JPS62271347A - Manufacture of negative electrode plate of cadmium for alkaline storage battery - Google Patents

Manufacture of negative electrode plate of cadmium for alkaline storage battery

Info

Publication number
JPS62271347A
JPS62271347A JP61113176A JP11317686A JPS62271347A JP S62271347 A JPS62271347 A JP S62271347A JP 61113176 A JP61113176 A JP 61113176A JP 11317686 A JP11317686 A JP 11317686A JP S62271347 A JPS62271347 A JP S62271347A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode plate
cadmium
water
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61113176A
Other languages
Japanese (ja)
Other versions
JPH0658800B2 (en
Inventor
Masayuki Yoshimura
公志 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP61113176A priority Critical patent/JPH0658800B2/en
Publication of JPS62271347A publication Critical patent/JPS62271347A/en
Publication of JPH0658800B2 publication Critical patent/JPH0658800B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To enable the prevention of carbonatation of an electrolytic solution and the improvement of oxygen gas absorption performance, by providing a layer of a conductive powder on the surface of a paste-type negative electrode plate of cadmium, subjecting them to formation in the alkaline electrolytic solution, and thereafter washing them in water to remove the conductive powder from the surface of the negative electrode plate. CONSTITUTION:An active material paste which contains cadmium oxide or cadmium hydroxide is applied to a current collector or a core and dried so that a paste-type negative electrode plate of cadmium is obtained as a base. A paste which contains a water-soluble binder and a conductive powder is applied to the surface of the negative electrode plate and then dried. After the negative electrode plate is subjected to formation in an alkaline electrolytic solution, it is washed in water so that the conductive powder is removed from the surface of the negative electrode plate. If a layer which contains the conductive powder of metal nickel, carbon or the like is provided on the surface of the paste-type negative electrode plate of cadmium, the formation can be performed in a continuous manner. Since a charging reaction advances inward from the surface of the negative electrode plate at the time of the formation, the amount of metal cadmium on the surface portion thereof increases to improve oxygen gas absorption performance.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [産業上の利用分野1 本発明は酸素ガス吸収性能の良好なアルカリ蓄電池用ペ
ースト式カドミウム0様根の製造法に関するらのである
Detailed Description of the Invention 3. Detailed Description of the Invention [Industrial Application Field 1 The present invention relates to a method for producing a paste-type cadmium 0-like base for alkaline storage batteries that has good oxygen gas absorption performance.

[従来の技術とその問題点] アルカリ蓄電池、特にニッケルーカドミウム浩電池の負
極板としては、従来、焼結式のカドミウム負極板が用い
られてさたが、最近で1よ焼結式よりも高容量密度化が
可能−ひ、nつ低コストであるペースト弐〇極板が一部
で実用化されつつある。
[Prior art and its problems] Conventionally, a sintered cadmium negative electrode plate has been used as the negative electrode plate for alkaline storage batteries, especially nickel-cadmium oxide batteries, but recently, sintered cadmium negative electrode plates have been used. Paste two-electrode plates, which are capable of increasing capacity density and are considerably lower in cost, are being put into practical use in some areas.

しかし、焼結式と比べた場合、ペースト式負(転仮には
以下に述べるような主として2つの問題点があるために
、ペースト式極汲は適用範囲が限られていた。
However, when compared with the sintering method, the paste method has two main problems as described below, so the application range of the paste method is limited.

第1の問題点は、活物質粉末を集゛市体あるいは芯体に
固定づるのに用いられる結n剤が通常、有機系の熱可塑
性樹脂であるため、充放電が進むと、その分解によって
アルカリ性電解液の炭酸化がかなり起きることである。
The first problem is that the binder used to fix the active material powder to the aggregate or core is usually an organic thermoplastic resin, so as charging and discharging proceed, it decomposes. Significant carbonation of the alkaline electrolyte occurs.

これによって電池の端子電圧が低下することや、電解液
に対する負極活物質の溶W1度が増加してカドミウムの
結晶が成長し、内部短絡が起き易くなる。
As a result, the terminal voltage of the battery decreases, and the degree of dissolution of the negative electrode active material in the electrolyte increases, causing cadmium crystals to grow and internal short circuits to occur more easily.

第2の問題点は、ペースト式カドミウム負極板を充電し
た場合、充電生成物である金属カドミウムは集電体付近
から生成するため、金属カドミウムが9氏板表面の近傍
では少なくなり、酸素ガス吸収性能が低下することであ
る。負極板の酸素ガス吸収性能が低い場合、正極板から
発生する酸素ガスが弁を通じて電池外に出るほか、この
状態がさらに進行すると、負極板から水素ガスが発生ず
るようになり、最終的には電解液が減少して電池の寿命
が尽きることになる。
The second problem is that when a paste-type cadmium negative electrode plate is charged, metal cadmium, which is a charging product, is generated near the current collector, so metal cadmium becomes less near the surface of the nine-plate plate, and oxygen gas is absorbed. This results in a decrease in performance. If the oxygen gas absorption performance of the negative electrode plate is low, the oxygen gas generated from the positive electrode plate will exit the battery through the valve, and if this condition progresses further, hydrogen gas will begin to be generated from the negative electrode plate, and eventually The electrolyte will decrease and the life of the battery will end.

以上述べた2つの問題点を解決する一つの手段としては
、ペースト式カドミウム負(転板を完全化成した後水洗
することによって、負極板表面で金属カドミウムが生成
し易くづると共に、水溶性結着剤を除去することが考え
られる。これに適した方法としては現在、焼結式で行な
われているような連続式の化成槽で処理することである
が、主にその集電が難しいため困難である。例えば、i
VI板のガス吸収性能の点で有効であると考えられる負
極板表面から集電する方法は、0ル根の導電性が低いた
めに、化成装置の[1−ル形状の集゛市体と負極板との
間で火花が発生し危険である。一方、負極板の集電体か
ら集電する場合は、負極(反の蛇行等によって負極板の
集電体と化成¥irの集電体との接触が断たれることが
あるため、品質にバラツキが起こるなどの問題がある。
One way to solve the two problems mentioned above is to use a paste-type cadmium negative electrode (by completely chemically converting the contact plate and then washing it with water, metal cadmium is easily formed on the surface of the negative electrode plate, and water-soluble binder The most suitable method for this is to use a continuous chemical conversion tank like the one currently used in the sintering process, but this is difficult mainly because it is difficult to collect the current. For example, i
The method of collecting current from the surface of the negative electrode plate, which is considered to be effective in terms of the gas absorption performance of the VI plate, has low conductivity at the zero root, so it is difficult to Sparks may be generated between the negative electrode plate and this is dangerous. On the other hand, when collecting current from the current collector on the negative electrode plate, the contact between the current collector on the negative electrode plate and the current collector on the chemical IR may be broken due to the negative electrode (reverse meandering, etc.), so the quality may be affected. There are problems such as variations occurring.

このような状況の中で、ペースト式カドミウム負極板の
酸素ガス吸収性能を改良する方法として、以下のような
提案がなされている。
Under these circumstances, the following proposals have been made as a method for improving the oxygen gas absorption performance of paste-type cadmium negative electrode plates.

第1の方法は、金属カドミウムを含む活物質原料粉末を
用いてペースト式カドミウム負極板を作製し、その表面
に&WAニッケルやカーボンなどの導電性粉末を塗着し
、未化成で電池にする方法である。この方法によれば、
充電時のペースト式カドミ9611本仮においては、集
電体の部分と極板表面の両方から金属カドミウムが生成
するため、酸素ガス吸収性能が良好である。しかしその
反面、fII4板艮而に4電性粉末を塗tするために結
着剤が新たになり、l液の炭酸化についてはさらに悪化
する。また充tIi電反応に関与しない物質が増加Vる
ために、エネルX!−密度は低下する。
The first method is to create a paste-type cadmium negative electrode plate using active material raw material powder containing metallic cadmium, and apply conductive powder such as &WA nickel or carbon to the surface to make it into a battery without chemical formation. It is. According to this method,
In the paste-type cadmium 9611 during charging, metal cadmium is generated from both the current collector portion and the electrode plate surface, so the oxygen gas absorption performance is good. However, on the other hand, since the 4-electrode powder is applied to the fII4 plate, a new binder is used, which further worsens the carbonation of the liquid. In addition, since the amount of substances that do not participate in the charging reaction increases, energy X! - Density decreases.

第2の方法は、ペースト式カドミウム負極板をニッケル
塩溶液中で陰電解して負極板内部に金属ニッケルの7ト
リクスを形成することである。この方法の意図するとこ
ろは、f1極板内部に均一に金属ニッケルのマトリクス
を形成することによって、充電時に金属カドミウムを負
!4!板内部で均一に生成さけることにある。またこれ
によりf1J4i板表面でも金属カドミウムが生成する
ため、酸素ガス吸収性能が良好になるというものである
。しかし、負極板内部に金属ニッケルの7トリクスを均
一に生成させることは困難で、実際には口極板表面部に
集中的に金属ニラクルが生成し易く、Ω橿板表面部に露
出するカドミウム活物質が減少すろことやl蝙板表面部
の細孔が緻密41金属ニツ9ルで塞がれることなどによ
って、酸素ガス吸収性能の向、Lは幾分認めらrしるし
のの、放電特性など池の特性t、LかえつC低下すると
いう問題がある。
The second method is to electrolyze a pasted cadmium negative plate in a nickel salt solution to form a trix of metallic nickel inside the negative plate. The purpose of this method is to uniformly form a matrix of metallic nickel inside the f1 electrode plate, thereby eliminating metallic cadmium during charging. 4! The goal is to avoid uniform generation within the board. Furthermore, since metal cadmium is generated on the surface of the f1J4i plate, the oxygen gas absorption performance is improved. However, it is difficult to uniformly generate 7 trixes of metallic nickel inside the negative electrode plate, and in reality, metallic nickel tends to be generated concentratedly on the surface of the mouth electrode plate, and cadmium active material is exposed on the surface of the electrode plate. Due to the fact that the substance is reduced and the pores on the surface of the plate are blocked with dense metal nitride, the oxygen gas absorption performance, L is slightly reduced, and the discharge characteristics, etc. There is a problem that the pond characteristics t, L and C deteriorate.

以上述べtこように従来技術ぐは、電解液の炭酸化の防
止と酸素ガス吸収性能の向2]−について満)Pする結
果が10られなかった。
As stated above, the conventional techniques have not been able to provide satisfactory results regarding the prevention of carbonation of the electrolytic solution and the improvement of oxygen gas absorption performance.

本発明はこの上゛うな従来技術の問題点を解決づるもの
である。
The present invention solves these problems of the prior art.

E問題点を解決するための手段] 本発明は酸化カドミウムあるいは水酸1ヒカドミウムな
どの活物質粉末を含むペーストを集電体あるいは芯体に
1して得たペースト式カドミウム負極板をベースとし、
この負極板の表面に水溶性結着剤と金属ニッケルやカー
ボンなどの導電性粉末とを含むペーストを塗着した後乾
燥することによって、先ずペースト式カドミウム負極板
の表面に導電性粉末の層を設け、次いでこれをアルカリ
性電解液中で化成した蚤、水洗して負掻板表面の導電性
粉末を除去することを特徴とするものである。
Means for Solving Problem E] The present invention is based on a paste-type cadmium negative electrode plate obtained by forming a current collector or core with a paste containing active material powder such as cadmium oxide or monohycadmium hydroxide. ,
A layer of conductive powder is first applied to the surface of the paste-type cadmium negative electrode plate by applying a paste containing a water-soluble binder and conductive powder such as metal nickel or carbon to the surface of the negative electrode plate and then drying it. The method is characterized in that the conductive powder on the surface of the negative scraper plate is removed by applying the fleas, which are then chemically treated in an alkaline electrolytic solution, and then washed with water.

[作 用] 本発明に基づき、ペースト式カドミウム負極板の表面に
金1ニッケルやカーボンなどの導電性粉末を含有する層
を設けると、連続式の化成を行なうことが可能になる。
[Function] When a layer containing conductive powder such as gold-nickel or carbon is provided on the surface of a paste-type cadmium negative electrode plate based on the present invention, continuous chemical conversion can be performed.

つまり、先述したように負極板の表面に導電性粉末の層
を設()でいない従来品の場合は、連続式の化成を行な
うと、ロール形状の集電体とn極板との間で火花が発生
し、爆発の危険があったのに対し、本発明による場合は
負極板表面のS電性粉末の層が集電体となるために火花
が発生しない。また化成時、充電反応は負極板の表面か
ら内部に向かって進行するために、表面部の金属カドミ
ウム牟が多くなり、酸素ガス吸収性能が良好となる。ま
た負極板表面の機械的強度が向」口するために、活物質
の脱落が抑制される。
In other words, as mentioned earlier, in the case of conventional products that do not have a layer of conductive powder on the surface of the negative electrode plate, when continuous chemical formation is performed, the difference between the roll-shaped current collector and the n-electrode plate increases. Whereas sparks were generated and there was a danger of explosion, in the case of the present invention, the layer of S-conductive powder on the surface of the negative electrode plate serves as a current collector, so no sparks are generated. Furthermore, during formation, the charging reaction progresses from the surface of the negative electrode plate toward the inside, so that the amount of metal cadmium on the surface increases, resulting in good oxygen gas absorption performance. Furthermore, since the mechanical strength of the surface of the negative electrode plate is improved, falling off of the active material is suppressed.

なお、水溶性結着剤にはその種類によってアルカリ性電
解液に対する溶解度が非常に高い物質があり、この様な
水溶性結着剤を単独で用いて導電性粉末を負極板表面に
塗着した場合は、化成工程中に水溶性高分子がアルカリ
性電解液中に溶解して、表面の導電性粉末が脱落しやす
くなるために、そのような部分では集電がなされず、!
3 +4i根の品質が部分的にばらつくことがある。こ
れを防ぐには、導電性粉末を負極板表面に[Iるのに用
いる水溶性結着剤の総体積に対し、アルカリ性電解液に
不溶性を示す水溶性結着剤を20%以上含(iしていれ
ばよいことを確認している。
Depending on the type of water-soluble binder, there are substances that have very high solubility in alkaline electrolytes, and if such a water-soluble binder is used alone to apply conductive powder to the surface of the negative electrode plate, Because the water-soluble polymer dissolves in the alkaline electrolyte during the chemical formation process, and the conductive powder on the surface easily falls off, current collection is not possible in such areas!
3 +4i Root quality may vary locally. To prevent this, it is necessary to contain at least 20% of the water-soluble binder that is insoluble in the alkaline electrolyte, based on the total volume of the water-soluble binder used to attach the conductive powder to the surface of the negative electrode plate. I am confirming that it is good to do so.

またアルカリ性電解液に対して不溶性を示ず水溶性結着
剤としては、メチルセルロース、ヒドロキシプロピルメ
チルヒルロース、ポリビニルアルコール、ポリビニルピ
ロリドン、ポリエチレンオキサイドが適している。
Suitable water-soluble binders that are not insoluble in alkaline electrolytes include methylcellulose, hydroxypropylmethylhirulose, polyvinyl alcohol, polyvinylpyrrolidone, and polyethylene oxide.

次の水洗工程では、負極板表面の導電性粉末の層に含ま
れている水溶性結着剤が溶解するために、導電性粉末の
層は容易に除去することができる。
In the next water washing step, the water-soluble binder contained in the conductive powder layer on the surface of the negative electrode plate is dissolved, so that the conductive powder layer can be easily removed.

この時、元々負極板中に含まれている水溶性結着剤も同
時に除去されるために、この負極板を用いた電池ではア
ルカリ性電解液の炭酸化による問題が起きなくなる。ま
た除去した導電性粉末は再使用が可能であるため、経済
的である。
At this time, since the water-soluble binder originally contained in the negative electrode plate is also removed at the same time, problems caused by carbonation of the alkaline electrolyte do not occur in batteries using this negative electrode plate. Furthermore, the removed conductive powder can be reused, making it economical.

[実施例] 実験1 以下、本発明を実施例により3T述する。[Example] Experiment 1 The present invention will be described below with reference to Examples.

実茄例1 先ず、本発明の実III!例として、次のよ
うにして負極板を作製した。
Fruit Example 1 First, Fruit III of the present invention! As an example, a negative electrode plate was produced as follows.

酸化カドミウム粉末100重量部、メチルセルロース0
.6手早部、塩化ビニル−アクリル共m合物の短編l1
lO,8千吊部、水601M部を混練してベースト状と
し、このペーストを鉄にニッケルメッキした多孔板に!
!着した後、90℃にて1時間乾燥してベース負極板と
した。このベースf11極根の表面に金属ニッケル粉末
100重量部、メチルセルロース3重吊部、水200重
■部からなるペースト・を塗着し、90℃にて1時間乾
燥した圭、比重1.250〈20℃)KOH水溶液中で
ニッケル板を対極として化成を行なった。ざらに化成済
みの11極板を水洗し、表面の金属ニッケル粉末の層を
除去した後、空温で真空乾燥を行なって負極板どした。
100 parts by weight of cadmium oxide powder, 0 methylcellulose
.. 6 Quick part, short story of vinyl chloride-acrylic compound l1
Knead lO, 8,000 parts, and 601 M parts of water to make a base paste, and make this paste into a perforated plate made of nickel-plated iron!
! After drying at 90° C. for 1 hour, a base negative electrode plate was obtained. A paste consisting of 100 parts by weight of metallic nickel powder, triple suspensions of methylcellulose, and 200 parts by weight of water was applied to the surface of this base f11 pole root, and the paste was dried at 90°C for 1 hour.The specific gravity was 1.250. Chemical conversion was performed in a KOH aqueous solution (20°C) using a nickel plate as a counter electrode. The 11-electrode plate, which had been roughly chemically treated, was washed with water to remove the layer of metal nickel powder on the surface, and then vacuum-dried at air temperature to form a negative electrode plate.

これを負極板へとする。This is used as a negative electrode plate.

次に本発明に対する比較例として、次のようにして従来
の<1板を作製した。
Next, as a comparative example for the present invention, a conventional <1 plate was produced in the following manner.

実施例2 前記本発明実施例1と同じベース負極板を用
い、これを1モル/交のスルファミン醸ニッケルの水溶
液中でIff’i[E解して、 f2極板に金属ニッケ
ルを1析させ、ざらに比f! 1.250(20℃)K
 OH水溶液中で化成を行なった後、水洗、真空乾燥を
行なってnI(i板とした。これを負極$liBとする
Example 2 Using the same base negative electrode plate as in Example 1 of the present invention, it was dissolved in an aqueous solution of sulfamine-infused nickel at a concentration of 1 mol/h, and metallic nickel was precipitated onto the f2 electrode plate. , comparison f! 1.250 (20℃)K
After chemical conversion in an OH aqueous solution, washing with water and vacuum drying were performed to obtain an nI (i plate). This was used as a negative electrode $liB.

ざらに本発明の比較例として、次のようにして従来の負
極板を作製した。
As a comparative example of the present invention, a conventional negative electrode plate was produced in the following manner.

実施例3 前記本発明実施例1にa3りる活物質ペース
トの配合で、酸化カドミウム粉末100重1部の代りに
酸化カドミウム粉末801吊部、金属カドミウム粉末2
0重は部を用いてベース負極板を作製し、ざらに負極板
の表面に金属ニッケル粉末100重量部、メチルセルロ
ース3重Id部、水2001樋部からなるペーストを塗
υした後、乾燥して負極板とした。これを負極板Cとす
る。
Example 3 In the formulation of the a3 active material paste in Example 1 of the present invention, instead of 100 parts by weight of cadmium oxide powder, 801 parts of cadmium oxide powder and 2 parts of metal cadmium powder were added.
A base negative electrode plate was prepared using 0 weight parts, and a paste consisting of 100 weight parts of metal nickel powder, 3 weight parts of methyl cellulose, and 2001 parts of water was roughly coated on the surface of the negative electrode plate, and then dried. It was used as a negative electrode plate. This will be referred to as negative electrode plate C.

なお、各試料rJ4fi板は化成あるいは活物質ペース
ト中への金属カドミウムの添加によって充電状態にある
活物質の割合が同一になるように調整しである。
Note that each sample rJ4fi plate was adjusted to have the same proportion of active material in a charged state by chemical conversion or addition of metal cadmium to the active material paste.

各試着負極板の単位面積当りの理論容量は以下の通りで
ある。
The theoretical capacity per unit area of each try-on negative electrode plate is as follows.

この試料負極板を4 x 4 cg+の寸法に切断し、
比重1,250 (20℃)KOH水溶液中で試料負極
板と同寸法の焼結式ニラクル正極板2枚を対極として用
い、各率M1特性を測定した結果を第1図に示す。なお
、放電々流はlIr1vlJ質の理論容量を基準とした
。この図から明らかなように、放電々流/バ大きい程、
本発明品の負極板Δが良好である。つまり、放電レート
依存性が良好であることがわかる。
This sample negative electrode plate was cut into a size of 4 x 4 cg+,
FIG. 1 shows the results of measuring each rate M1 characteristic in a KOH aqueous solution with a specific gravity of 1,250 (20° C.) using two sintered Niracle positive electrode plates having the same dimensions as the sample negative electrode plate as counter electrodes. Note that the discharge current was based on the theoretical capacity of lIr1vlJ quality. As is clear from this figure, the larger the discharge current/ba, the
The negative electrode plate Δ of the product of the present invention is good. In other words, it can be seen that the discharge rate dependence is good.

この理由としては、c1極板B及びCでは酸素ガス吸収
性能を改良するために、活物質の表ωiが導電性粉末や
結着剤あるいは!!蒼ニッケルで覆われているために、
電解液の浸透が阻害されるなどに、上って放電反応にお
ける抵抗が増大していると考えられるのに対し、t″4
極板Aでは充放電反応をA1害する要因がないことによ
るものと考えられる。
The reason for this is that in the c1 electrode plates B and C, in order to improve the oxygen gas absorption performance, the surface ωi of the active material is a conductive powder, a binder, or! ! Because it is covered with blue nickel,
It is thought that the resistance in the discharge reaction increases due to the inhibition of electrolyte penetration, etc., whereas at t″4
This is thought to be due to the fact that in electrode plate A, there are no factors that impair A1's charge/discharge reaction.

次に試料負極板と通常の方法で作製した焼結式ニッケル
正極板を組み合わセ゛(公称’affi 1.7Ahの
円筒密m型ニッケルーカドミウム蓄電池を作製し、負極
板のl!1県ガス吸収性能と蓄電池のサイクルズを命を
測定した。その結果を第2図J3よび第3図に示す。な
お、図中の符号A、B、Cはそれぞれ負極板△、負極板
B、f′4極板Cに対応するものである。
Next, a cylindrical dense m-type nickel-cadmium storage battery with nominally 1.7Ah was fabricated by combining the sample negative electrode plate with a sintered nickel positive electrode plate prepared in a conventional manner. The performance and cycles of the storage battery were measured. The results are shown in Figure 2 J3 and Figure 3. In addition, the symbols A, B, and C in the figures represent negative electrode plate △, negative electrode plate B, and f'4, respectively. This corresponds to the electrode plate C.

第2図は1時間率で充電した時の電池内圧の変化を示し
たものであり、本発明品の負極板Aと表面にニッケル粉
末を塗着した負極板Cを用いた電池は内圧上背が小さく
、酸素ガス吸収性能が良好であることがわかる。この原
因は負極板表面部における金属カドミウム生成量が多い
ことによるものと考えられる。一方、負極板Bを用いた
電池の酸素ガス吸収性能が劣るのは、口極板中に均一に
金属カドミウムが生成するため、相対的に表面部の金属
カドミウム聞が少なくへっているためと考えられる。
Figure 2 shows the change in the internal pressure of the battery when it is charged at a 1-hour rate. is small, indicating that the oxygen gas absorption performance is good. This is thought to be due to the large amount of metal cadmium produced on the surface of the negative electrode plate. On the other hand, the reason why the oxygen gas absorption performance of the battery using negative electrode plate B is inferior is because metal cadmium is generated uniformly in the mouth electrode plate, so there is relatively less metal cadmium on the surface and it is depressed. Conceivable.

第3図はサイクル寿命を測定した図であるが、本発明品
の負極板Aを用いた電池は1000サイクルでら容量を
維持しているが、負極板B及びCを用いた電池は呂々杓
630サイクルと約400サイクルで内部短絡によって
ズを命が尽きている。h命の尽きた原因としては、負極
板Bを用いた電池では主に電流分イ1jの不均一、Ω極
板Cを用いIこ電池では主に炭酸根によってカドミウム
のデンドライトが成長したことが考えられる。
Figure 3 shows the cycle life measured. The battery using the negative electrode plate A of the present invention maintains its capacity after 1000 cycles, but the batteries using the negative electrode plates B and C have a good capacity. After 630 cycles and about 400 cycles, the battery ran out of life due to an internal short circuit. The reason for the end of life was mainly due to non-uniformity of the current in the battery using negative electrode plate B, and the growth of cadmium dendrites mainly due to carbonate roots in the battery using Ω electrode plate C. Conceivable.

以上のことから、本発明の!J造法にれば、充電時の酸
素ガス吸収性能とサイクル0請の良好なペースト式負極
板が得られることが明らかひある。
From the above, the present invention! It is clear that the J manufacturing method provides a paste-type negative electrode plate with good oxygen gas absorption performance during charging and zero cycle time.

なお、前記した本発明実施例においては、導電性粉末と
してニッケル粉末を用いたが、これ以外にも結晶性炭素
粉末などのアルカリ性電解液に対して安定な物質であれ
ばかまわないが、回収ザろことを考えた場合は水との比
重において差が大きく、水と分離し易いニッケル粉末が
適している。
In the above-mentioned embodiments of the present invention, nickel powder was used as the conductive powder, but other materials may be used as long as they are stable against alkaline electrolytes, such as crystalline carbon powder. When considering filtration, nickel powder is suitable because it has a large difference in specific gravity from water and is easily separated from water.

実験2 実験1の本発明実111tVA1ではベース負極板の表
面にa属ニッケル粉末を塗着するのにメチルセルロース
を用いたが、ここでは他の水溶性結着剤を用いた場合に
ついて検討した。
Experiment 2 In Experiment 1, 111tVA1 of the present invention, methyl cellulose was used to apply the Group A nickel powder to the surface of the base negative electrode plate, but here, the case where another water-soluble binder was used was investigated.

試料負極板の作製は実験1の本発明実施l+11と同じ
方法によって行ない、さらに実験1と同様の方法で公称
8量1.7△hの回し1密閉型ニッ9ルーカドミウム蓄
電池を作製し、負極板の酸素ガス吸収性能を測定した。
The sample negative electrode plate was prepared by the same method as in Experiment 1, the present invention implementation 1+11.Furthermore, a closed type Ni9Luc cadmium storage battery with a nominal capacity of 8 and 1.7Δh was prepared in the same manner as in Experiment 1, and the negative electrode plate was prepared using the same method as in Experiment 1. The oxygen gas absorption performance of the plate was measured.

その結果を表1に承り。なお、表中の数1i111よ2
時間率で充電した場合の内圧」〕界(K9/a11)で
ある。
The results are shown in Table 1. In addition, the number 1i111yo2 in the table
The internal pressure when charging at a time rate is the field (K9/a11).

表1の結果から、ベース負極板の表面に金属ニッケル粉
末を塗着するのに用いる水溶性結着剤としては、メブー
ルセルロースの他、じドロキシプロピルメチルセルロー
ス、ポリビニルアルコール、ポリビニルピロリドン、ポ
リエチレンオキサイドが適している。これらの結着剤は
全てアルカリ性電解液に対して不溶性を示すのに対し、
負極板のガス吸収性能が低いため内圧上昇が大きかった
カルボキシメチルセルロース、アクリル酸ナトリウム、
アクリルアミドはアルカリ性電解液に対して可溶性であ
る。これらのガス吸収性能が低い主な理由は、負極板の
化成工程で結着剤が幾分、アルカリ性電解液に溶解した
ために、金属ニッケル粉末が負極板表面から脱落し、導
電性が低下したために、負極板表面部の活物質が効率良
く充1されなかったためであると考えられる。
From the results in Table 1, water-soluble binders used to apply metallic nickel powder to the surface of the base negative electrode plate include meboul cellulose, didroxypropyl methylcellulose, polyvinyl alcohol, polyvinylpyrrolidone, and polyethylene oxide. is suitable. While all of these binders are insoluble in alkaline electrolytes,
Carboxymethyl cellulose, sodium acrylate, which had a large increase in internal pressure due to the low gas absorption performance of the negative electrode plate,
Acrylamide is soluble in alkaline electrolytes. The main reason for the low gas absorption performance is that some of the binder was dissolved in the alkaline electrolyte during the negative electrode plate chemical formation process, causing the metal nickel powder to fall off the negative electrode plate surface and reduce the conductivity. This is thought to be because the active material on the surface of the negative electrode plate was not filled efficiently.

つまり、ベース負極板の表面に導電性粉末を塗着するの
に用いる水溶性結着剤はアルカリ性電解液に対し不溶性
を示す物質が適していることがわかる。しかし、これは
水溶性結着剤が1種類の物質である場合のvJ果で、混
合系では異なったしのとなる。
In other words, it can be seen that the water-soluble binder used to apply the conductive powder to the surface of the base negative electrode plate is preferably a substance that is insoluble in the alkaline electrolyte. However, this is a VJ effect when the water-soluble binder is one type of substance, and a mixed system results in a different result.

混合系の場合は、カルボキシメチルセルロースやアクリ
ル酸ナトリウムなどのアルカリ性電解液に対し可溶性を
示す水溶性結着剤が全く使用できないわけではなく、水
溶性結着剤の総体積のうち、20%以上がアルカリ性電
解液に対し不溶性を承り水溶性結着剤であれば、残りの
80%未満がアルカリ性1u解液に対し可溶性を示す水
溶性結着剤であっても、良好なガス吸収性能を有する負
極板を得ることができることを確認している。
In the case of a mixed system, water-soluble binders that are soluble in alkaline electrolytes such as carboxymethyl cellulose and sodium acrylate cannot be used at all, and more than 20% of the total volume of water-soluble binders is If the binder is water-soluble and insoluble in alkaline electrolyte, even if less than 80% of the remaining water-soluble binder is soluble in alkaline 1U solution, the negative electrode has good gas absorption performance. I'm sure you can get the board.

[発明の効果] 以上述べたように本発明によれば、酸素ガス吸収性能の
良好なカドミウム負極板を1りることができる。またこ
の負極板中に残留する水溶性結着剤はごく僅かの量であ
るため、電解液の炭酸化による悪影響は認められない。
[Effects of the Invention] As described above, according to the present invention, one cadmium negative electrode plate having good oxygen gas absorption performance can be used. Furthermore, since the amount of water-soluble binder remaining in this negative electrode plate is extremely small, no adverse effects due to carbonation of the electrolyte are observed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図本発明製造法及び従来のtJi法で得られたペー
スト式カドミウム負極板の放電々流依存性を示す図、第
2図は本発明製造法及び従来の製造法で得られたペース
ト式カドミウム負極板を用いた電池の充電時内圧を示す
図、第3図は本発明製造法及び従来の製造法で得られた
ペースト式カドミウムロ掩板を用いた電池の寿命特性を
示す図である。 聾 1 図 J、 2        il、 5        
   / 5           rΔ朕艷 々 虚
 /cA
Figure 1 shows the discharge current dependence of paste type cadmium negative electrode plates obtained by the manufacturing method of the present invention and the conventional tJi method. Figure 2 shows the paste type cadmium negative electrode plates obtained by the manufacturing method of the present invention and the conventional manufacturing method. FIG. 3 is a diagram showing the internal pressure during charging of a battery using a cadmium negative electrode plate. FIG. . Deaf 1 Figure J, 2 il, 5
/ 5 rΔ朕艷 り 空 /cA

Claims (4)

【特許請求の範囲】[Claims] (1)酸化カドミウムあるいは水酸化カドミウムを含有
する活物質ペーストを集電体あるいは芯体に塗着、乾燥
して得たペースト式カドミウム負極板をベースとし、こ
のペースト式カドミウム負極板の表面に水溶性結着剤と
導電性粉末とを含有するペーストを塗着した後乾燥する
工程と、さらにこの負極板をアルカリ性電解液中で化成
した後、水洗してこの負極板表面の導電性粉末を除去す
る工程を有することを特徴とするアルカリ蓄電池用カド
ミウム負極板の製造法。
(1) Based on a paste-type cadmium negative electrode plate obtained by applying an active material paste containing cadmium oxide or cadmium hydroxide to a current collector or core and drying it, the surface of this paste-type cadmium negative electrode plate is water-soluble. A process of applying and drying a paste containing a conductive binder and conductive powder, and further chemically converting this negative electrode plate in an alkaline electrolyte solution, and then washing with water to remove the conductive powder on the surface of this negative electrode plate. A method for producing a cadmium negative electrode plate for an alkaline storage battery, comprising the step of:
(2)前記水溶性結着剤がアルカリ性電解液に対して不
溶性を示す物質を含有していることを特徴とする特許請
求の範囲第(1)項記載のアルカリ蓄電池用カドミウム
負極板の製造法。
(2) A method for manufacturing a cadmium negative electrode plate for an alkaline storage battery according to claim (1), wherein the water-soluble binder contains a substance that is insoluble in an alkaline electrolyte. .
(3)前記アルカリ性電解液に対して不溶性の水溶性結
着剤が、メチルセルロース、ヒドロキシプロピルメチル
セルロース、ポリビニルピロリドン、ポリビニルアルコ
ール、ポリエチレンオキサイドからなる群より選ばれた
ものである特許請求の範囲第(2)項記載のアルカリ蓄
電池用カドミウム負極板の製造法。
(3) The water-soluble binder insoluble in the alkaline electrolyte is selected from the group consisting of methylcellulose, hydroxypropylmethylcellulose, polyvinylpyrrolidone, polyvinyl alcohol, and polyethylene oxide. ) The method for producing a cadmium negative electrode plate for alkaline storage batteries as described in item 1.
(4)前記水溶性結着剤がアルカリ性電解液に対して不
溶性のものと可溶性のものよりなり、且つ結着剤の総体
積に対して不溶性のものが占める割合が20%以上であ
ることを特徴とする特許請求の範囲第(1)項記載のア
ルカリ蓄電池用カドミウム負極板の製造法。
(4) The water-soluble binder is composed of insoluble and soluble binders in the alkaline electrolyte, and the ratio of insoluble binders to the total volume of the binder is 20% or more. A method for producing a cadmium negative electrode plate for an alkaline storage battery according to claim (1).
JP61113176A 1986-05-16 1986-05-16 Manufacturing method of cadmium negative electrode plate for alkaline storage battery Expired - Lifetime JPH0658800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61113176A JPH0658800B2 (en) 1986-05-16 1986-05-16 Manufacturing method of cadmium negative electrode plate for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61113176A JPH0658800B2 (en) 1986-05-16 1986-05-16 Manufacturing method of cadmium negative electrode plate for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS62271347A true JPS62271347A (en) 1987-11-25
JPH0658800B2 JPH0658800B2 (en) 1994-08-03

Family

ID=14605478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61113176A Expired - Lifetime JPH0658800B2 (en) 1986-05-16 1986-05-16 Manufacturing method of cadmium negative electrode plate for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH0658800B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5386442A (en) * 1977-01-10 1978-07-29 Matsushita Electric Ind Co Ltd Negative electrode for alkaline storage battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5386442A (en) * 1977-01-10 1978-07-29 Matsushita Electric Ind Co Ltd Negative electrode for alkaline storage battery

Also Published As

Publication number Publication date
JPH0658800B2 (en) 1994-08-03

Similar Documents

Publication Publication Date Title
CN112349972A (en) Alkaline secondary electrochemical generator with zinc anode
JPH10255790A (en) Positive active material of nickel electrode for alkaline storage battery
JPH0578141B2 (en)
JPS62271347A (en) Manufacture of negative electrode plate of cadmium for alkaline storage battery
JP3253476B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPS5983347A (en) Sealed nickel-cadmium storage battery
JP2926732B2 (en) Alkaline secondary battery
JP3263603B2 (en) Alkaline storage battery
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JP4501246B2 (en) Control valve type stationary lead acid battery manufacturing method
JPS5819866A (en) Manufacture of cadmium electrode for secondary battery
JP3182228B2 (en) Method for producing non-sintered positive electrode plate for alkaline storage battery
JPH05225971A (en) Manufacture of nickel electrode
JPH103940A (en) Nickel-metal hydride storage battery and its manufacture
JP3490858B2 (en) Non-sintered cadmium negative electrode for alkaline storage batteries
JPH1064531A (en) Cadmium negative electrode for alkaline storage battery and manufacture thereof
JPS60211766A (en) Paste type negative electrode plate for alkaline storage battery
JP2591982B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPH041992B2 (en)
JPH10172559A (en) Nickel active material for alkaline storage battery and manufacture thereof
JP2000133258A (en) Positive plate for alkaline storage battery and its manufacture
JPS61124068A (en) Nickel cadmium alkaline battery
JPS5832363A (en) Manufacture of negative cadmium electrode for alkaline storage battery
JPH0422065A (en) Manufacture of cadmium negative electrode for alkaline storage battery
JPH10188971A (en) Unsintered nickel electrode for alkaline storage battery