JPS6227091B2 - - Google Patents

Info

Publication number
JPS6227091B2
JPS6227091B2 JP54146054A JP14605479A JPS6227091B2 JP S6227091 B2 JPS6227091 B2 JP S6227091B2 JP 54146054 A JP54146054 A JP 54146054A JP 14605479 A JP14605479 A JP 14605479A JP S6227091 B2 JPS6227091 B2 JP S6227091B2
Authority
JP
Japan
Prior art keywords
weight
polymerization
propylene
copolymer
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54146054A
Other languages
Japanese (ja)
Other versions
JPS5670014A (en
Inventor
Makoto Aida
Masahisa Handa
Takashi Kanbayashi
Shigeru Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP14605479A priority Critical patent/JPS5670014A/en
Publication of JPS5670014A publication Critical patent/JPS5670014A/en
Publication of JPS6227091B2 publication Critical patent/JPS6227091B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は熱成形性及び耐衝撃性に優れたシート
成形用プロピレン共重合体に関するものである。
従来より豆腐、佃煮、アイスクリーム、マーガリ
ン等用のカツプ類や食肉、漬物等用のトレー類を
含めた食品容器用の熱成形用シートとしては、塩
化ビニル樹脂、高衝撃性ポリスチレン、ポリプロ
レン等の樹脂が広範囲にかつ多量使用されてい
る。 ポリプロピレンは塩化ビニル樹脂、高衝撃性ポ
リスチレンと比べて特に耐熱性に優れており、食
品を充填した食品容器ごとレトルト殺菌する場合
は好適である。またポリプロピレンは耐油性にも
優れ、焼却しても有害なガスを発生しないことも
好ましい。 しかしながらポリプロピレンのシートは熱成形
時のシートの垂れが大きいためシートの幅が700
mm程度までは連続的な熱成形が可能であるが、塩
化ビニル樹脂、高衝撃性ポリスチレンのように
1200mm幅のシートで連続的に熱成形すると垂れが
大きいために中央部が加熱過剰となつて、これが
原因で成形品である容器にブリツジと称する重な
りジワや肉厚のムラを生じて、商品としての価値
を失つてしまう。そのためこのような広幅での成
形ではシートと加熱するヒーターとの距離を著し
く大きくしてゆつくり加熱する必要があるが、こ
の場合加熱時間が長くなるので、塩化ビニル樹
脂、高衝撃性ポリスチレンと比べて2〜3倍の成
形コストとなる欠点がある。 本発明の目的は熱成形時のシートの垂れが少く
従つて熱成形のコストも安価であり、かつ薄肉の
容器としても耐衝撃性のあるシート成形用ポリプ
ロピレンを提供することである。 本発明者等はこれらの課題を達成するために、
ポリプロピレンの分子量が従来のものよりかなり
大きく、ブロツク共重合体の各部(各ブロツク)
の組成が特定のエチレン含有率を有し、各部の分
子鎖の大きさ(後述の極限粘度数〔η〕により表
わす。)が特定の関係にあるエチレン−プロピレ
ンブロツクコポリマーを用いることにより本発明
を完成した。 本発明に用いられるこの特殊なポリプロピレン
は例えば次の様な方法で作られる。即ちチーグ
ー・ナツタ型の活性化チタン触媒を用いて、第1
段階の重合においてプロピレン100重量%の原料
ガス、あるいはエチレン含有率が共重合体中で20
重量%未満になる様に調整したプロピレン−エチ
レン混合ガスを、全オレフイン重合量の50〜95重
量%の範囲で共重合させる。この重合により生長
した重合体分子の部分をA部と称する。なお試料
採取を行い、このA部が生成した段階で触媒を破
壊して重合を止めて得られるポリオレフインの極
限粘度数〔η〕(dl/g)を〔η〕Aとする。〔η〕A
をA部生成〔η〕Aと云うことにする。なお〔η〕
はテトラリン溶液の粘度(135℃、50mg/50c.c.)
より測定した。 ひき続き第2段階の重合で上記共重合体分子を
生長させるのであるが、第2段ではエチレン含有
率が20重量%以上含まれる様に、プロピレン−エ
チレン混合ガスを全オレフイン重合量の50〜5重
量%の範囲で共重合させる。この段階で生長した
共重合体の部分をB部と称する。両工程を経て得
た典型的な共重合体分子は、A部とB部が接合し
た所謂ブロツク共重合体の構造を有している。こ
の時、第1段階で生成したA部と第2段階で生成
したB部とからなる共重合体の全体としての平均
(測定値)の〔η〕を〔η〕ABとすれば、B部に生
成した共重合体の部分の〔η〕B(B部生成〔η〕B
と云う)と測定値〔η〕Aとの間に次式の関係があ
る。 〔η〕AB=〔η〕A×a+〔η〕B×b 但し、a、bはそれぞれA部、B部で重合した
混合ガスの重量%である。 この場合、第1段重及び第2段重合においてプ
ロピレンエチレンの混合比及び〔η〕を漸増また
は漸減してもよく、あるいは断続的に変化させて
重合させてもよい。〔η〕を変化させるには、分
子量調節剤を加減すればよい。また本発明におけ
るポリプロピレンの製造法として第1重合のA部
及び第2段重合のB部を更に各々2段階以上に、
例えばA部はA−1、A−2……、B部はB−
1、B−2……と分けて重合しても、A部、B部
が本発明の特定組成及び特定生成〔η〕を平均と
して有すれば良い。 次いで本発明の共重合体の各構成要件を説明す
る。まず本発明で云うメルトインデツクス(以下
M.1.と略記)とはASTMD1238−62Tに記載する
方法によるものであり、230℃の温度、2160gの
荷重により測定したものを示す。本発明に用いら
れる共重合体のメルトインデツクスは0.01〜0.8
g/10分であることが必要であり、特に0.05〜
0.5g/10分が好ましい。メルトインデツクスが
0.8g/10分を越えると熱成形時のシートの垂れ
が多くなる。またメルトインデツクスが0.01g/
10分未満のポリプロピレンは通常の方法で製造す
ることは極めて困難であり、また仮りに製造出来
ても実際のシートを成形する際の成形温度を異常
な高温にすることが、また成形機内の溶融した樹
脂の圧力が異常に高くなるとかで成形機の装置が
重装備となり実用的でない。メルトインデツクス
はポリマーの分子量が大きい程小さくなる。また
ポリマーの分子量が大きい程ポリマーの〔η〕は
大きくなる。即ちメルトインデツクスは分子量及
び〔η〕と逆の相関関係を有する。また本発明に
云うメルトインデツクスはポリプロピレンのパウ
ダーまたはペレツトの形で測定出来るが、通常は
ポリプロピレンのパウダーに一定の酸化防止剤、
塩酸捕促剤を一定量添加して押出機にてペレツト
にして、測定する。本発明でもこのようにして実
施した。 本発明のブロツク共重合体のA部はプロピレン
のホモポリマーあるいはエチレン含有率20重量%
未満のコポリマーからなるが、エチレン含有率は
特に好ましくは3〜8重量%である。エチレン含
有率が20重量%を越えるとA部の重合時にスラリ
ーの性状が悪化してスラリー移送の際に配管を閉
塞する等のトラブルを発生する。実際にA部の平
均組成としてエチレン含有率3〜8重量%となる
ように重合させる場合にも、スラリー性状の向上
のために予めプロピレンを全オレフイン重合量の
5〜20重量%程重合させ高結晶性ホモポリマーを
作り、次いでプロピレン−エチレン混合ガスによ
る共重合部を作る方法も行われている。本発明は
この様な場合も含まれる。この時予めプロピレン
だけで重合した部分の割合を少くすればA部全体
の〔η〕Aに大きな変動を起さない。 本発明のブロツク共重合体のB部のエチレン含
有率は20重量%以上であることが必要である。エ
チレン含有率が20重量%を下廻ると衝撃強さが極
度に低下して実用的なシートを得られない。この
B部は共重合体全体に対して50〜5重量%の範囲
であることが必要である。5重量%を下廻ると衝
撃強度が低下するだけでなく、全共重合体中の高
分子量ポリオレフイン部分の割合が少くなり、熱
成形時のシートの垂れがやや多くなる。50重量%
を越えると非常に軟くなつてシート成形時に粘着
性を生じ良好なシートの成形が難しい。またシー
トから熱成形により得た容器の剛性が低下して実
用的でない。 本発明における〔η〕Aと〔η〕Bの関係は、
〔η〕B−〔η〕A≧0.5にあることが必要である。好
ましくは〔η〕B−〔η〕A=0.8〜15である。 〔η〕B−〔η〕Aが0.5を下廻るとシートの衝撃強
さを低下させ、また熱成形時の垂れが大きくなる
傾向があり実用的でない。 本発明において〔η〕Bを〔η〕Aより0.5dl/g
以上大きくさせるためにはB部の重合において分
子量調節剤として用いる水素の量を非常に少なく
するかあるいは全く用いずに重合すれば良い。 本発明の共重合体を使用するシートの成形法と
しては、通常Tダイ法と云われている公知の方法
が可能である。その際に通常の場合と同様に、必
要に応じて酸化防止剤、滑剤、顔料および他の添
加物など通常のポリプロピレンに使用される各添
加剤を加えても何ら差支えない。 本発明の共重合体から製造したシートは前述の
Tダイ法により得られる一般のシート(後述のも
のと特に比較してソリツドシートまたは単層シー
トと云う場合もある。)他に一軸延伸シートや融
点以下で熱成形する固相成形法の場合も優れた品
質のものが得られる。また公知の発泡剤を添加し
て得られる発泡シート(これに対して前述の無発
泡シートをソリツドシートと云う。)の場合にも
その耐衝撃性、熱安定性は良好である。また他の
樹脂(例えばナイロン、ポリ塩化ビニリデン)の
フイルムまたはシートを公知の方法で貼り合せた
シートや他に樹脂との共押出で得たシート(これ
を複層シートと云う)の場合にも効果がある。 次に実施例により本発明を更に具体的に説明す
る。 実施例 1 (1) プロピレン共重合体の製造 内容積20のSUS−27オートクレブ中に窒素
雰囲気下でヘブタン10を装入し、触媒として
活性化三塩化チタン5g及びジエチルアルミニ
ウムクロライド8gを装入した。 55℃に昇温した時のオートクレーブ内圧がゲ
ージ圧で4Kg/cm2(以下記号をKg/cm2Gと略記
する)しかも気相水素濃度が0.3容量%となる
ようにエチレン含有率3.7重量%のプロピレン
−エチレン混合ガスと水素を装入した。 オートクレーブ内容物を55℃まで昇温し、55
℃にて内圧を4Kg/cm2G、水素濃度を0.3容量
%に保つように上記のプロピレン−エチレン混
合ガス及び水素を連続的に装入して2.4時間重
合を継続した(第1段重合)。 次いで触媒が活性に保たれたままの状態で未
反応モノマーを完全にパージした後、気相水素
濃度が1容量%となる様に水素とエチレン含有
率43.5重量%のプロピレン−エチレン混合ガス
を0.5Kg/cm2Gまで一括装入し、重合温度55℃
に維持すると再び重合が始まつた。そこで内圧
0.5Kg/cm2G、気相水素濃度1容量%を保つ様
にエチレン含有率89.7重量%のプロピレン−エ
チレン混合ガス及び水素を連続的に装入し、
1.6時間重合を継続した(第2段重合)。 重合終了時メタノール2を装入して重合を
停止させ通常の方法により精製乾燥して3.9Kg
のパウダー状重合体を得た。 第1段重合及び第2段重合における重合の割
合は81.6:18.4であつた。また試料として第1
段重合終了時点の重合スラリーをオートクレー
プの底部の側管より極く少量取り出して大過剰
のメタノールを装入して過、乾燥してパウダ
ー状重合体(すなわちA部のみからなる重合
体)を得た。 この第1段重合終了時の試料の〔η〕Aと第2
段重合終了時のパウダーの〔η〕ABを測定する
とそれぞれ4.41dl/g、5.77dl/gであつた。
これよりB部の生成〔η〕Bは 〔η〕B=5.77−4.41×0.816/0.18
4=11.79(dl/g) と計算出来る。また〔η〕B−〔η〕A=11.79−
4.41=7.38となる。また各段階のモノマー分圧
の測定値から物質収支を求めて得たA部、B部
の各々のエチレン含有率はそれぞれ4.8重量%
89.7重量%であつた。 このパウダー状重合体に2.6−ジ−t−ブチ
ル−p−クレゾール0.5重量%、テトラキス
〔メチレン3−(3′・5′−ジ−t−ブチル−4′−
ヒドロキシフエニル)プロピオネート〕メタン
(チバガイキー社製イルガノツクス1010)0.05
重量%、ステアリン酸カルシウム0.15重量%を
均一に混合し250℃にてベレツト化した。この
ベレツトのM.I.は0.13g/10分であつた。これ
らの結果を表−1にまとめた。 (2) シートの成形と熱成形性耐衝撃性の評価上記
で得たプロピレン共重合体のペレツトをTダイ
法の押出式シート成形機(L/D=28、280゜
設定)に投入して厚み0.5mmのシートを製造し
た。 このシートを真空成形機(浅野研究所製コス
ミツクFL−213−1型式)により熱成形して内
容積が500c.c.肉厚0.2mmの蓋付箱形の真空成形容
器を得た。この時シートの垂れは小さく熱成形
性は良好であり、この容器の各部の内厚は均一
であり、ブリツジと呼ぶ重なりジワもなく外観
は極めて良好であつた。 簡易的にシートの垂れを測定するために得ら
れたシートを400×400mmの枠にはさみ、210℃
の恒温室に入れて20秒後のシートの垂れ下がり
の長さを測定した。また上記の箱形容器に水を
充填して、蓋をヒートシール機にて本体とヒー
トシールから落下衝撃テストを行つた。これら
の結果を表−3に示す。 実施例 2 プロピレン共重合体の製造方法についてはA
部、B部のそれぞれの気相水素濃度、プロピレン
−エチレン混合ガスのエチレン含有率(A部はプ
ロピレンのホモポリマーとなつている)及びA、
B部の重合比率を変えた以外は実施例1と全く同
様にして行い、表−1の結果を得た。または極薄
強化フイルムの成形についても実施例1と全く同
様に行い、得られたフイルムの性能を評価して表
−3の結果を得た。 比較例 1〜5 プロピレン共重合体の製造方法についてはA
部、B部のそれぞれの気相水素濃度、プロピレン
−エチレン混合ガスのエチレン含有率、及びA、
B部の重合比率を変えた以外は実施例1と全く同
様にして行い、表−1の結果を得た。またシート
の成形についても実施例1と全く同様に行い、得
られたシートの性能を評価して表−3の結果を得
た。 実施例 3 (1) プロピレン共重合体の製造 内容積20のSUS−27オートクレブ中に窒素
雰囲気下でヘプタン10を装入し、触媒として
活性化三塩化チタン5g及びジエチルアルミニ
ウムクロライド8gを装入した。オートクレー
ブ内の窒素をプロピレンで置換し、50℃に昇温
した時のオートクレーブ内圧力が1Kg/cm2
G、しかも気相水素濃度が0.15容量%となるよ
うにプロピレンと水素を装入した。 A部はA−1とA−2の2段階に分けて重合
した。 A−1はオートクレーブ内容物を50℃まで昇
温し、50℃にて内圧1Kg/cm2・Gに保つように
プロピレンを吹込みながら40分間重合を継続
し、次いで内温を55℃まで昇温した。 A−2は55℃昇温と同時にエチレン含有率
2.3重量%のプロピレン−エチレン混合ガスを
連続的に装入し、内圧を4Kg/cm3・G、気相水
素濃度を0.37容量%に保つて2.3時間重合を継
続した。 B部はB−1とB−2の2段階に分けて重合
した。 B−1は、A部重合終了後、残留モノマーを
速やかに常圧までパージし、次いで真空ポンプ
で40mmHgまで更にモノマーを吸引除去した。
次に気相水素濃度が3容量%になるように水素
とエチレンを0.5Kg/cm2・Gまで一括装入し、
重合温度55℃でエチレン含有率77.2重量%のプ
ロピレン−エチレン混合ガスを連続的装入し、
オートクレーブ内圧を0.5Kg/cm2・Gに保つて
30分間重合を継続した。 B−2は未反応モノマーを真空ポンプにより
完全に除去した後、気相水素濃度が19容量%と
なる様に水素とエチレン含有率80.0重量%のプ
ロピレン−エチレン混合ガスを0.5Kg/cm2・G
まで一括装入し、重合温度55℃、内圧0.5Kg/
cm2・G、気相水素濃度19容量%を保つようにエ
チレン含有率97.8重量%のプロピレン−エチレ
ン混合ガスおよび水素を連続的に装入し、1時
間重合を継続した。 重合終了後メタノール2を装入して重合を
停止させ、通常の方法により精製乾燥して3.9
Kgのパウダー状重合体を得た。 A−1、A−2、B−1、B−2における重
合の割合は(6.0:77.7:7.0:9.3)であつた。
また試料としてA−1、A−2、B−1、B−
2終了時の重合スラリーを極少量取に出し、大
過剰のメタノールを装入して過、乾燥してパ
ウダー状重合体を得た。このA−1、A−2、
B−1、B−2終了時のパウダーの〔η〕を測
定したところ、それぞれ3.81dl/g、3.97dl/
g、4.14dl/g、4.22dl/gであつた。これよ
りA−2部の生成〔η〕(〔η〕A-2)は 〔η〕A-2=3.97×(6.0+77.7)−3.8
1×6.0/77.7 =3.98 B−1部の生成〔η〕(〔η〕B-1)は 〔η〕B-1=4.14×(6.0+77.7+7.0)−3.97×(6.0+77.7)/7.0
=6.17 B−2部の生成〔η〕(〔η〕B-2)は 〔η〕B-2=4.22×100−4.14×(6.0+77.7+7.0)/9.3=5.00 B−1、B−2を含めたB部平均の生成〔η〕
(〔η〕B)は 〔η〕B=4.22×100−3.97×(6.0+7
7.7)/(7.0+9.3) =5.50 と計算できる。 また各段階のモノマー分圧の装定値から物質
収支を求めて得たA−2部、B−1部、B−2
部各々のエチレン含有率はそれぞれ2.7重量
%、77.1重量%、97.8重量%であつた(表−
2)。 これ以降のペレツトの製造方法及びシートの
成形については実施例1と全く同様にして行つ
た結果は表−3に示す。 実施例 4 プロピレン共重合体の製造方法についてはA−
1、A−2、B−1、B−2のそれぞれの気相水
素濃度プロピレン−エチレン混合ガスのエチレン
含有率、及びA−1、A−2、B−1、B−2の
重合比率を変えた以外は実施例3と全く同様にし
て行つた(表−2)。 シートの成形は実施例1と全く同様にして行つ
た。結果を表−3に示す。
The present invention relates to a propylene copolymer for sheet molding which has excellent thermoformability and impact resistance.
Conventionally, thermoforming sheets for food containers, including cups for tofu, tsukudani, ice cream, margarine, etc., and trays for meat, pickles, etc., have been made of vinyl chloride resin, high-impact polystyrene, polyprolene, etc. Resins are used extensively and in large quantities. Polypropylene has particularly excellent heat resistance compared to vinyl chloride resin and high-impact polystyrene, and is suitable for retort sterilization of whole food containers filled with food. It is also preferable that polypropylene has excellent oil resistance and does not generate harmful gases even when incinerated. However, polypropylene sheets have a large sheet sag during thermoforming, so the sheet width is 700 mm.
Continuous thermoforming is possible up to the order of mm, but
When a 1200 mm wide sheet is continuously thermoformed, the central part becomes overheated due to large sagging, which causes overlapping wrinkles called bridges and uneven wall thickness on the molded container, making it difficult to use as a product. loses its value. Therefore, when molding such a wide width, it is necessary to significantly increase the distance between the sheet and the heater and heat it slowly, but in this case the heating time is longer, so compared to vinyl chloride resin and high impact polystyrene. However, the disadvantage is that the molding cost is 2 to 3 times higher. An object of the present invention is to provide a sheet-forming polypropylene sheet that exhibits less sag during thermoforming, which reduces the cost of thermoforming, and that also has impact resistance even when used as a thin-walled container. In order to accomplish these tasks, the present inventors
The molecular weight of polypropylene is much larger than conventional ones, and each part of the block copolymer (each block)
The present invention can be achieved by using an ethylene-propylene block copolymer in which the composition has a specific ethylene content and the molecular chain size of each part (represented by the intrinsic viscosity [η] described below) has a specific relationship. completed. This special polypropylene used in the present invention is produced, for example, by the following method. That is, using a Chigu-Natsuta type activated titanium catalyst, the first
In the stage polymerization, the raw gas is 100% propylene by weight, or the ethylene content is 20% by weight in the copolymer.
The propylene-ethylene mixed gas adjusted to be less than 5% by weight is copolymerized in a range of 50 to 95% by weight of the total amount of olefin polymerized. The part of the polymer molecule grown by this polymerization is called part A. The intrinsic viscosity number [η] (dl/g) of the polyolefin obtained by taking a sample and stopping the polymerization by destroying the catalyst at the stage where this part A is produced is defined as [η] A. [η] A
Let's call it the A-part generation [η] A. Furthermore, [η]
is the viscosity of the tetralin solution (135℃, 50mg/50c.c.)
It was measured from Subsequently, in the second stage of polymerization, the above copolymer molecules are grown. In the second stage, a propylene-ethylene mixed gas is added at a rate of 50% to 50% of the total amount of olefin polymerized so that the ethylene content is 20% by weight or more. Copolymerization is carried out in a range of 5% by weight. The part of the copolymer grown at this stage is referred to as Part B. A typical copolymer molecule obtained through both steps has a so-called block copolymer structure in which part A and part B are joined. At this time, if [η] of the overall average (measured value) of the copolymer consisting of the A part produced in the first stage and the B part produced in the second stage is [η] AB , then the B part [η] B of the part of the copolymer produced in (B part formed [η] B
There is a relationship between the measured value [η] A and the following equation. [η] AB = [η] A ×a + [η] B ×b where a and b are the weight percent of the mixed gas polymerized in parts A and B, respectively. In this case, the mixing ratio of propylene ethylene and [η] may be gradually increased or decreased in the first and second stage polymerizations, or may be changed intermittently during the polymerization. [η] can be changed by adjusting the amount of the molecular weight regulator. In addition, in the method for producing polypropylene in the present invention, part A of the first polymerization and part B of the second stage polymerization are each further divided into two or more stages,
For example, part A is A-1, A-2..., part B is B-
Even if parts 1, B-2, etc. are polymerized separately, it is sufficient that parts A and B have the specific composition and specific production [η] of the present invention as an average. Next, each constituent feature of the copolymer of the present invention will be explained. First, the melt index (hereinafter referred to as
M.1.) is based on the method described in ASTMD1238-62T, and is measured at a temperature of 230°C and a load of 2160g. The melt index of the copolymer used in the present invention is 0.01 to 0.8.
g/10 minutes, especially from 0.05 to
0.5g/10 minutes is preferred. melt index
If it exceeds 0.8 g/10 minutes, the sheet will sag more during thermoforming. Also, the melt index is 0.01g/
It is extremely difficult to produce polypropylene that lasts less than 10 minutes using normal methods, and even if it could be produced, the actual sheet forming temperature would be abnormally high, and the melting inside the forming machine would be extremely difficult. If the pressure of the resin is abnormally high, the molding machine equipment will be heavily equipped, which is impractical. The melt index decreases as the molecular weight of the polymer increases. Furthermore, the larger the molecular weight of the polymer, the larger the [η] of the polymer. That is, melt index has an inverse correlation with molecular weight and [η]. Furthermore, the melt index referred to in the present invention can be measured in the form of polypropylene powder or pellets, but usually polypropylene powder is mixed with a certain antioxidant,
Add a certain amount of hydrochloric acid scavenger, make pellets using an extruder, and measure. The present invention was also carried out in this manner. Part A of the block copolymer of the present invention is a propylene homopolymer or has an ethylene content of 20% by weight.
The ethylene content is particularly preferably between 3 and 8% by weight. If the ethylene content exceeds 20% by weight, the properties of the slurry will deteriorate during the polymerization of part A, causing problems such as clogging of pipes during slurry transfer. Even when actually polymerizing the average composition of Part A to have an ethylene content of 3 to 8% by weight, propylene is prepolymerized in an amount of 5 to 20% by weight of the total amount of olefin polymerized in order to improve the slurry properties. Another method has been used in which a crystalline homopolymer is made and then a copolymerized portion is made using a propylene-ethylene mixed gas. The present invention also includes such cases. At this time, if the proportion of the portion polymerized only with propylene is reduced in advance, large fluctuations in [η] A of the entire A part will not occur. The ethylene content of part B of the block copolymer of the present invention must be 20% by weight or more. When the ethylene content is less than 20% by weight, the impact strength is extremely reduced, making it impossible to obtain a sheet of practical use. This part B needs to be in a range of 50 to 5% by weight based on the total copolymer. When the amount is less than 5% by weight, not only the impact strength decreases, but also the proportion of the high molecular weight polyolefin portion in the total copolymer decreases, and the sheet sag during thermoforming increases somewhat. 50% by weight
If it exceeds this value, it becomes extremely soft and sticky during sheet molding, making it difficult to mold a good sheet. Moreover, the rigidity of the container obtained by thermoforming from the sheet decreases, making it impractical. The relationship between [η] A and [η] B in the present invention is
It is necessary that [η] B − [η] A ≧0.5. Preferably [η] B - [η] A = 0.8 to 15. If [η] B - [η] A is less than 0.5, the impact strength of the sheet will decrease and sag during thermoforming will tend to increase, making it impractical. In the present invention, [η] B is 0.5 dl/g from [η] A
In order to increase the molecular weight above, the amount of hydrogen used as a molecular weight regulator in the polymerization of part B may be extremely reduced, or the amount of hydrogen used as a molecular weight regulator may be extremely reduced, or the amount may be polymerized without using it at all. As a method for forming a sheet using the copolymer of the present invention, a known method commonly referred to as the T-die method can be used. At this time, as in the usual case, there is no problem in adding additives used in ordinary polypropylene, such as antioxidants, lubricants, pigments, and other additives, if necessary. Sheets produced from the copolymer of the present invention include general sheets obtained by the above-mentioned T-die method (sometimes referred to as solid sheets or single-layer sheets in comparison with those described below), uniaxially oriented sheets, and melting point sheets. Excellent quality products can also be obtained in the case of the solid phase molding method in which thermoforming is performed below. Furthermore, foamed sheets obtained by adding known foaming agents (on the other hand, the aforementioned non-foamed sheets are referred to as solid sheets) also have good impact resistance and thermal stability. Also, in the case of sheets made by laminating films or sheets of other resins (for example, nylon, polyvinylidene chloride) using known methods, or sheets obtained by coextrusion with other resins (this is called a multilayer sheet), effective. Next, the present invention will be explained in more detail with reference to Examples. Example 1 (1) Production of propylene copolymer In a SUS-27 autoclave with an internal volume of 20, 10 hebutane was charged under a nitrogen atmosphere, and 5 g of activated titanium trichloride and 8 g of diethylaluminium chloride were charged as catalysts. . The ethylene content was 3.7% by weight so that the internal pressure of the autoclave when the temperature was raised to 55℃ was 4Kg/cm 2 in gauge pressure (hereinafter the symbol is abbreviated as Kg/cm 2 G), and the gas phase hydrogen concentration was 0.3% by volume. of propylene-ethylene mixed gas and hydrogen were charged. The autoclave contents were heated to 55°C and
The above propylene-ethylene mixed gas and hydrogen were continuously charged to maintain the internal pressure at 4 Kg/cm 2 G and the hydrogen concentration at 0.3% by volume at ℃, and the polymerization was continued for 2.4 hours (first stage polymerization). . Next, after completely purging unreacted monomer while keeping the catalyst active, 0.5% of a propylene-ethylene mixed gas containing hydrogen and ethylene with a content of 43.5% by weight is added so that the gas phase hydrogen concentration is 1% by volume. Bulk charging up to Kg/cm 2 G, polymerization temperature 55℃
When the temperature was maintained, polymerization started again. There the internal pressure
0.5Kg/cm 2 G, a propylene-ethylene mixed gas with an ethylene content of 89.7% by weight and hydrogen were continuously charged to maintain a gas phase hydrogen concentration of 1% by volume.
Polymerization was continued for 1.6 hours (second stage polymerization). At the end of the polymerization, methanol 2 was added to stop the polymerization, and the product was purified and dried using the usual method to yield 3.9Kg.
A powdery polymer was obtained. The polymerization ratio in the first stage polymerization and the second stage polymerization was 81.6:18.4. Also, as a sample, the first
A very small amount of the polymerization slurry at the end of stage polymerization is taken out from the side pipe at the bottom of the autoclave, charged with a large excess of methanol, filtered and dried to obtain a powdery polymer (i.e., a polymer consisting only of part A). Obtained. [η] A of the sample at the end of this first stage polymerization and the second
[η] AB of the powder at the end of stage polymerization was measured to be 4.41 dl/g and 5.77 dl/g, respectively.
From this, part B is generated [η] B is [η] B = 5.77-4.41×0.816/0.18
It can be calculated as 4=11.79 (dl/g). Also, [η] B − [η] A = 11.79−
4.41=7.38. In addition, the ethylene content of each part A and B, obtained by calculating the mass balance from the measured values of monomer partial pressure at each stage, was 4.8% by weight.
It was 89.7% by weight. This powdery polymer was added with 0.5% by weight of 2.6-di-t-butyl-p-cresol, tetrakis[methylene 3-(3',5'-di-t-butyl-4'-
Hydroxyphenyl) propionate] methane (Irganox 1010 manufactured by Ciba Gaiki) 0.05
% by weight and 0.15% by weight of calcium stearate were uniformly mixed and formed into a pellet at 250°C. The MI of this Beret was 0.13 g/10 minutes. These results are summarized in Table-1. (2) Evaluation of sheet molding and thermoformability impact resistance The propylene copolymer pellets obtained above were put into a T-die extrusion sheet molding machine (L/D = 28, 280° setting). A sheet with a thickness of 0.5 mm was manufactured. This sheet was thermoformed using a vacuum forming machine (Cosmic FL-213-1 model manufactured by Asano Research Institute) to obtain a box-shaped vacuum-formed container with an inner volume of 500 c.c. and a wall thickness of 0.2 mm. At this time, the sag of the sheet was small and the thermoformability was good, the inner thickness of each part of the container was uniform, there were no overlapping wrinkles called bridges, and the appearance was extremely good. To simply measure sheet sag, the obtained sheet was placed between 400 x 400 mm frames and heated at 210℃.
The length of the sheet's sagging was measured 20 seconds after it was placed in a constant temperature room. In addition, the box-shaped container described above was filled with water, and the lid was heat-sealed with the main body to perform a drop impact test. These results are shown in Table 3. Example 2 A method for producing propylene copolymer
The gas phase hydrogen concentration of each part and part B, the ethylene content of the propylene-ethylene mixed gas (part A is a homopolymer of propylene) and A,
The same procedure as in Example 1 was carried out except that the polymerization ratio of part B was changed, and the results shown in Table 1 were obtained. Alternatively, molding of an ultra-thin reinforced film was carried out in exactly the same manner as in Example 1, and the performance of the obtained film was evaluated and the results shown in Table 3 were obtained. Comparative Examples 1 to 5 A for the production method of propylene copolymer
Part, the gas phase hydrogen concentration of Part B, the ethylene content of the propylene-ethylene mixed gas, and A,
The procedure was carried out in exactly the same manner as in Example 1 except that the polymerization ratio of part B was changed, and the results shown in Table 1 were obtained. Further, sheet molding was carried out in exactly the same manner as in Example 1, and the performance of the obtained sheet was evaluated, and the results shown in Table 3 were obtained. Example 3 (1) Production of propylene copolymer In a SUS-27 autoclave with an internal volume of 20, 10 heptane was charged under a nitrogen atmosphere, and 5 g of activated titanium trichloride and 8 g of diethylaluminium chloride were charged as catalysts. . When the nitrogen in the autoclave was replaced with propylene and the temperature was raised to 50℃, the pressure inside the autoclave was 1Kg/cm 2 .
Propylene and hydrogen were charged so that the hydrogen concentration in the gas phase was 0.15% by volume. Part A was polymerized in two stages, A-1 and A-2. In A-1, the temperature of the contents of the autoclave was raised to 50°C, and polymerization was continued for 40 minutes while blowing propylene to maintain an internal pressure of 1 kg/cm 2 G at 50°C, and then the internal temperature was raised to 55°C. It was warm. In A-2, the ethylene content was increased at the same time as the temperature was raised to 55℃.
A 2.3% by weight propylene-ethylene mixed gas was continuously charged, and the polymerization was continued for 2.3 hours while maintaining the internal pressure at 4 kg/cm 3 ·G and the gas phase hydrogen concentration at 0.37% by volume. Part B was polymerized in two stages, B-1 and B-2. In B-1, after the polymerization of part A was completed, the residual monomer was immediately purged to normal pressure, and then the monomer was further removed by suction to 40 mmHg using a vacuum pump.
Next, hydrogen and ethylene were charged at once to 0.5 kg/cm 2 G so that the gas phase hydrogen concentration was 3% by volume.
A propylene-ethylene mixed gas with an ethylene content of 77.2% by weight was continuously charged at a polymerization temperature of 55°C,
Keep the autoclave internal pressure at 0.5Kg/ cm2・G.
Polymerization was continued for 30 minutes. In B-2, after completely removing unreacted monomers using a vacuum pump, a propylene-ethylene mixed gas with a hydrogen and ethylene content of 80.0% by weight was added at 0.5Kg/cm 2 so that the gas phase hydrogen concentration was 19% by volume. G
Polymerization temperature: 55℃, internal pressure: 0.5Kg/
Propylene-ethylene mixed gas with an ethylene content of 97.8% by weight and hydrogen were continuously charged so as to maintain a gas phase hydrogen concentration of 19% by volume at cm 2 ·G, and polymerization was continued for 1 hour. After the polymerization is completed, methanol 2 is charged to stop the polymerization, and purified and dried using the usual method.
Kg of powdered polymer was obtained. The polymerization ratio in A-1, A-2, B-1, and B-2 was (6.0:77.7:7.0:9.3).
In addition, samples A-1, A-2, B-1, B-
A very small amount of the polymerization slurry at the end of step 2 was taken out, a large excess of methanol was added thereto, it was filtered and dried to obtain a powdery polymer. This A-1, A-2,
When we measured [η] of the powder at the end of B-1 and B-2, they were 3.81 dl/g and 3.97 dl/g, respectively.
g, 4.14 dl/g, and 4.22 dl/g. From this, the generation of part A-2 [η] ([η] A-2 ) is [η] A-2 = 3.97 x (6.0 + 77.7) - 3.8
1 x 6.0/77.7 = 3.98 The production of B-1 part [η] ([η] B-1 ) is [η] B-1 = 4.14 x (6.0 + 77.7 + 7.0) - 3.97×(6.0+77.7)/7.0
= 6.17 The production of the B-2 part [η] ([η] B-2 ) is [η] B-2 = 4.22×100−4.14×(6.0+77.7+7.0)/9.3 =5.00 Generation of B part average including B-1 and B-2 [η]
([η] B ) is [η] B = 4.22×100−3.97×(6.0+7
7.7)/(7.0+9.3) = 5.50. In addition, part A-2, part B-1, and part B-2 were obtained by calculating the material balance from the specified value of monomer partial pressure at each stage.
The ethylene content of each part was 2.7% by weight, 77.1% by weight, and 97.8% by weight, respectively (Table-
2). The subsequent pellet manufacturing method and sheet molding were carried out in exactly the same manner as in Example 1. The results are shown in Table 3. Example 4 A- for the production method of propylene copolymer
1, the gas phase hydrogen concentration of each of A-2, B-1, and B-2, the ethylene content of the propylene-ethylene mixed gas, and the polymerization ratio of A-1, A-2, B-1, and B-2. The procedure was carried out in exactly the same manner as in Example 3 except for the changes (Table 2). The sheet was formed in exactly the same manner as in Example 1. The results are shown in Table-3.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 シート成形用プロピレン−エチレン共重合体
において、 (a) 共重合体のメルトインデツクスが0.01〜0.8
g/10分であり、 (b) 共重合体のエチレン含有率が50重量%以下で
あり、 (c) 共重合体がそのエチレン含有率が20重量%未
満(プロピレンホモポリマーも含む)であるA
部50〜95重量%とエチレン含有率が20重量%以
上であるB部50〜5重量%とから成るブロツク
共重合体であり、 (d) 更にA部の生成〔η〕AとB部の生成〔η〕B
の間に〔η〕B≧〔η〕A+0.5の関係を有するこ
と、 を特徴とする熱成形性及び耐衝撃性に優れたシー
ト成形用プロピレン共重合体。
[Scope of Claims] 1. In a propylene-ethylene copolymer for sheet molding, (a) the copolymer has a melt index of 0.01 to 0.8;
(b) the copolymer has an ethylene content of 50% by weight or less; (c) the copolymer has an ethylene content of less than 20% by weight (including propylene homopolymer). A
It is a block copolymer consisting of 50 to 95% by weight of part B and 50 to 5% by weight of part B having an ethylene content of 20% by weight or more, (d) Further formation of part A [η] A propylene copolymer for sheet molding having excellent thermoformability and impact resistance, characterized by having a relationship between formation [η] B and [η] B ≧ [η] A +0.5.
JP14605479A 1979-11-13 1979-11-13 Propylene copolymer for forming sheet Granted JPS5670014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14605479A JPS5670014A (en) 1979-11-13 1979-11-13 Propylene copolymer for forming sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14605479A JPS5670014A (en) 1979-11-13 1979-11-13 Propylene copolymer for forming sheet

Publications (2)

Publication Number Publication Date
JPS5670014A JPS5670014A (en) 1981-06-11
JPS6227091B2 true JPS6227091B2 (en) 1987-06-12

Family

ID=15399040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14605479A Granted JPS5670014A (en) 1979-11-13 1979-11-13 Propylene copolymer for forming sheet

Country Status (1)

Country Link
JP (1) JPS5670014A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58201806A (en) * 1982-05-19 1983-11-24 Chisso Corp High-melting viscoelastic polypropylene for post-processing sheet and blow molding, and its preparation
JPS58219207A (en) * 1982-06-15 1983-12-20 Chisso Corp Polypropylene having high rigidity and melt viscoelasticity and preparation thereof
JPS59149907A (en) * 1983-02-15 1984-08-28 Idemitsu Petrochem Co Ltd Crystalline polypropylene and its production
JPS6211749A (en) * 1985-07-10 1987-01-20 Idemitsu Petrochem Co Ltd Propylene-ethylene copolymer composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913514A (en) * 1972-05-23 1974-02-06
JPS5113339A (en) * 1974-07-24 1976-02-02 Kobe Steel Ltd SHOMONOZURUOMOCHIIRU YOSETSUHOHO
JPS523684A (en) * 1975-06-27 1977-01-12 Showa Denko Kk Process for preparing ropylene copolymer
JPS5424995A (en) * 1977-07-27 1979-02-24 Showa Denko Kk Production of propylene copolymer
JPS5661416A (en) * 1979-10-24 1981-05-26 Sumitomo Chem Co Ltd Preparation of propylene-ethylene block copolymer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913514A (en) * 1972-05-23 1974-02-06
JPS5113339A (en) * 1974-07-24 1976-02-02 Kobe Steel Ltd SHOMONOZURUOMOCHIIRU YOSETSUHOHO
JPS523684A (en) * 1975-06-27 1977-01-12 Showa Denko Kk Process for preparing ropylene copolymer
JPS5424995A (en) * 1977-07-27 1979-02-24 Showa Denko Kk Production of propylene copolymer
JPS5661416A (en) * 1979-10-24 1981-05-26 Sumitomo Chem Co Ltd Preparation of propylene-ethylene block copolymer

Also Published As

Publication number Publication date
JPS5670014A (en) 1981-06-11

Similar Documents

Publication Publication Date Title
US5948547A (en) Composition based on statistical propylene copolymers, process for their manufacture and multilayer heat-sealable sheets containing them
KR100355650B1 (en) Highly processable polymeric compositions based on lldpe
WO1993011940A1 (en) Heat sealable polyolefin films containing very low density ethylene copolymers
JPS6323059B2 (en)
KR101899625B1 (en) Propylene/ethylene copolymer film for heat seal
WO2002100738A1 (en) Duplex container
US5521251A (en) Propylene random copolymer composition
JPH0616884A (en) Polypropylene composition and film made therefrom
US4505970A (en) Multilayer films comprising mixtures of a melt index and 2 melt index linear low density polyethylene
JPH04266759A (en) Medical bag
JP5422000B2 (en) Multilayer heat shrinkable film
JPS6227091B2 (en)
US4311810A (en) Block copolymers of propylene and 4-methyl-1-pentene
JP7355591B2 (en) Stretched film and its uses
CA2138747A1 (en) Polypropylene laminated film
EP0633133B1 (en) Polypropylene laminate film
JP4892392B2 (en) Low gloss container
JP3815827B2 (en) Polyolefin-based wrap stretch film
JP3850493B2 (en) Polypropylene copolymer and film thereof
JP2003052791A (en) Double cell container
JPS6156244B2 (en)
JP2001054937A (en) Film for stretch packaging
JPH0113487B2 (en)
JP3070419B2 (en) Polypropylene laminated film
JPH0344087B2 (en)