JPH0113487B2 - - Google Patents

Info

Publication number
JPH0113487B2
JPH0113487B2 JP54114138A JP11413879A JPH0113487B2 JP H0113487 B2 JPH0113487 B2 JP H0113487B2 JP 54114138 A JP54114138 A JP 54114138A JP 11413879 A JP11413879 A JP 11413879A JP H0113487 B2 JPH0113487 B2 JP H0113487B2
Authority
JP
Japan
Prior art keywords
weight
polymerization
propylene
copolymer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54114138A
Other languages
Japanese (ja)
Other versions
JPS5638309A (en
Inventor
Makoto Aida
Masahisa Handa
Jun Ootsu
Tetsuo Inada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP11413879A priority Critical patent/JPS5638309A/en
Publication of JPS5638309A publication Critical patent/JPS5638309A/en
Publication of JPH0113487B2 publication Critical patent/JPH0113487B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はフイルム成形用プロピレン共重合体に
関するものである。 従来ポリプロピレンのフイルムとしてはキヤス
テイング成形法によるものとインフレーシヨン成
形法によるものがあり、すでにそれぞれの成形法
及び用途に適したポリプロピレンが市販されてい
る。しかしながら、これらのポリプロピレンには
上記の成形法により、特に空冷インフレーシヨン
成形法により肉厚の極めて薄いフイルムを成形し
ようとする場合に、フイルムの肉厚が30ミクロン
程度に薄くなるにつれてフイルムの引裂き強さ及
び衝撃強さが弱くなり、またフイルム成形時のチ
ユーブの安定性が悪くなる(シワが多くなつたり
肉厚のむら、折径のばらつきを生じる。)などの
欠点があり、その改良が求められている。これら
のフイルムは製袋されて、レジ袋、ゴミ袋、規格
袋などかつては紙等の材料が使用されていたもの
の代りに使用されるが、その袋の中に物を入れて
運ぶ場合に、その内容物の荷重に耐えること、内
容物の尖つた角に触れて袋の一部に傷がついても
容易に引裂れないこと、多少の衝撃に耐えること
が必要である。特に従来のポリプロピレンではフ
イルムに方向性が強く縦裂きしやすいという欠点
を有していた。 また空冷インフレーシヨン法によりフイルムを
成形する場合、環状ダイから溶融押出し管状フイ
ルムを成形する時、この管状部(以下チユーブと
云う)が不安定で、左右に揺れるとシワが多くな
つたり、肉厚のむらを生じたり、甚だしい時は折
径の変動まで生じて、商品としての価値を失つて
しまう。 本発明は、このフイルムの引裂き強さ及び衝撃
強さの向上、フイルム成形時のチユーブの安定性
の向上を目的とするものである。 本発明者等はこれらの課題を達成するために、
ポリプロピレンの分子量が従来のものよりかなり
大きく、ブロツク共重合体の各部(各ブロツク)
の組成が特定のエチレン含有率を有し、各部の分
子鎖の大きさ(後述の極限粘度数〔η〕により表
わす。)が特定の関係にあるエチレン−プロピレ
ンブロツクコポリマーを用いることにより本発明
を完成した。 本発明に用いられるこの特殊なポリプロピレン
は例えば次の様な方法で作られる。 即ちチーグラー・ナツタ型の活性化チタン触媒
を用いて、第1段階の重合においてプロピレン
100重量%の原料ガス、あるいはエチレン含有率
が共重合体中で20重量%未満になる様に調整した
プロピレン−エチレン混合ガスを、全オレフイン
重合量の50〜95重量%の範囲で共重合させる。こ
の重合により生長した重合体分子の部分をA部と
称する。なお試料採取を行い、このA部が生成し
た段階で触媒を破壊して重合を止めて得られるポ
リオレフインの極限粘度数〔η〕(dl/g)を
〔η〕Aとする。〔η〕AをA部生成〔η〕Aと云うこと
にする。なお〔η〕はテトラリン溶液の粘度
(135℃、50mg/50c.c.)より測定した。 ひき続き第2段階の重合で上記共重合体分子を
生長させるのであるが、第2段ではエチレン含有
率が35重量%以上含まれる様に、プロピレン−エ
チレン混合ガスを全オレフイン重合量の50〜5重
量%の範囲で共重合させる。この段階で生長した
共重合体の部分をB部と称する。両工程を経て得
た典型的な共重合体分子は、A部とB部が接合し
た所謂ブロツク共重合体の構造を有している。こ
の時、第1段階で生成したA部と第2段階で生成
したB部とからなる共重合体の全体としての平均
(測定値)の〔η〕を〔η〕ABとすれば、B部に生
成した共重合体の部分の〔η〕B(B部生成〔η〕B
と云う)と測定値〔η〕Aとの間に次式の関係があ
る。 〔η〕AB=〔η〕A×a+〔η〕B×b 但し、a、bはそれぞれA部、B部で重合した
混合ガスの重量%である。 この場合、第1段重合及び第2段重合において
プロピレンエチレンの混合比及び〔η〕を漸増ま
たは漸減してもよく、あるいは断続的に変化させ
て重合させてもよい。〔η〕を変化させるには、
分子量調節剤を加減すればよい。また本発明にお
けるポリプロピレンの製造法として第1段重合の
A部及び第2段重合のB部を更に各々2段階以上
に、例えばA部はA−1、A−2………、B部は
B−1、B−2………と分けて重合しても、A
部、B部が本発明の特定組成及び特定生成〔η〕
を平均として有すれば良い。 次いで本発明の共重合体の各構成要件を説明す
る。まず本発明で云うメルトインデツクス(以下
M.I.と略記)とはASTMD1238−62Tに記載する
方法によるものであり、230℃の温度、2160gの
荷重により測定したものを示す。本発明に用いら
れる共重合体のメルトインデツクスは0.01〜0.5
g/10分であることが必要であり、特に0.05〜
0.2g/10分が好ましい。メルトインデツクスが
0.5g/10分を越えると成形時のチユーブの安定
性が低下してシワ、肉厚ムラを生じる。従来のフ
イルム成形用ポリプロピレンはそのメルトインデ
ツクスが概ね8前後であり、本発明の共重合体の
メルトインデツクスとの大きな差がフイルムの性
能に関係しているようである。またメルトインデ
ツクス0.01g/10分未満のポリプロピレンは通常
の方法で製造することは極めて困難であり、また
仮りに製造出来ても実際のフイルムを成形する際
の成形温度を異常な高温にするとか、また成形機
内の溶融した樹脂の圧力が異常に高くなるとかで
成形機の装置が重装備となり実用的でない。メル
トインデツクスはポリマーの分子量が大きい程小
さくなる。またポリマーの分子量が大きい程ポリ
マーの〔η〕は大きくなる。即ちメルトインデツ
クスは分子量及び〔η〕と逆の相関関係を有す
る。また本発明に云うメルトインデツクスはポリ
プロピレンのパウダーまたはペレツトの形で測定
出来るが、通常はポリプロピレンのパウダーに一
定の酸化防止剤、塩酸捕捉剤を一定量添加して押
出機にてペレツトとして、測定する。本発明でも
このようにして実施した。 本発明のA部はプロピレンのホモポリマーある
いはエチレン含有率20重量%未満のコポリマーか
らなるが、エチレン含有率は特に好ましくは3〜
8重量%である。エチレン含有率が20重量%を越
えるとA部の重合時にスラリーの性状が悪化して
スラリー移送の際の配管を閉塞する等のトラブル
を発生する。 実際にA部の平均組成としてエチレン含有率3
〜8重量%となるように重合させる場合にも、ス
ラリー性状の向上のために予めプロピレンを全オ
レフイン重合量の5〜20重量%程重合させ高結晶
性ホモポリマーを作り、次いでプロピレン−エチ
レン混合ガスによる共重合部を作る方法も行われ
ている。本発明はこの様な場合も含まれる。この
時予めプロピレンだけで重合した部分の割合を少
くすればA部全体の〔η〕Aに大きな変動を起さな
い。本発明のB部のエチレン含有率は35重量%以
上であることが必要である。エチレン含有率が20
重量%を下廻ると衝撃強さが極度に低下して実用
的なフイルムを得られない。このB部は共重合体
全体に対して50〜5重量%の範囲であることが必
要である。5重量%を下廻ると衝撃強度が低下す
るだけでなく、全共重合体中の高分子量ポリオレ
フイン部分の割合が少くなり、フイルム成形時の
チユーブの安定性が低下する。50重量%を越える
と非常に軟くなつてフイルム成形時に粘着性を生
じ良好なフイルムの成形が難しい。 本発明における〔η〕Aと〔η〕Bの関係は10>
〔η〕B≧〔η〕A+0.5にあることが必要である。好
ましくは〔η〕B−〔η〕A=0.8〜9である。 〔η〕B−〔η〕Aが0.5を下廻ると、フイルムの引
裂き強さを著しく低下させたり、衝撃強度及びフ
イルム成形時のチユーブの安定性も低下させる傾
向にあるが、衝撃強度及びフイルム成形時のチユ
ーブの安定性は〔η〕B−〔η〕Aの値よりもMI値の
影響を大きく受ける。 本発明において〔η〕Bを〔η〕Aより0.5dl/g
以上大きくさせるためにはB部の重合において分
子量調節剤として用いる水素の量を非常に少なく
するかあるいは全く用いずに重合すれば良い。 本発明の共重合体を使用するフイルムの成形法
としては、通常空冷インフレーシヨン法と云われ
ている公知の方法が可能である。その際に通常の
場合と同様に、必要に応じて酸化防止剤、滑剤、
顔料および他の添加物など通常のポリプロピレン
に使用される各種添加剤を加えても何ら差支えな
い。 本発明において得られる極薄強化フイルムは肉
厚が薄くても引裂き強さ及び衝撃強さが良好であ
るので省資源の観点からも広範な用途が期待され
る。また成形時のチユーブの安定性が良く、シワ
や肉厚むらが少いので実用上大いに満足出来る。
また思いがけない効果ではあるがこのプロピレン
共重合体でインフレーシヨン成形をする場合、前
述の目的としたこと以外にも高速成形性が可能と
云う技術上の効果がある。即ち成形速度を従来以
上に速くしても良質のフイルムを得られるので、
フイルムの製造費の低減に有用である。 次に実施例により本発明を更に具体的に説明す
る。 実施例 1 (1) プロピレン共重合体の製造 内容積20のSUS−27オートクレーブ中に
窒素雰囲気下でヘプタン10を装入し、触媒と
して活性化三塩化チタン5g及びジエチルアル
ミニウムクロライド8gを装入した。 55℃に昇温した時のオートクレーブ内圧がゲ
ージ圧で4Kg/cm2(以下記号をKg/cm2Gと略記
する)しかも気相水素濃度が0.3容量%となる
ようにエチレン含有率3.7重量%のプロピレン
−エチレン混合ガスと水素を装入した。 オートクレーブ内容物を55℃まで昇温し、55
℃にて内圧を4Kg/cm2G、水素濃度を0.3容量
%に保つように上記のプロピレン−エチレン混
合ガス及び水素を連続的に装入して2.4時間重
合を継続した(第1段重合)。 次いで触媒が活性に保たれたままの状態で未
反応モノマーを完全にパージした後、気相水素
濃度が1容量%となる様に水素とエチレン含有
率43.5重量%のプロピレン−エチレン混合ガス
を0.5Kg/cm2Gまで一括装入し、重合温度55℃
に維持すると再び重合が始まつた。そこで内圧
0.5Kg/cm2G、気相水素濃度1.1容量%を保つ様
にエチレン含有率89.7重量%のプロピレン−エ
チレン混合ガス及び水素を連続的に装入し、
1.6時間重合を継続した(第2段重合)。 重合終了時メタノール2を装入して重合を
停止させ通常の方法により精製乾燥して3.9Kg
のパウダー状重合体を得た。 第1段重合及び第2段重合における重合の割
合は81.6:18.4であつた。また試料として第1
段重合終了時点の重合スラリーをオートクレー
ブの底部の側管より極く少量取り出して大過剰
のメタノールを装入して濾過、乾燥してパウダ
ー状重合体(すなわちA部のみからなる重合
体)を得た。 この第1段重合終了時の試料の〔η〕Aと第2
段重合終了時のパウダーの〔η〕ABを測定する
とそれぞれ4.43dl/g、5.40dl/gであつた。
これよりB部の生成〔η〕Bは 〔η〕B=5.40−4.43×0.816/0.184=9.70(dl/g
) と計算出来る。また〔η〕B−〔η〕A=9.70−4.43
=5.27となる。また各段階のモノマー分圧の測
定値から物質収支を求めて得たA部、B部の
各々のエチレン含有率はそれぞれ4.8重量%、
89.7重量%であつた。 このパウダー状重合体に2,6−ジ−t−ブ
チル−p−クレゾール0.5重量%、テトラキス
〔メチレン3−(3′,5′−ジ−t−ブチル−4′−
ヒドロキシフエニル)プロピオネート〕メタン
(チバガイギー社製イルガノツクス1010)0.05
重量%、ステアリン酸カルシウム0.15重量%を
均一に混合し250℃にてペレツト化した。この
ペレツトのM.I.は0.13g/10分であつた。これ
らの結果を表−1にまとめた。 (2) 極薄強化フイルムの成形 上記で得たプロピレン共重合体のペレツト
を、シリンダーの内径50mm、スクリユーのL/
D=28の押出機を用いて、スパイラル型環状ダ
イから溶融押出し、空冷インフレーシヨン法に
より肉厚が30μと15μの管状フイルムを成形し
た。空冷インフレーシヨン成形条件としては、
環状ダイの温度を220℃に、管状フイルムの引
取り速度を肉厚30μの時に15m/分、肉厚15μ
の時に30m/分に設定した。チユーブの安定性
良く、シワ、肉厚むらは実用上問題なく良好で
あつた。 このようにして得られた管状フイルムについ
てJISZ1702の方法による縦・横方向のエルメ
ンドルフ引裂き強度及び縦・横の比及び東洋精
機製インパクトテスターによるフイルムの衝撃
強度を測定した。結果を表−2に示すが、縦横
方向のエルメンドルフ引裂き強さ及び縦横のバ
ランスは良好であり、衝撃強度も十分強いもの
であつた。 実施例 2 プロピレン共重合体の製造方法ついてはA部、
B部のそれぞれの気相水素濃度、プロピレン−エ
チレン混合ガスのエチレン含有率(A部はプロピ
レンのホモポリマーとなつている)及びA、B部
の重合比率を変えた以外は実施例1と全く同様に
して行い、表−1の結果を得た。また極薄強化フ
イルムの成形についても実施例1と全く同様に行
い、得られたフイルムの性能を評価して表−2の
結果を得た。 比較例 1〜5 プロピレン共重合体の製造方法についてはA
部、B部のそれぞれの気相水素濃、プロピレ−ン
エチレン混合ガスのエチレン含有率、及びA、B
部の重合比率を変えた以外は実施例1と全く同様
にして行い、表−1の結果を得た。また極薄強化
フイルムの成形についても実施例1と全く同様に
行い、得られたフイルムの性能を評価して表−2
の結果を得た。 実施例 3 (1) プロピレン共重合体の製造 内容積20のSUS−27オートクレーブ中に
窒素雰囲気下でヘプタン10を装入し、触媒と
して活性化三塩化チタン5g及びジエチルアル
ミニウムクロライド8gを装入した。オートク
レーブ内の窒素をプロピレンで置換し、50℃に
昇温した時のオートクレーブ内圧力が1Kg/
cm2・G、しかも気相水素濃度が0.15容量%とな
るようにプロピレンと水素を装入した。 A部はA−1とA−2の2段階に分けて重合
した。 A−1はオートクレーブ内容物を50℃まで昇
温し、50℃にて内圧1Kg/cm2・Gに保つように
プロピレンを吹込みながら40分間重合を継続
し、次いで内温を55℃まで昇温した。 A−2は55℃昇温と同時にエチレン含有率
2.3重量%のプロピレン−エチレン混合ガスを
連続的に装入し、内圧を4Kg/cm2・G、気相水
素濃度を0.37容量%に保つて2.3時間重合を継
続した。 B部はB−1とB−2の2段階に分けて重合
した。 B−1は、A部重合終了後、残留モノマーを
速やかに常圧までパージし、次いで真空ポンプ
で540mmHgまで更にモノマーを吸引除去した。
次に気相水素濃度が3容量%になるように水素
とエチレンを0.5Kg/cm2・Gまで一括装入し、
重合温度55℃でエチレン含有率77.2重量%のプ
ロピレン−エチレン混合ガスを連続的に装入
し、オートクレーブ内圧を0.5Kg/cm2・Gに保
つて30分間重合を継続した。 B−2は未反応モノマーを真空ポンプにより
完全に除去した後、気相水素濃度が19容量%と
なる様に水素とエチレン含有率80.0重量%のプ
ロピレン−エチレン混合ガスを0.5Kg/cm2・G
まで一括装入し、重合温度55℃、内圧0.5Kg/
cm2・G、気相水素濃度19容量%を保つようにエ
チレン含有率97.8重量%のプロピレン−エチレ
ン混合ガスおよび水素を連続的に装入し、1時
間重合を継続した。 重合終了後メタノール2を装入して重合を
停止させ、通常の方法により精製乾燥して3.9
Kgのパウダー状重合体を得た。 A−1、A−2、B−1、B−2における重
合量の割合は(6.0:77.7:7.0:9.3)であつ
た。また試料としてA−1、A−2、B−1、
B−2終了時の重合スラリーを極少量取り出
し、大過剰のメタノールを装入して瀘過、乾燥
してパウダー状重合体を得た。このA−1、A
−2、B−1、B−2終了時のパウダーの
〔η〕を測定したところ、それぞれ3.81dl/g、
3.97dl/g、4.14dl/g、4.22dl/gであつた。
これよりA−2部の生成〔η〕(〔η〕A-2)は 〔η〕A-2=3.97×(6.0+77.7)−3.81×6.0/77.7=3
.98 B−1部の生成〔η〕(〔η〕B-1)は 〔η〕B-1=4.14×(6.0+77.7 +7.0)
−397×(6.0+77.7)/7.0=6.17 B−2部の生成〔η〕(〔η〕B-2)は 〔η〕B-2=4.22×100−4.14×(6.0+77.7
+7.0)/9.3=5.00 B−1、B−2を含めたB部平均の生成
〔η〕(〔η〕B)は 〔η〕B=4.22×100−3.97×(6.0+77.7)/(7.0+9.
3)=5.50 と計算できる。 また各段階のモノマー分圧の測定値から物質
収支を求めて得たA−2部、B−1部、B−2
部各々のエチレン含有率はそれぞれ2.7重量%、
77.1重量%、97.8重量%であつた。 これ以降のペレツトの製造方法及び極薄強化
フイルムの成形については実施例1と全く同様
にして行つた。結果は表−2及び表−3に示
す。 実施例 4 プロピレン共重合体の製造方法についてはA−
1、A−2、B−1、B−2のそれぞれの気相水
素濃度プロピレン−エチレン混合ガスのエチレン
含有率、及びA−1、A−2、B−1、B−2の
重合比率を変えた以外は実施例3と全く同様にし
て行つた。 極薄強化フイルムの成形は実施例1と全く同様
にして行つた。結果を表−2及び表−3に示す。 実施例 5 プロピレン共重合体の製造方法についてはA
部、B部のそれぞれの気相水素濃度、プロピレン
−エチレン含有率(A部はプロピレンのホモポリ
マーとなつている)及びA部B部の重合比率を変
えた以外は実施例1と全く同様にして行い、表−
1の結果を得た。また極薄強化フイルムの成形に
ついても実施例1と全く同様に行い、得られたフ
イルムの性能を評価して表−2の結果をえた。
The present invention relates to a propylene copolymer for film forming. Conventional polypropylene films have been produced using either a casting method or an inflation method, and polypropylene suitable for each method and use is already commercially available. However, when trying to mold extremely thin films using the above-mentioned molding method, especially using the air-cooled inflation molding method, these polypropylenes tend to tear as the film thickness decreases to about 30 microns. There are drawbacks such as reduced strength and impact strength, and poor stability of the tube during film forming (more wrinkles, uneven wall thickness, and uneven fold diameter), and improvements are needed. It is being These films are made into bags and used in place of plastic bags, garbage bags, standard bags, and other materials that used to be made of paper. It is necessary to withstand the load of the contents, not to be easily torn even if a part of the bag is damaged by touching a sharp corner of the contents, and to withstand some impact. In particular, conventional polypropylene has a drawback in that the film has strong directionality and is prone to vertical tearing. In addition, when forming a film using the air-cooled inflation method, when forming a tubular film by melt extrusion from an annular die, this tubular part (hereinafter referred to as the tube) is unstable, and if it shakes from side to side, it may become wrinkled or The thickness may become uneven, and in extreme cases, the folded diameter may change, resulting in loss of value as a product. The object of the present invention is to improve the tear strength and impact strength of this film, and to improve the stability of the tube during film molding. In order to accomplish these tasks, the present inventors
The molecular weight of polypropylene is much larger than conventional ones, and each part of the block copolymer (each block)
The present invention can be achieved by using an ethylene-propylene block copolymer in which the composition has a specific ethylene content and the molecular chain size of each part (represented by the intrinsic viscosity [η] described below) has a specific relationship. completed. This special polypropylene used in the present invention is produced, for example, by the following method. That is, using a Ziegler-Natsuta type activated titanium catalyst, propylene is produced in the first stage of polymerization.
Copolymerize 100% by weight raw material gas or a propylene-ethylene mixed gas adjusted so that the ethylene content is less than 20% by weight in the copolymer in a range of 50 to 95% by weight of the total olefin polymerization amount. . The part of the polymer molecule grown by this polymerization is called part A. The intrinsic viscosity number [η] (dl/g) of the polyolefin obtained by taking a sample and stopping the polymerization by destroying the catalyst at the stage where this part A is produced is defined as [η] A. [η] A will be referred to as A part generation [η] A. Note that [η] was measured from the viscosity of the tetralin solution (135°C, 50 mg/50 c.c.). Subsequently, in the second stage of polymerization, the above copolymer molecules are grown, and in the second stage, a propylene-ethylene mixed gas is added to 50% to 50% of the total olefin polymerization amount so that the ethylene content is 35% by weight or more. Copolymerization is carried out in a range of 5% by weight. The part of the copolymer grown at this stage is referred to as Part B. A typical copolymer molecule obtained through both steps has a so-called block copolymer structure in which part A and part B are joined. At this time, if [η] of the overall average (measured value) of the copolymer consisting of the A part produced in the first stage and the B part produced in the second stage is [η] AB , then the B part [η] B of the part of the copolymer produced in (B part formed [η] B
There is a relationship between the measured value [η] A and the following equation. [η] AB = [η] A ×a + [η] B ×b where a and b are the weight percent of the mixed gas polymerized in parts A and B, respectively. In this case, the mixing ratio of propylene ethylene and [η] may be gradually increased or decreased in the first-stage polymerization and the second-stage polymerization, or may be changed intermittently during the polymerization. To change [η],
The amount of molecular weight regulator may be adjusted. In addition, in the method for producing polypropylene in the present invention, part A in the first stage polymerization and part B in the second stage polymerization are each further divided into two or more stages, for example, part A is A-1, A-2, and part B is Even if B-1 and B-2 are polymerized separately, A
Part B is the specific composition and specific formation [η] of the present invention.
It is sufficient to have as an average. Next, each constituent feature of the copolymer of the present invention will be explained. First, the melt index (hereinafter referred to as
MI (abbreviated as MI) is based on the method described in ASTM D1238-62T, and is measured at a temperature of 230° C. and a load of 2160 g. The melt index of the copolymer used in the present invention is 0.01 to 0.5.
g/10 minutes, especially from 0.05 to
0.2 g/10 minutes is preferred. melt index
If it exceeds 0.5 g/10 minutes, the stability of the tube during molding will decrease, causing wrinkles and uneven wall thickness. Conventional polypropylene for film forming has a melt index of approximately 8, and the large difference in melt index from that of the copolymer of the present invention seems to be related to the performance of the film. In addition, it is extremely difficult to produce polypropylene with a melt index of less than 0.01 g/10 minutes using normal methods, and even if it were possible to produce it, the actual film forming temperature would be abnormally high. Also, the pressure of the molten resin inside the molding machine becomes abnormally high, making the molding machine equipment heavy and impractical. The melt index decreases as the molecular weight of the polymer increases. Furthermore, the larger the molecular weight of the polymer, the larger the [η] of the polymer. That is, melt index has an inverse correlation with molecular weight and [η]. The melt index referred to in the present invention can be measured in the form of polypropylene powder or pellets, but it is usually measured by adding a certain amount of antioxidant and hydrochloric acid scavenger to polypropylene powder and turning it into pellets using an extruder. do. The present invention was also carried out in this manner. Part A of the present invention consists of a homopolymer of propylene or a copolymer with an ethylene content of less than 20% by weight, particularly preferably an ethylene content of 3 to 20% by weight.
It is 8% by weight. If the ethylene content exceeds 20% by weight, the properties of the slurry will deteriorate during polymerization of part A, causing problems such as clogging of pipes during slurry transfer. Actually, the average composition of part A is ethylene content 3
Even when polymerizing to 8% by weight, in order to improve the slurry properties, propylene is polymerized in advance by 5 to 20% by weight of the total amount of olefin polymerized to create a highly crystalline homopolymer, and then propylene-ethylene is mixed. A method of creating a copolymerization region using gas has also been used. The present invention also includes such cases. At this time, if the proportion of the portion polymerized only with propylene is reduced in advance, large fluctuations in [η] A of the entire A part will not occur. The ethylene content of Part B of the present invention must be 35% by weight or more. Ethylene content is 20
If the weight percentage is less than this, the impact strength will be extremely reduced, making it impossible to obtain a film of practical use. This part B needs to be in a range of 50 to 5% by weight based on the total copolymer. When the amount is less than 5% by weight, not only the impact strength decreases, but also the proportion of the high molecular weight polyolefin portion in the entire copolymer decreases, resulting in a decrease in the stability of the tube during film molding. If it exceeds 50% by weight, it becomes extremely soft and sticky during film molding, making it difficult to mold a good film. The relationship between [η] A and [η] B in the present invention is 10>
It is necessary that [η] B ≧ [η] A +0.5. Preferably [η] B - [η] A = 0.8 to 9. [η] B − [η] When A is less than 0.5, the tear strength of the film tends to decrease significantly, and the impact strength and stability of the tube during film forming also tend to decrease. The stability of the tube during forming is influenced more by the MI value than by the value of [η] B − [η] A. In the present invention, [η] B is 0.5 dl/g from [η] A
In order to increase the molecular weight above, the amount of hydrogen used as a molecular weight regulator in the polymerization of part B may be extremely reduced, or the amount of hydrogen used as a molecular weight regulator may be extremely reduced, or the amount may be polymerized without using it at all. As a method for forming a film using the copolymer of the present invention, a known method commonly referred to as an air-cooled inflation method can be used. At that time, as in normal cases, use antioxidants, lubricants, etc. as necessary.
There is no problem in adding various additives commonly used in polypropylene, such as pigments and other additives. The ultra-thin reinforced film obtained in the present invention has good tear strength and impact strength even if it has a small wall thickness, so it is expected to have a wide range of uses from the viewpoint of resource saving. In addition, the stability of the tube during molding is good, and there are few wrinkles and uneven wall thickness, so it is highly satisfactory in practice.
Although it is an unexpected effect, when inflation molding is performed using this propylene copolymer, in addition to the above-mentioned objective, there is a technical effect in that high-speed molding is possible. In other words, high quality films can be obtained even if the molding speed is faster than before.
This is useful for reducing film manufacturing costs. Next, the present invention will be explained in more detail with reference to Examples. Example 1 (1) Production of propylene copolymer In a SUS-27 autoclave with an internal volume of 20 ml, 10 g of heptane was charged under a nitrogen atmosphere, and 5 g of activated titanium trichloride and 8 g of diethylaluminium chloride were charged as catalysts. . The ethylene content was 3.7% by weight so that the autoclave internal pressure when the temperature was raised to 55°C was 4Kg/cm 2 in gauge pressure (hereinafter the symbol is abbreviated as Kg/cm 2 G) and the gas phase hydrogen concentration was 0.3% by volume. of propylene-ethylene mixed gas and hydrogen were charged. The autoclave contents were heated to 55°C and
The above propylene-ethylene mixed gas and hydrogen were continuously charged to maintain the internal pressure at 4 Kg/cm 2 G and the hydrogen concentration at 0.3% by volume at ℃, and the polymerization was continued for 2.4 hours (first stage polymerization). . Next, after completely purging unreacted monomer while keeping the catalyst active, 0.5% of a propylene-ethylene mixed gas containing hydrogen and ethylene with a content of 43.5% by weight is added so that the gas phase hydrogen concentration is 1% by volume. Bulk charging up to Kg/cm 2 G, polymerization temperature 55℃
When the temperature was maintained, polymerization started again. There the internal pressure
0.5Kg/cm 2 G, a propylene-ethylene mixed gas with an ethylene content of 89.7% by weight and hydrogen were continuously charged to maintain a gas phase hydrogen concentration of 1.1% by volume.
Polymerization was continued for 1.6 hours (second stage polymerization). At the end of the polymerization, methanol 2 was added to stop the polymerization, and the product was purified and dried using the usual method to yield 3.9Kg.
A powdery polymer was obtained. The polymerization ratio in the first stage polymerization and the second stage polymerization was 81.6:18.4. Also, as a sample, the first
A very small amount of the polymerization slurry at the end of stage polymerization is taken out from the side pipe at the bottom of the autoclave, charged with a large excess of methanol, filtered, and dried to obtain a powdery polymer (i.e., a polymer consisting only of part A). Ta. [η] A of the sample at the end of this first stage polymerization and the second
[η] AB of the powder at the end of stage polymerization was measured to be 4.43 dl/g and 5.40 dl/g, respectively.
From this, the generation of part B [η] B is [η] B = 5.40−4.43×0.816/0.184=9.70 (dl/g
) can be calculated. Also, [η] B − [η] A = 9.70−4.43
= 5.27. In addition, the ethylene content of each part A and B, obtained by calculating the mass balance from the measured values of monomer partial pressure at each stage, was 4.8% by weight, respectively.
It was 89.7% by weight. This powdery polymer was added with 0.5% by weight of 2,6-di-t-butyl-p-cresol, tetrakis[methylene 3-(3',5'-di-t-butyl-4'-
Hydroxyphenyl) propionate] methane (Irganox 1010 manufactured by Ciba Geigy) 0.05
% by weight and 0.15% by weight of calcium stearate were uniformly mixed and pelletized at 250°C. The MI of this pellet was 0.13 g/10 min. These results are summarized in Table-1. (2) Forming of ultra-thin reinforced film The propylene copolymer pellets obtained above were placed in a cylinder with an inner diameter of 50 mm and a screw L/
Using a D=28 extruder, tubular films with wall thicknesses of 30 μm and 15 μm were formed by melt extrusion through a spiral-type annular die and air-cooled inflation method. The air-cooled inflation molding conditions are as follows:
The temperature of the annular die was set to 220℃, and the take-up speed of the tubular film was 15 m/min when the wall thickness was 30 μ.
The speed was set at 30m/min. The stability of the tube was good, and wrinkles and wall thickness unevenness were good without any practical problems. The thus obtained tubular film was measured for Elmendorf tear strength in the longitudinal and transverse directions and the longitudinal/lateral ratio according to the method of JIS Z1702, and the impact strength of the film was measured using an impact tester manufactured by Toyo Seiki. The results are shown in Table 2, and the Elmendorf tear strength in the longitudinal and lateral directions and the balance in the longitudinal and lateral directions were good, and the impact strength was also sufficiently strong. Example 2 The method for producing a propylene copolymer is described in Part A.
Same as Example 1 except that the gas phase hydrogen concentration of each part B, the ethylene content of the propylene-ethylene mixed gas (part A is a homopolymer of propylene), and the polymerization ratio of parts A and B were changed. The same procedure was carried out, and the results shown in Table 1 were obtained. Furthermore, the ultrathin reinforced film was molded in exactly the same manner as in Example 1, and the performance of the obtained film was evaluated and the results shown in Table 2 were obtained. Comparative Examples 1 to 5 A for the production method of propylene copolymer
Gas phase hydrogen concentration of Part and Part B, ethylene content of propylene-ethylene mixed gas, and A and B
The procedure was carried out in exactly the same manner as in Example 1 except that the polymerization ratio of parts was changed, and the results shown in Table 1 were obtained. Further, the molding of an ultra-thin reinforced film was carried out in exactly the same manner as in Example 1, and the performance of the obtained film was evaluated as shown in Table 2.
The results were obtained. Example 3 (1) Production of propylene copolymer In a SUS-27 autoclave with an internal volume of 20, 10 heptane was charged under a nitrogen atmosphere, and 5 g of activated titanium trichloride and 8 g of diethylaluminium chloride were charged as catalysts. . When the nitrogen in the autoclave was replaced with propylene and the temperature was raised to 50℃, the pressure inside the autoclave was 1Kg/
cm 2 ·G, and propylene and hydrogen were charged so that the gas phase hydrogen concentration was 0.15% by volume. Part A was polymerized in two stages, A-1 and A-2. In A-1, the temperature of the contents of the autoclave was raised to 50°C, and polymerization was continued for 40 minutes while blowing propylene to maintain an internal pressure of 1 kg/cm 2 G at 50°C, and then the internal temperature was raised to 55°C. It was warm. In A-2, the ethylene content was increased at the same time as the temperature was raised to 55℃.
A 2.3% by weight propylene-ethylene mixed gas was continuously charged, and the polymerization was continued for 2.3 hours while maintaining the internal pressure at 4 kg/cm 2 ·G and the gas phase hydrogen concentration at 0.37% by volume. Part B was polymerized in two stages, B-1 and B-2. In B-1, after the polymerization of part A was completed, the residual monomer was immediately purged to normal pressure, and then the monomer was further suctioned and removed to 540 mmHg using a vacuum pump.
Next, hydrogen and ethylene were charged at once to 0.5 kg/cm 2 G so that the gas phase hydrogen concentration was 3% by volume.
At a polymerization temperature of 55 DEG C., a propylene-ethylene mixed gas having an ethylene content of 77.2% by weight was continuously charged, and polymerization was continued for 30 minutes while maintaining the autoclave internal pressure at 0.5 kg/cm 2 ·G. In B-2, after completely removing unreacted monomers using a vacuum pump, a propylene-ethylene mixed gas with a hydrogen and ethylene content of 80.0% by weight was added at 0.5Kg/cm 2 so that the gas phase hydrogen concentration was 19% by volume. G
Polymerization temperature: 55℃, internal pressure: 0.5Kg/
Propylene-ethylene mixed gas with an ethylene content of 97.8% by weight and hydrogen were continuously charged so as to maintain a gas phase hydrogen concentration of 19% by volume at cm 2 ·G, and polymerization was continued for 1 hour. After the polymerization is completed, methanol 2 is charged to stop the polymerization, and purified and dried using the usual method.
Kg of powdered polymer was obtained. The ratio of polymerization amounts in A-1, A-2, B-1, and B-2 was (6.0:77.7:7.0:9.3). In addition, samples A-1, A-2, B-1,
A very small amount of the polymerization slurry at the end of B-2 was taken out, and a large excess of methanol was charged, filtered and dried to obtain a powdery polymer. This A-1, A
-2, B-1, and B-2, the powder [η] was measured at the end of 3.81 dl/g, respectively.
They were 3.97 dl/g, 4.14 dl/g, and 4.22 dl/g.
From this, the generation of part A-2 [η] ([η] A-2 ) is [η] A-2 = 3.97 x (6.0 + 77.7) - 3.81 x 6.0 / 77.7 = 3
.98 The production of part B-1 [η] ([η] B-1 ) is [η] B-1 = 4.14 × (6.0 + 77.7 + 7.0)
−397 × (6.0 + 77.7) / 7.0 = 6.17 The generation of the B-2 part [η] ([η] B-2 ) is [η] B-2 = 4.22 × 100 − 4.14 × (6.0 + 77.7
+7.0)/9.3=5.00 Generation of the B part average including B-1 and B-2 [η] ([η] B ) is [η] B = 4.22×100−3.97×(6.0+77.7) /(7.0+9.
3) = 5.50. In addition, part A-2, part B-1, and part B-2 were obtained by calculating the material balance from the measured values of monomer partial pressure at each stage.
The ethylene content of each part is 2.7% by weight, respectively.
They were 77.1% by weight and 97.8% by weight. The subsequent steps for producing pellets and molding of an ultra-thin reinforcing film were carried out in exactly the same manner as in Example 1. The results are shown in Table-2 and Table-3. Example 4 A- for the production method of propylene copolymer
1, the gas phase hydrogen concentration of each of A-2, B-1, and B-2, the ethylene content of the propylene-ethylene mixed gas, and the polymerization ratio of A-1, A-2, B-1, and B-2. The procedure was carried out in exactly the same manner as in Example 3 except for the changes. The ultrathin reinforced film was molded in exactly the same manner as in Example 1. The results are shown in Table-2 and Table-3. Example 5 A method for producing propylene copolymer
The process was carried out in exactly the same manner as in Example 1, except that the gas phase hydrogen concentration, propylene-ethylene content of parts A and B, the propylene-ethylene content (part A is a propylene homopolymer), and the polymerization ratio of parts A and B were changed. and then table-
1 result was obtained. Furthermore, molding of an ultra-thin reinforced film was carried out in exactly the same manner as in Example 1, and the performance of the obtained film was evaluated and the results shown in Table 2 were obtained.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 フイルム成形用エチレン−プロピレン共重合
体において (a) 共重合体のメルトインデツクスが0.01〜0.5
g/10分であり、 (b) 共重合体のエチレン含有率が50重量%以下で
あり、 (c) 共重合体がエチレン含有率20重量%未満(ぷ
ロピレンホモポリマーも含む)であるA部50〜
95重量%とエチレン含有率35重量%以上である
B部50〜5重量%とから成るブロツク共重合体
であり、 (d) 更にA部の生成〔η〕AとB部の〔η〕Bとの間
に 10>〔η〕B≧〔η〕A+0.5 の関係を有することを特徴とするフイルム成形プ
ロピレン共重合体。
[Scope of Claims] 1. In an ethylene-propylene copolymer for film molding, (a) the copolymer has a melt index of 0.01 to 0.5;
g/10 minutes, (b) the ethylene content of the copolymer is 50% by weight or less, and (c) the copolymer has an ethylene content of less than 20% by weight (including propylene homopolymer). Part 50~
It is a block copolymer consisting of 95% by weight and 50 to 5% by weight of B part having an ethylene content of 35% by weight or more, (d) Further formation of part A [η] A and part B [η] B A film-forming propylene copolymer characterized by having a relationship of 10>[η] B ≧ [η] A +0.5.
JP11413879A 1979-09-07 1979-09-07 Propylene copolymer for forming film Granted JPS5638309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11413879A JPS5638309A (en) 1979-09-07 1979-09-07 Propylene copolymer for forming film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11413879A JPS5638309A (en) 1979-09-07 1979-09-07 Propylene copolymer for forming film

Publications (2)

Publication Number Publication Date
JPS5638309A JPS5638309A (en) 1981-04-13
JPH0113487B2 true JPH0113487B2 (en) 1989-03-07

Family

ID=14630082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11413879A Granted JPS5638309A (en) 1979-09-07 1979-09-07 Propylene copolymer for forming film

Country Status (1)

Country Link
JP (1) JPS5638309A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730145B2 (en) * 1986-10-30 1995-04-05 出光石油化学株式会社 Propylene block copolymer
JP2998448B2 (en) * 1992-09-16 2000-01-11 住友化学工業株式会社 Polypropylene block copolymer and its film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523684A (en) * 1975-06-27 1977-01-12 Showa Denko Kk Process for preparing ropylene copolymer
JPS5439487A (en) * 1977-09-05 1979-03-26 Showa Denko Kk Preparation of propylene copolymer
JPS5543152A (en) * 1978-09-22 1980-03-26 Chisso Corp Preparation of copolymer
JPS55123637A (en) * 1979-03-15 1980-09-24 Sumitomo Chem Co Ltd Extruded sheet of polypropylene

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523684A (en) * 1975-06-27 1977-01-12 Showa Denko Kk Process for preparing ropylene copolymer
JPS5439487A (en) * 1977-09-05 1979-03-26 Showa Denko Kk Preparation of propylene copolymer
JPS5543152A (en) * 1978-09-22 1980-03-26 Chisso Corp Preparation of copolymer
JPS55123637A (en) * 1979-03-15 1980-09-24 Sumitomo Chem Co Ltd Extruded sheet of polypropylene

Also Published As

Publication number Publication date
JPS5638309A (en) 1981-04-13

Similar Documents

Publication Publication Date Title
US5948547A (en) Composition based on statistical propylene copolymers, process for their manufacture and multilayer heat-sealable sheets containing them
JP2004517199A (en) Biaxially oriented polypropylene film
JPH09324022A (en) Polypropylene block copolymer
JPH0759641B2 (en) Butene-1 polymer film and laminated film thereof
JP4655344B2 (en) PROPYLENE COPOLYMER, PROCESS FOR PRODUCING THE SAME, AND FILM COMPRISING THE PROPYLENE COPOLYMER
KR100304037B1 (en) Polypropylene laminated film
JPH0113487B2 (en)
JPS6156244B2 (en)
KR20020077193A (en) Polypropylene-based resin composition, process for producing the same and stretched film containing the same
JP4065612B2 (en) Polypropylene film
JP3769886B2 (en) Self-adhesive packaging film
JPS6227091B2 (en)
GB2105651A (en) Multi-layer polypropylene film
JP3163787B2 (en) Modified polypropylene block copolymer
JP3070419B2 (en) Polypropylene laminated film
KR101120121B1 (en) Manufacturing method of block copolymer for heat sealable film applications
JP4797288B2 (en) Polypropylene resin composition and method for producing T-die film
JPS58173141A (en) Production of polypropylene resin composition for extrusion/stretching
JPH0464527B2 (en)
JPS6339608B2 (en)
JP3324085B2 (en) Multilayer film
JP2003246899A (en) Polyethylene resin composition
JPH08192462A (en) Opaque stretched film
JPS642138B2 (en)
JPH0420003B2 (en)