用いる。かかる離型帯上に導電性合
成樹脂粒子を所定の厚さに層状に散布展延し、こ
れを加熱した後、押圧ロール間で圧縮すると軟
化・溶融した粒子に直接押圧力が加わる為、非常
にすぐれた圧縮効果が得られ、その結果、非常に
すぐれた緻密化シートが得られる。このような離
型帯を用いずに、例えば導電性カーボンブラツク
粉末を添加した導電性熱可塑性合成樹脂シートを
裏打材として用い、この上面に導電性合成樹脂粒
子を散布展延して同様の方法で加熱・圧縮する
と、その裏打材も一緒に軟化・溶融するため、軟
化粒子の「めり込み」現象が生じ、圧縮力が有効
に働かず、前記の緻密化が不充分となる。導電性
内装材の場合に、この緻密化は導電性の発現及び
安定した導電性の付与の上で非常に重要なことで
あつて、本発明においては非常にすぐれたものと
云える。 表面層Bに積層される良導電性裏打材Cは熱可
塑性合成樹脂に、金属箔又は導電性カーボンブラ
ツク粉末を添加したものであり、該裏打材Cの表
面層Bへの積層は、表面層Bのいずれの面でも良
いが、押圧ロールの金属ロールに接した面を表面
とし、離型帯と接触していた面を裏面とし、この
裏面に前記裏打材Cを積層する事が最適である。
これは、表面層Bが離型帯との接触面、すなわち
バツクアツプゴムロール側の面は平滑性はすぐれ
ているけれども、金属ロール接触面に比し緻密化
の点でやや不充分であり、かつピンホールなどの
発生が時には見られることがある。これは加熱炉
での加熱・軟化の際、熱の加わり方が離型帯によ
つてやや阻害されること、バツクアツプゴムロー
ルの弾力性による押圧力の抜け、更にはバツクア
ツプゴムロールによる冷却化などによつて圧縮効
果が不充分になると考えられる。この点金属ロー
ル、特に加熱された金属ロールと接触している粒
子面は金属ロールによる押圧力が直接作用するこ
と及びその際に加熱・軟化粒子が冷却されないた
めで押圧力による緻密化が充分に行われ、緻密な
シートになると云う理由による。 この裏打材Cの積層に際して、表面層の金属ロ
ールに接していた面に積層することも可能であ
り、この場合には、離型帯を剥離する以前の状
態、すなわち、離型帯が付いた侭の状態でカレン
ダートツピング又は押出積層あるいは塗布法など
により積層することもあり、これらは本発明の範
囲を逸脱するものではない。 又本発明によつて得られた内装材を床面、ある
いは壁面もしくは作業台上に施工する場合、これ
らの下地面と内装材との接着を良くするため、し
ばしば裏基布Dが、内装材に積層されるが、この
場合、裏基布としては目の粗い寒冷紗や蚊張地様
のものが適している。 本発明は二層構造の導電性粒子Aの他に、非導
電性の着色熱可塑性合成樹脂粒子A′を混合使用
出来るが、この場合、着色粒子A′も二層構造と
し、そのいずれか一方を軟化溶融温度の低い熱可
塑性合成樹脂組成物にすることにより表面層B全
体として空隙のない緻密化シートとすることが出
来る。この着色粒子における二層構造の組合せは
同色又は同色系で濃淡を賦与したもの、あるいは
異色の組合せでも良い。勿論この場合、異つた色
の着色粒子を数種用意しておき、使用に先立つて
それらを適宜ずつ秤量し導電性粒子Aと混合して
用いることにより、よりすぐれた色彩感覚のある
内装材とすることが出来る。又、もちろん非導電
性粒子A′は一層構造のものであつてもよい。 更に、表面層Bはこの表面層Bのみでは導電性
を全く示さないか又は有効導電性を示さないが良
導電性裏打材Cを積層することにより優れた導電
性を示す準導電性の層であつてもよい。 次に本発明の具体的態様を実施例により説明す
る。 実施例 1 (1) 導電性熱可塑性合成樹脂粒子Aの製造。 次の配合1によりカーボンブラツク粉末を10%
混入した厚さ0.2mmのシートを作る。
The present invention relates to a novel interior material for buildings, and more particularly to a method for producing an interior material having excellent decorative properties and excellent conductivity. Traditionally, plastics, especially soft and hard vinyl chloride resin, have been widely used for interior materials for buildings such as wall coverings and floor coverings, but recently there has been a demand for interior materials suitable for computer rooms. The need for Interior materials for computer rooms are required to have electrical conductivity, in addition to general characteristics of conventional interior materials such as decorativeness, livability, water resistance, abrasion resistance, and stain resistance. This is to dissipate and eliminate minute amounts of static electricity generated from the computer itself, to prevent static electricity generated from these interior materials from being transmitted to the computer, and to prevent static electricity generated from the clothes and other objects of the operators operating the computers in the computer room. This has three purposes: to dissipate static electricity to the ground and dissipate it without transmitting it to the computer. However, since conventional interior materials were not developed for these purposes, they do not have these characteristics, that is, conductivity. In the case of wall covering materials, there are no materials with this characteristic, and only a few can be found in the field of flooring materials. This is used in the medical field to prevent anesthetic gas from igniting and causing an explosion due to sparks from the electric scalpel used during surgery or static electricity discharged from the clothing of doctors and nurses. ing. Conventionally, there are three types of conductive floors used for these purposes, but all of them have the drawbacks described below and are not satisfactory products, especially for computer rooms that require high comfort. Not suitable at all. That is, (1) metal joint rods are exposed on the floor surface and the gaps between the metal rods are filled with cement, etc. (2) conductive carbon black is kneaded into cement to finish the floor surface (3) conductive There is one in which carbon black is kneaded into soft PVC or rubber, processed into tiles, and then adhered to the concrete floor surface. However, in these conductive beds (1), only the metal bar part is conductive, and the other parts have no conductivity at all, so the probability of contact is small and the dissipation of static electricity is not smooth. Type (2) uses cement mixed with carbon black, so the color of the floor is limited to solid black or a color based on black, making it impossible to obtain a color suitable for an operating room. Item (3) can be said to cover the drawbacks of items (1) and (2), but since black is the basic color, it has the same drawbacks as item (2), and it also has 30× 30cm or 25×25
Since it is in the form of tiles with dimensions of cm, it is necessary to ground between each tile when pasting them, which is extremely troublesome. Recently, aluminum tile-shaped floor coverings have been commercially available for use in computer rooms, but these also have the same drawbacks as in (3) above and are extremely expensive. The present invention aims to eliminate such drawbacks and deficiencies and provide a wide and long sheet-like interior material that is beautiful and has excellent conductivity.An example of its implementation will be described with reference to the drawings. Conductive thermoplastic synthetic resin particles with a two-layer structure consisting of a black layer containing black powder and a conventional optionally colored layer are spread on a release strip to a predetermined thickness, and then rolled under heat with a press roll. A conductive interior material characterized by compressing the densified sheet between layers, then peeling off the release band, and using the densified sheet as a surface layer and laminating a highly conductive backing material on the back side of the surface layer. , wherein the conductive thermoplastic synthetic resin particles A have a two-layer structure of layer a and layer b;
is a black layer containing conductive carbon black powder, and is made of a thermoplastic synthetic resin composition having a lower softening and melting temperature than layer b; layer b is white, red, green,
This layer is a non-conductive colored layer that has been given any color suitable for an interior material, such as yellow, blue, or brown, and is made of a thermoplastic synthetic resin composition that has a higher softening and melting temperature than the black layer a. The amount of conductive carbon mixed in the black layer a varies depending on the type of carbon used and the diameter of the carbon powder, but the key is to keep the volume resistivity of the black layer a itself to about 10 5 to 10 2 Ω・cm. Usually, the amount of carbon mixed in is 10% by weight or more of the blended composition. The particle size of the conductive thermoplastic synthetic resin particles A is determined by the purpose of the interior material, such as whether it will be used as a wall covering material, a floor covering material, or as a table top for an antistatic workbench. ,
Generally speaking, if the thickness is in the range of 0.5 to 5.0 mm, a conductive interior material having antistatic properties with a thickness of 0.4 to 2.5 mm can be obtained as a product. The thickness of the black layer a and the colored layer b is the internal division ratio of the thickness of the particle A itself.
In the case of 1.0 mm, the black layer a is 0.1 to 0.5 mm, and the colored layer b is
A range of 0.9 to 0.5 mm, ie a layer a: layer b thickness ratio of 1:9 to 1:1, is suitable. black layer a
If the thickness exceeds 1:1, the overall appearance after becoming a product will be close to black, and will be the same as or close to the conventional product 3 above,
Undesirable for use. Moreover, if the thickness of the black layer a is less than 1:9, it is advantageous in terms of decoration because it can brighten the color, but it is disadvantageous in terms of conductivity because it becomes unstable. The conductive thermoplastic synthetic resin particles A may be monochromatic or multicolored. Monochromatic means that when the colored layer B is brown, the surface layer B is composed only of particles with a black-brown two-layer structure, and polychromatic means that the colored layer B consists of brown, red, green, and white particles. Particles such as brown-black, red-black, green-black, and white-black conductive particles are prepared in advance, and before use, a mixture of appropriate amounts of these particles is applied to the surface. Layer B
means that it consists of. These combinations should be determined by the use of the interior material and color design. The thickness of the black layer a and the thickness of the colored layer b are as described above.
By laminating the layers, it is sufficient that the surface layer B has conductivity in the thickness direction, and therefore the layer a also has a ratio of 1:9 to 1:9.
Excellent conductivity can be obtained with a relatively thin combination of 2:8, and as a result, a light-colored interior material in which the presence of the black layer a is not so noticeable can be obtained. Furthermore, in this case, non-conductive colored thermoplastic synthetic resin particles A' can also be mixed with the two-layered conductive particles A. When the mixing ratio of conductive particles A containing 30% carbon black powder and the thickness ratio of black layer a to colored layer b is 2:8 and non-conductive colored particles A' is 1:1, the surface Layer B alone has no conductivity in the surface direction, but when layer B is laminated with backing material C, which has good conductivity,
A volume resistivity value of 10 4 Ω・cm can be obtained.
This completely overturns the conventional idea that "conductive interior material is black interior material", and rather effectively utilizes the existence of black layer a made of carbon black as a pattern. I can do it.
As a result, the resulting interior material is light-colored and has a granite-like appearance, and can be used not only for floor coverings, but also for wall coverings in precision parts assembly factories and electronics-related factories where static electricity generation and charging are disliked. It can be used as a workbench top. The thermoplastic synthetic resins used in the production method of the present invention include polyvinyl chloride resin and vinyl chloride copolymer, ethylene-vinyl acetate copolymer, chlorinated polyethylene, terpolymer resin such as ABS and MBS, NBR It is not particularly limited and may be any commonly used soft thermoplastic synthetic resin such as thermoplastic synthetic rubber, or may be a polymer blend system in which these are mixed together. In addition, plasticizers, stabilizers, fillers, antioxidants, binders, etc., which are generally called "compounding agents" or "additives", may be added or blended into these thermoplastic synthetic resins as necessary. This can be done arbitrarily and is not particularly limited. When the same thermoplastic synthetic resin is used for the black layer a and the colored layer b, the softening and melting temperature can be made lower than that of the layer b by adding a large amount of plasticizer to the layer a. , In the case of the same type of resin, in the case of resin with a different degree of polymerization, for example, polyvinyl chloride resin, layer a has a degree of polymerization of 800.
By using a material with a degree of polymerization of about 2000 as layer b and further changing the amount of plasticizer, it is possible to create formulations with considerably different softening and melting temperatures.
The most effective method is to use a vinyl chloride-vinyl acetate copolymer, which can produce a difference of 10 to 15°C in softening and melting temperature when the degree of polymerization is the same and the amount of plasticizer added is the same. This is extremely important in the present invention, and the synthetic resin particles A are spread in a layered manner with a predetermined thickness on a release zone, and under heating, a metal roll consisting of a metal roll and a back-up rubber roll is spread. is heated to a required temperature, and then compressed and densified through pressure rolls such as a clearance embosser in which the gap between a metal roll and a back-up rubber roll is adjusted to a predetermined gap. If the softening and melting temperature of either of them is not low, sufficient densification will not be achieved and only a sheet with many voids will be obtained. However, layer a or layer b
If one of the layers has a low softening and melting temperature, when a pressing force is applied through the press rolls, the layer with the lower softening and melting temperature deforms and flows between the particles, filling the voids and forming a dense surface layer B. On the other hand, a layer with a high softening and melting temperature is less likely to deform even when a pressing force is applied, and retains its particle shape, thereby producing a pattern effect. In the case of the present invention, the black layer a containing carbon black powder has a lower softening and melting temperature than the colored layer b, and is thinner than the colored layer b, so that the interior color can be brightened. The result is that the material is obtained. The release band used in the present invention is a release band that is rigid and does not soften even under heated conditions, such as release paper or a release cloth made of dense, thin fabric such as Tricotto and silicone resin baked onto it. Conductive synthetic resin particles are dispersed and spread in a layer to a predetermined thickness on the release strip, heated, and then compressed between press rolls. Direct pressure is applied to the softened and melted particles, making it extremely difficult to use. An excellent compression effect is obtained, resulting in a very good densified sheet. Instead of using such a release band, for example, a conductive thermoplastic synthetic resin sheet to which conductive carbon black powder has been added is used as the backing material, and conductive synthetic resin particles are scattered and spread on the upper surface of the sheet, and the same method is used. When heated and compressed, the backing material also softens and melts, causing a phenomenon of "embedding" of the softened particles, and the compressive force does not work effectively, resulting in insufficient densification. In the case of conductive interior materials, this densification is very important for developing conductivity and providing stable conductivity, and can be said to be very excellent in the present invention. The highly conductive backing material C that is laminated on the surface layer B is made by adding metal foil or conductive carbon black powder to a thermoplastic synthetic resin. Either side of B may be used, but it is optimal that the surface in contact with the metal roll of the pressure roll is the front surface, the surface that was in contact with the release band is the back surface, and the backing material C is laminated on this back surface. .
This is because although the surface of surface layer B in contact with the release zone, that is, the surface on the back-up rubber roll side, has excellent smoothness, it is somewhat insufficient in terms of densification compared to the surface in contact with the metal roll. Occasionally pinholes may be observed. This is due to the fact that during heating and softening in the heating furnace, the way the heat is applied is somewhat inhibited by the release zone, the pressing force is lost due to the elasticity of the back-up rubber roll, and the cooling effect of the back-up rubber roll. It is thought that the compression effect becomes insufficient due to this. In this point, the pressing force of the metal roll acts directly on the particle surface that is in contact with the metal roll, especially the heated metal roll, and the heated and softened particles are not cooled at that time, so that the densification due to the pressing force is not sufficient. This is because the sheet is made dense. When laminating this backing material C, it is also possible to laminate it on the side of the surface layer that was in contact with the metal roll. Lamination may also be carried out by calendar topping, extrusion lamination, coating method, etc., without departing from the scope of the present invention. Furthermore, when the interior material obtained according to the present invention is applied to a floor, wall, or workbench, the backing fabric D is often attached to the interior material in order to improve the adhesion between the underlying surface and the interior material. In this case, coarse cheesecloth or mosquito-covering material is suitable as the backing fabric. In the present invention, in addition to the conductive particles A having a two-layer structure, non-conductive colored thermoplastic synthetic resin particles A' can be mixed and used. In this case, the colored particles A' also have a two-layer structure, and either one of them By using a thermoplastic synthetic resin composition with a low softening and melting temperature, the entire surface layer B can be made into a densified sheet without voids. The combination of two-layer structures in the colored particles may be the same color or the same color system with shading, or a combination of different colors. Of course, in this case, by preparing several types of colored particles of different colors, weighing them appropriately before use, and mixing them with conductive particles A, it is possible to create an interior material with a better sense of color. You can. Of course, the non-conductive particles A' may also have a single layer structure. Furthermore, the surface layer B is a semi-conductive layer that exhibits no conductivity or no effective conductivity by itself, but exhibits excellent conductivity by laminating a highly conductive backing material C. It may be hot. Next, specific embodiments of the present invention will be explained using examples. Example 1 (1) Production of conductive thermoplastic synthetic resin particles A. 10% carbon black powder by the following formulation 1
Make a mixed sheet with a thickness of 0.2 mm.

【表】 次いで配合2により、厚さ1.8mmのシートを得
る。
[Table] Next, according to formulation 2, a sheet with a thickness of 1.8 mm was obtained.

【表】 配合1により得られたシートと配合2によるシ
ートを積層して2.0mmの積層した後、クラツシヤ
ーにかけて平均粒径2.5mmの導電性粒子Aを得
る。この粒子Aの層a対層bの厚さ比率は1対9
である。 (2) 緻密化シートBの製造 次いでこの導電性粒子を離型紙(厚さ=0.3
mm)上に4.5mm厚に展延し、150℃の加熱炉で加熱
した後、予め2.8mmのクリアランスに調節したク
リアランスエンボツサー間に導入して押圧し、圧
縮緻密化し、冷却後、離型紙を剥離して厚さ2.5
mmの花崗岩様の外観を持つた薄茶色シートBを得
た。このシートBは単独で内装材として用いるこ
とが出来、導電性は次の通りであつた。 絶縁抵抗値 5×105Ω以下*1 帯電圧 160V*2 *1 NFPA試験法のFoil Test法に準拠 電極間距離 90cm 使用金属箔 アルミニウム 電極 516S,2・1/2インチ径 測定器 絶縁抵抗計(メガー) 定格電圧 500V 短絡電流 2.5〜10ミリアンペア *2 集電式電位測定器(春日電気・製)により
ナイロンストツキングで50回摩擦 5×104Ω以下という絶縁抵抗値は、一般の電
算機室に要求されている103〜108Ωという値を充
分満足するものであり、かかる性能を持ち、しか
も薄茶色の美麗なシートはこれまで得られなかつ
たもので、電算機室の床敷体及び壁装材として好
適であつた。 実施例 2 実施例(1)の配合1のシートに代えて、配合3の
カーボンブラツク量30%のシート用いた他は全て
実施例1と同じ方法で内装材を製造した。
[Table] The sheet obtained by Formulation 1 and the sheet obtained by Formulation 2 were laminated to a thickness of 2.0 mm, and then subjected to a crusher to obtain conductive particles A having an average particle diameter of 2.5 mm. The thickness ratio of layer a to layer b of this particle A is 1:9
It is. (2) Production of densified sheet B Next, the conductive particles were coated with release paper (thickness = 0.3
mm) to a thickness of 4.5 mm, heated in a heating furnace at 150°C, introduced between clearance embossers adjusted to a clearance of 2.8 mm in advance, pressed, compressed and densified, cooled, and released. Peel off the pattern to make it 2.5 thick.
A light brown sheet B having a granite-like appearance of 3 mm was obtained. This sheet B could be used alone as an interior material, and its conductivity was as follows. Insulation resistance value 5×10 5 Ω or less *1 Charge voltage 160V *2 *1 Based on the Foil Test method of NFPA test method Distance between electrodes 90cm Metal foil used Aluminum electrode 5 16S , 2 1/2 inch diameter measuring instrument Insulation resistance Meter (Megger) Rated voltage 500V Short circuit current 2.5 to 10 milliampere *2 Rubbed 50 times with nylon stockings using a current collector potential measuring device ( Kasuga Denki) This fully satisfies the value of 10 3 to 10 8 Ω required for machine rooms, and a sheet with such performance and a beautiful light brown color has never been available before, making it ideal for use on computer room floors. It was suitable as a floor covering and wall covering material. Example 2 An interior material was manufactured in the same manner as in Example 1, except that a sheet of Formulation 3 with a carbon black content of 30% was used in place of the sheet of Formulation 1 of Example (1).

【表】 これによつて得られた内装材は外観は実施例1
と同じであつたが、導電性は実施例1のものくら
べ数段すぐれていた。 絶縁抵抗値 3.2×104Ω 帯電圧 60V 実施例 3 実施例1で得られたシートBの裏面に配合4に
よるカーボンブラツク量18%の良導電性裏打材C
を積層した。
[Table] The appearance of the interior material obtained in this way is Example 1
However, the conductivity was several orders of magnitude better than that of Example 1. Insulation resistance value 3.2×10 4 Ω Charge voltage 60V Example 3 A highly conductive backing material C with a carbon black content of 18% according to formulation 4 was placed on the back side of the sheet B obtained in Example 1.
were laminated.

【表】 この裏打材積層の内装材の導電性は下記の通り
であつた。 絶縁抵抗値 2.6×104Ω 帯電圧 0 実施例 4 実施例2で得られたシートの裏面に実施例3と
同様の裏打材Cを積層した。この裏打材積層の内
装材の導電性は次の通りであつた。 絶縁抵抗値 1.2×104Ω 帯電圧 0 実施例 5〜9 実施例2において用いた導電性粒子Aと、下記
の配合5、及び6による二層構造の非導電性着色
粒子A′を下記混合比率で混合して、実施例4と
同様の方法で裏打材積層の内装材を得た。
[Table] The conductivity of the interior material of this laminated backing material was as follows. Insulation resistance value 2.6×10 4 Ω Charge voltage 0 Example 4 On the back side of the sheet obtained in Example 2, a backing material C similar to that in Example 3 was laminated. The conductivity of the interior material of this laminated backing material was as follows. Insulation resistance value 1.2×10 4 Ω Charge voltage 0 Examples 5 to 9 The conductive particles A used in Example 2 and the two-layer structure non-conductive colored particles A′ according to the following formulations 5 and 6 were mixed as shown below. By mixing in the same proportions, an interior material for laminated backing material was obtained in the same manner as in Example 4.

【表】【table】

【表】 子にする。
[Table] Make it a child.

【表】 これらの内装材は薄茶と薄グリーン色が混合さ
れたもので黒色の存在が全く気にならない美麗な
もので病院の手術室の使用に適している。
[Table] These interior materials are a mixture of light brown and light green, and are beautiful and the presence of black does not bother you at all, making them suitable for use in hospital operating rooms.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明によつて製造された導電性内装材
の実施例を示すもので、第1図は導電性熱可塑性
合成樹脂粒子の断面図、第2図は緻密化シートよ
りなる表面層の断面図、第3図は内装材の断面
図、第4図は他の実施例の断面図であり、図中、
Aは導電性粒子、A′は非導電性粒子、Bは緻密
化シートよりなる表面層、aは黒色層、bは着色
層である。
The drawings show examples of the conductive interior material manufactured according to the present invention, in which Fig. 1 is a cross-sectional view of conductive thermoplastic synthetic resin particles, and Fig. 2 is a cross-sectional view of the surface layer made of a densified sheet. 3 and 3 are cross-sectional views of the interior material, and FIG. 4 is a cross-sectional view of another embodiment.
A is a conductive particle, A' is a non-conductive particle, B is a surface layer made of a densified sheet, a is a black layer, and b is a colored layer.

Claims (1)

【特許請求の範囲】[Claims] 1 合成樹脂粒子が導電性カーボンブラツク粉末
を有する導電性黒色層と通常の任意の着色を施し
た非導電性着色層との二層構造で且つ該黒色層の
軟化溶融温度が着色層の軟化溶融温度よりも低い
導電性熱可塑性合成樹脂粒子であり、該粒子を単
独もしくは非導電性着色合成樹脂粒子との混合状
態で離型帯の上面に所定の厚さの層状に展延した
後、加熱炉中で該粒子を加熱・軟化せしめ、然る
後、所定の間隙に調節した押圧ロール間に導入し
て該粒子層を押圧・圧縮せしめ、次いで離型帯を
剥離して緻密化シートとした後、該緻密化シート
を表面層として、金属箔又は導電性カーボンブラ
ツク粉末を添加してなる良導電性熱可塑性合成樹
脂シートよりなる裏打材を積層することを特徴と
する導電性内装材の製造方法。
1 Synthetic resin particles have a two-layer structure of a conductive black layer containing conductive carbon black powder and a non-conductive colored layer that is customarily colored, and the softening melting temperature of the black layer is higher than that of the colored layer. The particles are conductive thermoplastic synthetic resin particles whose temperature is lower than the temperature, and the particles are spread alone or in a mixed state with non-conductive colored synthetic resin particles in a layer of a predetermined thickness on the upper surface of the release strip, and then heated. The particles were heated and softened in a furnace, then introduced between pressure rolls adjusted to a predetermined gap to press and compress the particle layer, and then the release band was peeled off to form a densified sheet. After that, the densified sheet is used as a surface layer, and a backing material made of a highly conductive thermoplastic synthetic resin sheet to which metal foil or conductive carbon black powder is added is laminated. Method.
JP56028121A 1981-02-26 1981-02-26 Conductive interior finish material having granite-like external appearance Granted JPS57140153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56028121A JPS57140153A (en) 1981-02-26 1981-02-26 Conductive interior finish material having granite-like external appearance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56028121A JPS57140153A (en) 1981-02-26 1981-02-26 Conductive interior finish material having granite-like external appearance

Publications (2)

Publication Number Publication Date
JPS57140153A JPS57140153A (en) 1982-08-30
JPS6227196B2 true JPS6227196B2 (en) 1987-06-12

Family

ID=12239962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56028121A Granted JPS57140153A (en) 1981-02-26 1981-02-26 Conductive interior finish material having granite-like external appearance

Country Status (1)

Country Link
JP (1) JPS57140153A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58142841A (en) * 1982-02-22 1983-08-25 盟和産業株式会社 Manufacture of interior finish material
JPS60120833U (en) * 1984-01-24 1985-08-15 大日本印刷株式会社 makeup sheet
JPH0544134Y2 (en) * 1985-09-17 1993-11-09

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825080A (en) * 1971-08-02 1973-04-02

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825080A (en) * 1971-08-02 1973-04-02

Also Published As

Publication number Publication date
JPS57140153A (en) 1982-08-30

Similar Documents

Publication Publication Date Title
US4363071A (en) Static dissipative mat
JP2000517385A (en) Floor covering
WO2011122855A2 (en) Board complex having a pla cover
US2729770A (en) Electrically conductive plastic panels
US2457299A (en) Surface covered structure and surface covering therefor
EP0151568A1 (en) Antistatic floormats
US4414260A (en) Static dissipative upholstery fabric or the like
US3040210A (en) Decorative surface covering and process therefor
JPS6227196B2 (en)
JPS61142248A (en) Conductive floor material
JPS606429B2 (en) Interior material
CN207156618U (en) The anti-skidding composite membrane of reclaiming type antistatic
CZ2002718A3 (en) Floor covering based on linoleum and process for producing thereof
JPS63112777A (en) Electrically conductive decorative sheet
JP3103306B2 (en) Decorative material and its manufacturing method
JPS6340054A (en) Tile type antistatic floor material
JPH0411082A (en) Cushiony floor material for heavy walking
JPH05309807A (en) Transfer box
KR101265058B1 (en) Ondol function realize heat film
JP3091748B2 (en) Elastomer floor lining and method for producing the same
JPS61196063A (en) Floor laying body and its construction method
JP2000211296A (en) Decorative material
JPS6315395B2 (en)
EP4294122A1 (en) Sustainable self-regulating heating laminate
JP3396532B2 (en) Conductive flooring