JPS62270724A - Production of grain oriented electrical steel sheet having high magnetic flux density - Google Patents

Production of grain oriented electrical steel sheet having high magnetic flux density

Info

Publication number
JPS62270724A
JPS62270724A JP61113477A JP11347786A JPS62270724A JP S62270724 A JPS62270724 A JP S62270724A JP 61113477 A JP61113477 A JP 61113477A JP 11347786 A JP11347786 A JP 11347786A JP S62270724 A JPS62270724 A JP S62270724A
Authority
JP
Japan
Prior art keywords
annealing
coil
magnesia
temperature
separation material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61113477A
Other languages
Japanese (ja)
Other versions
JPS6320887B2 (en
Inventor
Toyohiko Konno
今野 豊彦
Yozo Suga
菅 洋三
Toshimi Kawabata
川畑 敏美
Yoichi Zaizen
洋一 財前
Masayoshi Mizuguchi
水口 政義
Tetsuya Nishimura
哲也 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61113477A priority Critical patent/JPS62270724A/en
Publication of JPS62270724A publication Critical patent/JPS62270724A/en
Publication of JPS6320887B2 publication Critical patent/JPS6320887B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To execute slab heating at the temp. equiv. to the heating temp. of an ordinary steel and to provide an improvement of magnetic characteristics and shortening of finish annealing time by limiting the space between coil sheets and specifying the finish annealing conditions for the coils at the time of coiling a decarburization-annealed strip having a specific compsn. CONSTITUTION:The slab consisting of 0.025-0.075wt% C, 2.5-4.5% Si, 0.010-0.060% Sol Al, 0.0030-0.0130% N, S+0.405Se<=0.014%, 0.05-0.8% Mn, and the balance iron and inevitable impurities is heated and hot rolled at <1,280 deg.C. The space between the coil sheets is maintained at >=20mum or the strip is coiled at <=0.9g/cm<3> packing of a separating material for annealing essentially consisting of magnesia between said sheets at the time of cold rolling the hot rolled slab and coiling the decarburization-annealed strip. Such coil is subjected to finish annealing at <=30 deg.C/hr heating up rate by incorporating >=5% gaseous nitrogen into the atmosphere between the temp. from a 600-700 deg.C region to 800-900 deg.C region.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は特に磁束密度の高い一方向性′iif磁鋼板に
関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention particularly relates to a unidirectional 'IIF magnetic steel sheet with a high magnetic flux density.

〔従来の技術〕[Conventional technology]

一方向性電磁鋼板は主にトランス鉄心に用いられる軟磁
性材料である。この種の鋼板は透磁率を磁束の流れる方
向にのみ著しく高める目的で磁化容易軸が圧延方向に対
し数置の範囲内にそろった結晶粒((110)Cool
)方位粒)に!、9構成され、また成分的にはStを含
有することKよシ固有抵抗を高め、ジュール熱に起因す
る鉄損を低減している。その表面には鋼板製造過程の脱
炭焼鈍時に選択酸化されたStO,とその上に塗布され
たMgOとが仕上焼鈍時に固相反応することによシ生じ
た7オルステライトMgtSiO,が数μmの厚さで付
着しておシ、絶縁皮膜の役目を果たすとともに、磁区の
細分化を行ない、磁気特性的にも重要な役割シを任って
いる。通常はさらに張力付加の目的でコロイダルシリカ
を主体とした2次皮膜が施された後、トランス鉄心とし
て利用されている。このような観点からすれば一方向性
電磁鋼板は圧延方向に(110)Cool)方位を持つ
結晶粒によシおおわれ、表層部に7オルステライトを主
体とするセラミックス皮膜及び2次皮膜を有する複合材
料であると言える。
Unidirectional electrical steel sheet is a soft magnetic material mainly used for transformer cores. This type of steel sheet is made of crystal grains ((110) Cool
) orientation grain ) to! , 9, and the inclusion of St increases the specific resistance and reduces core loss due to Joule heat. On its surface, there is a few micrometers of 7-orsterite MgtSiO, which is produced by a solid phase reaction between StO selectively oxidized during decarburization annealing in the steel sheet manufacturing process and MgO coated on it during final annealing. It adheres thickly and plays the role of an insulating film, subdivides magnetic domains, and plays an important role in terms of magnetic properties. Usually, it is used as a transformer core after being coated with a secondary coating mainly made of colloidal silica for the purpose of adding tension. From this point of view, unidirectional electrical steel sheets are covered with crystal grains with (110)Cool) orientation in the rolling direction, and have a ceramic coating mainly composed of 7-orsterite and a secondary coating on the surface layer. It can be said that it is a material.

さて、このような一方向性電磁鋼板における(110)
(0013方位の高い集積度の達成と、酸化物系セラミ
ックスであるところの7オルステライト皮膜の生成は通
常、最終仕上焼鈍と呼ばれる13ox焼鈍中、はぼ時期
を同じくして起こる。前者は2次再結晶と呼ばれる(1
10)Cool)方位粒の異常粒成長、後者は鋼板表面
におけるSiOt−MgO系固相反応によシ達成され、
この2つの反応は本質的にまったく異った現象であるに
もかかわらず、間接的に干渉しあいながら現実の反応は
進行している。
Now, (110) in such a unidirectional electrical steel sheet
(The achievement of a high degree of integration of the 0013 orientation and the formation of a 7-orsterite film, which is an oxide-based ceramic, usually occur at the same time during the 13ox annealing, which is called the final annealing. It is called recrystallization (1
10) Cool) Abnormal grain growth of oriented grains, the latter achieved by SiOt-MgO solid phase reaction on the steel plate surface,
Although these two reactions are essentially completely different phenomena, the actual reactions progress while indirectly interfering with each other.

周知のように2次再結晶を起こすためには仕上焼鈍前の
鋼板に微細なMnS、 Ai! N等の析出物(通常イ
ンヒビターと呼ばれる)を存在させることによシー次再
結晶粒の正常粒成長を抑制する必要がある。そして二次
再結晶を適切に制御するととによ、9(110)(00
1)方位粒の集積度が高まシ高磁束密度を得ることがで
きる。このような高磁束密度一方向性電磁鋼板の製造技
術として代表的なものに田口悟等による特公昭40−1
5644号公報及び今中拓−等による特公昭51−13
469号公報記載の方法がある。前者においてはMnS
及びAINを後者ではMnS、 MnBe、 Sb等を
主なインヒビターとして用いている。従って現在の技術
においてはこれらインヒビターとして機能する析出物の
大きさ、形態及び分散状態を適正制御することが不可欠
である。MnSに関して言えば、現在の工程では熱延前
のスラブ加熱時にMnSをいったん完全固溶させた後、
熱延時に析出する方法がとられている。二次再結晶に必
要な量のMnSを完全固溶するためくは140000程
度の温度が必要である。これは普通鋼のスラブ加熱温度
に比べて2000C以上も高く、この高温スラブ加熱処
理には以下に述べるような不利な点がある。
As is well known, in order to cause secondary recrystallization, fine MnS, Ai!, etc. are added to the steel sheet before final annealing. It is necessary to suppress the normal grain growth of the sheath recrystallized grains by the presence of a precipitate such as N (usually called an inhibitor). And if secondary recrystallization is properly controlled, 9 (110) (00
1) Since the degree of accumulation of oriented grains is high, a high magnetic flux density can be obtained. A typical example of the manufacturing technology for such high magnetic flux density unidirectional electrical steel sheets is the 40-1 Special Publication by Satoru Taguchi et al.
Publication No. 5644 and Special Publication No. 51-13 by Taku Imanaka et al.
There is a method described in No. 469. In the former, MnS
In the latter case, MnS, MnBe, Sb, etc. are used as main inhibitors. Therefore, in current technology, it is essential to properly control the size, morphology, and dispersion state of these precipitates that function as inhibitors. Regarding MnS, in the current process, once MnS is completely dissolved during slab heating before hot rolling,
A method is used in which it precipitates during hot rolling. A temperature of about 140,000 is required to completely dissolve the amount of MnS required for secondary recrystallization. This is 2000C or more higher than the slab heating temperature of ordinary steel, and this high temperature slab heating treatment has the following disadvantages.

1)方向性電磁鋼専用の高温スラブ加熱炉が必要。1) A high-temperature slab heating furnace exclusively for grain-oriented electrical steel is required.

2)加熱炉のエネルギー原単位が高い。2) The energy consumption rate of the heating furnace is high.

3)溶融スケール量が増大し、いわゆるノロかき出し等
にみられるように操業上の悪影響が大きい。
3) The amount of molten scale increases, which has a large negative impact on operations as seen in so-called slag scraping.

このような問題点を回避するためにはスラブ加熱温度を
普通鋼部みに下げればよいわけであるが、このことは同
時にインヒビターとして有効なMnSの量を少なくする
かあるいはまったく用いないことを意味し、必然的に二
次再結晶の不安定化をもたらす。このため低温スラブ加
熱化を実現するためには何らかの形でMnS以外の析出
物などにょジインヒビターを強化し、仕上焼鈍時の正常
粒成長の抑制を充分にする必要がある。このようなイン
ヒビターとしては硫化物の他、窒化物、酸化物及び粒界
析出元素等が考えられ、公知の技術として例えば次のよ
うなものがあげられる。
In order to avoid such problems, the slab heating temperature can be lowered to that of ordinary steel, but this also means that the amount of MnS, which is effective as an inhibitor, must be reduced or not used at all. This inevitably leads to destabilization of secondary recrystallization. Therefore, in order to realize low-temperature slab heating, it is necessary to strengthen the nitrogen inhibitor such as precipitates other than MnS in some way to sufficiently suppress normal grain growth during final annealing. In addition to sulfides, nitrides, oxides, grain boundary precipitated elements, etc. can be considered as such inhibitors, and examples of known techniques include the following.

特公昭54−24685号公報ではAs% B s %
ph、 Sb等の粒界偏析元素を鋼中に含有することK
よシスラブ加熱温度を1050〜1350’Cの範囲に
する方法が開示された。特開昭52−24116号公報
ではMの他、ZrXT1% B% Nbs”% V、C
r、 Mo等の窒化物生成元素を含有することによシス
ラブ加熱温度を11℃〜126゜0Cの範囲にする方法
が開示された。また、特開昭57−158322号公報
ではMn含有量を下げ、Mn / Sの比率を2.5以
下にすることによシ低温スラブ加熱化を行ない、さらに
Cuの添加にょシ二次再結晶を安定化する技術が開示さ
れた。一方、これらインヒビターの補強と組み合わせて
金属組織の側から改良を加えた技術も開示された。すな
わち特開昭57−89433号公報ではMn に加えS
、 Be、 Sb、 Bi、 Pb、 Sn、B等の元
素を加え、これにスラブの柱状晶率と2次冷延圧下率を
組み合わせることによ11℃〜1250’Cの低温スラ
ブ加熱化を実現している。さらに特開昭59−1903
24号公報ではSあるいはSsに加え、M及びBと窒素
を主体としてインヒビターを構成し、これに冷延後の一
次再結晶焼鈍時にパルス焼鈍を施すことによシニ次再結
晶を安定化する技術が公開された。このように方向性電
磁鋼板製造における低温スラブ加熱化実現のためには、
これまでに多大な努力が続けられてきている。
In Japanese Patent Publication No. 54-24685, As%Bs%
Containing grain boundary segregation elements such as ph and Sb in steel
A method for heating the slab to a range of 1050 to 1350'C has been disclosed. In JP-A No. 52-24116, in addition to M, ZrXT1% B% Nbs”% V, C
A method has been disclosed in which the heating temperature of the cis-slab is made to range from 11° C. to 126° C. by containing nitride-forming elements such as R and Mo. Furthermore, in JP-A-57-158322, low-temperature slab heating is performed by lowering the Mn content and the Mn/S ratio is 2.5 or less, and secondary recrystallization is performed by adding Cu. A technology has been disclosed to stabilize the On the other hand, a technique was also disclosed in which improvements were made from the metal structure side in combination with reinforcement of these inhibitors. That is, in JP-A-57-89433, in addition to Mn, S
By adding elements such as , Be, Sb, Bi, Pb, Sn, B, etc., and combining this with the columnar crystallinity of the slab and the secondary cold rolling reduction ratio, low-temperature slab heating of 11°C to 1250'C is realized. are doing. Furthermore, JP-A-59-1903
Publication No. 24 discloses a technology to stabilize secondary recrystallization by forming an inhibitor mainly consisting of M, B, and nitrogen in addition to S or Ss, and subjecting it to pulse annealing during primary recrystallization annealing after cold rolling. was published. In this way, in order to realize low-temperature slab heating in the production of grain-oriented electrical steel sheets,
Great efforts have been made so far.

さて本発明者等は先に特開昭59−56522号公報に
おいてMnを0.08〜0.45、Sを0.007以下
にするととKよシ低温スラブ加熱化を可能にする技術を
開示した。これは本質的にはSを下げルコとによシ(M
n:1(S)積を120000で与えられる溶解度積以
下にし、二次再結晶の安定をPの添加、仕上焼鈍中の昇
温速度を15℃/hr以下にする等の技術で補なったも
のである。
The present inventors previously disclosed in Japanese Patent Application Laid-Open No. 59-56522 a technique that enables heating of slabs at a lower temperature than K by reducing Mn to 0.08 to 0.45 and S to 0.007 or less. did. This essentially lowers the S to the left (M
The n:1(S) product was reduced to below the solubility product given by 120,000, and the stability of secondary recrystallization was supplemented by techniques such as adding P and setting the temperature increase rate during final annealing to below 15°C/hr. It is something.

この方法はその後特開昭59−190325号公報にお
いてCrを添加することによ92次再結晶の安定化と磁
性の向上をはかる方向に進歩してきた。
This method was subsequently advanced in the direction of stabilizing the 92nd recrystallization and improving magnetism by adding Cr in Japanese Patent Application Laid-Open No. 59-190325.

〔本発明の解決しようとする問題点〕[Problems to be solved by the present invention]

これまで述べてきたように方向性7を磁鋼板製造におけ
る低温スラブ加熱化の実現に向けて多くの研究者が多大
な努力をしてきたKもかかわらず、前述の技術は研究室
規模の製造手段にとどまシ、現実の製造工程を大巾に変
更するまでKは到っていない。この原因として主要なも
のとして、Mnsに代替するインヒビターの機能不足に
よる二次再結晶の不安定化があげられる。
As mentioned above, many researchers have made great efforts to realize low-temperature slab heating in the production of magnetic steel sheets. However, K has not been reached until the actual manufacturing process has been drastically changed. The main cause of this is destabilization of secondary recrystallization due to insufficient function of the inhibitor that replaces Mns.

先に述べた本発明者等による特開昭59−56522号
公報及び特開昭59−190325号にみられる成分系
においても単重の大きな10トンないし20トンコイル
で最終仕上焼鈍を行なう場合、コイル巾方向・長手方向
に磁気特性のバラつきがみられることが新たな問題点と
して現出した。
Even in the composition system found in JP-A-59-56522 and JP-A-59-190325 by the present inventors mentioned above, when final finish annealing is performed with a coil having a large unit weight of 10 to 20 tons, the coil A new problem has emerged: variations in magnetic properties in the width and length directions.

本発明者らはこれらの問題点に対する解決法として先に
特願昭60−207757号において仕上焼鈍中の雰囲
気の酸素分圧と昇温速度を限定することにより成品の磁
気特性を安定する方法を開示した。しかしながらこの方
法では仕上焼鈍中の昇温速度を充分速くすることができ
ず、仕上焼鈍に要する時間が長時間に及び、経済的に好
ましくないという新たな問題が生じた。
As a solution to these problems, the present inventors previously proposed in Japanese Patent Application No. 60-207757 a method of stabilizing the magnetic properties of the product by limiting the oxygen partial pressure and temperature increase rate of the atmosphere during finish annealing. Disclosed. However, with this method, the temperature increase rate during final annealing cannot be made sufficiently fast, and a new problem arises in that the time required for final annealing is long, which is economically undesirable.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明の目的は低温スラブ加熱を可能にした特開昭59
−56522号公報、同59−190325号公報、特
願昭60−207757号における前述のような問題点
を除去改善し、仕上焼鈍中におこる二次再結晶を安定化
し、成品の磁束密度を高め、かつ短時間で終了する仕上
焼鈍方法を提供することにある。
The purpose of the present invention is to make low-temperature slab heating possible.
The problems mentioned above in Publication No. 56522, Publication No. 59-190325, and Japanese Patent Application No. 60-207757 are removed and improved, the secondary recrystallization that occurs during finish annealing is stabilized, and the magnetic flux density of the product is increased. The object of the present invention is to provide a finish annealing method that can be completed in a short time.

すなわち本発明は重量でc : 0.02 s〜0.0
75%、Si:2.5〜4.5%、酸可溶性Ag:0.
010〜0.060%、N:0.0030〜0.013
0%、S+ 0.40 s  Be : 0.014%
以下、Mn:0.05チ以上0.8%以下を含有するス
ラブを1280℃未満の温度で加熱後、通常の方法で一
方向性電磁鋼板を作成する方法において、マグネシアを
主体とした焼鈍分離材を塗布する際、スラリー状にした
焼鈍分離材を塗布乾燥することによる塗布量を特定の範
囲に限定し、その上に静電塗布法によるマグネシアを一
定量塗布する方法を採用し、さらにこれらの焼鈍分離材
中に窒化フェロマンガンを特定量加えることによシ、該
当成分の低温スラブ加熱素材の2次再結晶を単重の大き
なコイルにおいても充分安定させ、高磁束密度の材料を
得ることが可能となったのでこれらを本発明の構成要因
とした。
That is, the present invention has c: 0.02 s to 0.0 by weight.
75%, Si: 2.5-4.5%, acid-soluble Ag: 0.
010-0.060%, N: 0.0030-0.013
0%, S+ 0.40 s Be: 0.014%
Hereinafter, in the method of producing a unidirectional electrical steel sheet by a normal method after heating a slab containing Mn: 0.05% or more and 0.8% or less, annealing separation mainly consisting of magnesia is performed. When applying the material, we apply and dry an annealing separation material in the form of a slurry to limit the amount of application to a specific range, and then apply a fixed amount of magnesia using an electrostatic coating method. By adding a specific amount of ferromanganese nitride to the annealed separation material, secondary recrystallization of the low-temperature slab heating material of the corresponding component is sufficiently stabilized even in a coil with a large unit weight, and a material with high magnetic flux density can be obtained. Since these have become possible, these are considered as constituent factors of the present invention.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

第2図にC: 0.06%、st:3.3%、Mn :
 0.2%、S:0.004%、P:0.03%、u:
o、o27%、N:0.003%、(:’r : Q、
10 %を含有する冷延板を湿水素雰囲気中で脱炭焼鈍
した後、Tie。
Figure 2 shows C: 0.06%, st: 3.3%, Mn:
0.2%, S: 0.004%, P: 0.03%, u:
o, o27%, N: 0.003%, (:'r: Q,
After decarburizing the cold rolled sheet containing 10% Tie in a wet hydrogen atmosphere.

を5重量部含んだマグネシアを主成分とする焼鈍分離材
を塗布し、N、 : 25%、H2: 75%の界線を
示す。第3図には対応する材料の2次再結晶温度(約1
000℃)付近における金相写真から、JIS横断法に
よって求めた平均結晶粒径の変化を示した。この実験か
ら、仕上焼鈍中の窒素吸収は7℃〜850’Cの温度範
囲で起こり、この範囲で窒素吸収が充分であった材料は
1000’C付近で発生する2次再結晶も良好で、磁気
特性的にも優れた材料であることが判明した。鋼中に吸
収された窒素がどのような形で存在しているかを引き続
き調査した。まず抽出レプリカ法によシ昇温中のそれぞ
れの温度における介在物を抽出、透過電子顕微鏡を用い
てこれら介在物の分散状態の変化等を調べるとともに介
在物の同定を行なった。その結果、嘩収された窒素はA
AN、(Si、Mn)−nitrides、(Si 、
M) −nitrides  として特に粒界に多く析
出していることが判明した。そして金相写真との比較か
らこのように粒界に析出した析出物の量が多い場合正常
粒成長の抑制も充分であシ、2次再結晶も安定であるこ
とがわかった。すなわち、このような粒界析出型インヒ
ビターを有効に用いることによシ、本発明のようにMn
Sをインヒビターとして用いない場合でも2次再結晶は
安定するとの知見に本発明者らは到達した。そしてこの
目的のためにはるる程度の窒素吸収を行なわせることが
必要である。このため、最終仕上焼鈍の際、この窒素吸
収の可能な6℃〜7000Cの温度域から8℃〜900
’Cの温度域までを15℃/hr以下のゆっくシとした
昇温速度で加熱することを特願昭60−207757号
公報では必要条件とした。このため先に述べたように仕
上焼鈍に要する時間が従来法に比べ長時間に及んだので
ある。
An annealing separation material whose main component is magnesia containing 5 parts by weight of is applied, and a boundary line of N: 25% and H2: 75% is shown. Figure 3 shows the secondary recrystallization temperature of the corresponding material (approximately 1
The changes in the average crystal grain size determined by the JIS transverse method are shown from the gold phase photographs at around 000°C. From this experiment, nitrogen absorption during final annealing occurs in the temperature range of 7°C to 850'C, and materials that have sufficient nitrogen absorption in this range also have good secondary recrystallization that occurs around 1000'C. It turned out to be a material with excellent magnetic properties. We continued to investigate the form of nitrogen absorbed in steel. First, inclusions at each temperature during heating were extracted using the extraction replica method, and changes in the dispersion state of these inclusions were investigated using a transmission electron microscope, and the inclusions were identified. As a result, the nitrogen recovered is A
AN, (Si,Mn)-nitrides, (Si,
M) -nitrides were found to precipitate in large quantities, especially at grain boundaries. Comparison with gold phase photographs revealed that when the amount of precipitates precipitated at grain boundaries is large, normal grain growth is sufficiently suppressed and secondary recrystallization is stable. That is, by effectively using such a grain boundary precipitation type inhibitor, Mn
The present inventors have reached the knowledge that secondary recrystallization is stable even when S is not used as an inhibitor. For this purpose, it is necessary to absorb a large amount of nitrogen. For this reason, during final annealing, the temperature range from 6°C to 7000°C, where nitrogen absorption is possible, to 8°C to 900°C.
Japanese Patent Application No. 60-207757 makes it a necessary condition to heat up to a temperature range of 15°C at a slow temperature increase rate of 15°C/hr or less. For this reason, as mentioned above, the time required for final annealing was longer than in the conventional method.

その後本発明者等は単重の大きなコイルで生産規模の実
験を進め、次の条件を具備すれば昇温速度が15〜30
℃/hrであってもコイルの巾方向、長手方向にわたっ
て均一に二次再結晶は安定するとの知見を得、本発明に
到達した。必要な条件とはl)脱炭焼鈍板をコイル状に
巻きとる際、コイル板間の距離を20μm以上とするか
、もしくはコイル板間の焼鈍分離材の充填率を0.9F
/口3以下とすること、2)仕上焼鈍中6℃〜700℃
の温度域から8℃〜900℃の温度域までの温度間の雰
囲気を窒素ガスを5チ以上含み、かつこの温度間の昇温
速度を30’C/hr以下とすることの2点である。ま
た、コイル板間の距離と焼鈍分離材の充填率を制御する
方法としては、ストリップをコイル状に巻きとる時の巻
き取シテンションを変えること、板間に糸やワイヤーを
巻きつけることなどI々考見られるが、現場的に簡便で
かつ正確な方法としては焼鈍分離材を付着する際、従来
の湿式塗布法に加え、乾式静電塗装法を併用することが
有効であることが判明したので、この方法を発明の一要
件とした。さらにこの焼鈍分離材塗布の際、窒化フェロ
マンガンを特定量含有することが該当成分系の材料の2
次再結晶の安定に有効であるので、この窒化フェロマン
ガン添加を発明の一部と成した。
After that, the inventors conducted experiments on a production scale using a coil with a large unit weight, and found that if the following conditions were met, the temperature increase rate would be 15 to 30.
The present invention was achieved based on the finding that secondary recrystallization is stabilized uniformly over the width and length directions of the coil even at ℃/hr. Necessary conditions are l) When winding the decarburized annealed plates into a coil, the distance between the coil plates should be 20 μm or more, or the filling rate of the annealing separating material between the coil plates should be 0.9F.
2) 6°C to 700°C during final annealing
The two points are that the atmosphere between the temperature range of from . In addition, methods for controlling the distance between the coil plates and the filling rate of the annealing separation material include changing the winding tension when winding the strip into a coil, and winding thread or wire between the plates. However, it has been found that a simple and accurate method for applying the annealing separation material is to use a dry electrostatic coating method in addition to the conventional wet coating method. Therefore, this method was made a requirement of the invention. Furthermore, when applying this annealing separation material, it is necessary to contain a specific amount of ferromanganese nitride in the material of the corresponding component system.
Since it is effective in stabilizing the subsequent recrystallization, this addition of ferromanganese nitride was made a part of the invention.

これらの点について第4図を用いて説明する。These points will be explained using FIG. 4.

この図はマグネシアパウダーの塗布法、窒化フェロマン
ガンの添加及び仕上焼鈍中の6℃〜900’Cの昇温速
度を変化させた場合のコイル巾方向の磁性の変化をまと
めたものである。ここでコイル板間の距離は焼鈍分離材
の塗布量、塗布法及びコイル状にストリップを巻き取る
際の巻き取りテンシランによシ変えることができる。
This figure summarizes the changes in magnetism in the width direction of the coil when the magnesia powder application method, the addition of ferromanganese nitride, and the temperature increase rate from 6°C to 900'C during final annealing are changed. Here, the distance between the coil plates can be changed depending on the amount of annealing separation material applied, the application method, and the winding tension when winding the strip into a coil.

この図かられかるように静電塗装法を用いた場合であっ
ても、板間の間隔が18μm、MgO充填率が帆941
/cm”の場合、仕上焼鈍の昇温速度が128C/hr
程度と比較的遅い場合、磁性はコイル巾方向に安定であ
るが昇温速度の増加に伴ないコイル巾中央部の磁性が劣
化する。ところが、第4図(e) K示されるようKこ
のような磁性の劣化はコイル板間の距離を大きくし、M
goの充填率を下げることによシ解消するのである。こ
の原因は、インヒビターとして機能する窒化物を生成す
るのに必要な窒素が、コイル外部の雰囲気から供給され
、従ってその拡散路となるコイル板間の空隙の広さが2
次再結晶の安定性に重要な意味を持っているからと考え
られる。
As can be seen from this figure, even when using the electrostatic coating method, the gap between the plates is 18 μm and the MgO filling rate is 941 μm.
/cm”, the temperature increase rate for final annealing is 128C/hr.
If the heating rate is relatively slow, the magnetism is stable in the width direction of the coil, but as the temperature rise rate increases, the magnetism at the center of the coil width deteriorates. However, as shown in Fig. 4(e), such deterioration of magnetism increases the distance between the coil plates, and
This problem can be solved by lowering the filling rate of go. The reason for this is that the nitrogen necessary to generate nitrides, which function as inhibitors, is supplied from the atmosphere outside the coil, and the gap between the coil plates, which serves as a diffusion path, is 2.
This is thought to be because it has an important meaning for the stability of subsequent recrystallization.

また、窒化を順調に進行させるためには、脱炭焼鈍時に
形成された酸化皮膜のうち最表面の(Fe。
In addition, in order to smoothly progress nitriding, it is necessary to remove (Fe) on the outermost surface of the oxide film formed during decarburization annealing.

Mn )! 5i04 (fayalite )層を還
元させることが望ましく、従って600℃〜900℃に
至る間の雰囲気の酸素分圧はPH1゜/pH,≦帆01
5であることが望ましい。
Mn)! It is desirable to reduce the 5i04 (fayalite) layer, so the oxygen partial pressure in the atmosphere between 600°C and 900°C is PH1°/pH, ≦fayalite
5 is desirable.

以上述べた如く、該当成分の低温スラブ加熱材の2次再
結晶はコイル巾方向長手方向に亘シ安定し、コイル巾方
向・長手方向にわたって磁束密度(BSで表わす)を1
.92(T)以上確保することが可能となった。さらに
仕上焼鈍の焼鈍時間も昇温速度を25°(”/ h r
程度に取ることによシ、短縮され、通常のMnS 、 
MnBeあるいはAI!N等を主体とするインヒビター
を有する高温スラブ加熱材の仕上焼鈍と大差なくなった
As mentioned above, the secondary recrystallization of the low-temperature slab heating material of the relevant component is stable across the width and length of the coil, and the magnetic flux density (expressed as BS) is 1 across the width and length of the coil.
.. It became possible to secure 92 (T) or more. Furthermore, the temperature increase rate for the final annealing time was changed to 25° (''/hr
By taking it to a certain extent, it can be shortened to the normal MnS,
MnBe or AI! It is not much different from the final annealing of high-temperature slab heating materials containing inhibitors mainly composed of N and the like.

次に本発明の構成要件の限定理由を述べる。Next, the reasons for limiting the constituent elements of the present invention will be described.

Cは0.025重量%(以下単にチと略述)未満になる
と二次再結晶が不安定になシ、かつ二次再結晶した場合
でも磁束密度がB、でt、80(T)Lか得られないの
で、0.025%以上とした。一方、Cが多くなシ過ぎ
ると脱炭焼鈍時間が長くなυ経済的でないので0.07
5%以下とした。Siは4.5チを超えると冷延時の割
れが著しくなるので4.5チ以下とした。又、2.5%
未満では素材の固有抵抗が低すぎ、トランス鉄心材料と
して必要な低鉄損が得られないので2.5%以上とした
。望ましくは3.2チ以上である。M及びNは二次再結
晶の安定化に必要なMNもしくは(Si 、 At )
 n1tridesを確保するため酸可溶性Mとして0
.010%以上、が必要である。酸可溶性Mがo、og
oチを超えると熱延板のALNが不適切となシニ次再結
晶が不安定になるのでo、o 6o%以下とした。Nに
ついては通常の製鋼作業では0.0030 S以上にす
ることが困難であシ、これ以下にすることは経済的に好
ましくないので0.0030 S以上、また、0.01
30%を超えるとブリスターと呼ばれる1鋼板表面のふ
くれ”が発生するので0.0130%以下とした。
If C is less than 0.025% by weight (hereinafter simply referred to as "C"), secondary recrystallization becomes unstable, and even when secondary recrystallization occurs, the magnetic flux density is B, t, 80 (T) L. Therefore, it was set to 0.025% or more. On the other hand, if there is too much C, the decarburization annealing time will be long and it is not economical, so 0.07
It was set to 5% or less. If Si exceeds 4.5 inches, cracking during cold rolling will become significant, so the Si thickness was set to 4.5 inches or less. Also, 2.5%
If it is less than 2.5%, the specific resistance of the material will be too low and the low core loss required as a transformer core material cannot be obtained, so it is set to 2.5% or more. It is preferably 3.2 inches or more. M and N are MN or (Si, At) necessary for stabilizing secondary recrystallization
0 as acid soluble M to ensure n1trides
.. 0.010% or more is required. Acid soluble M is o, og
If it exceeds o, the ALN of the hot-rolled sheet becomes inappropriate and the cylindrical recrystallization becomes unstable. Regarding N, it is difficult to make it 0.0030 S or more in normal steelmaking work, and it is economically undesirable to make it less than this, so 0.0030 S or more, and 0.01
If it exceeds 30%, blister formation on the surface of the steel sheet occurs, so it was set to 0.0130% or less.

AjNあるいは本発明において重要な役目を持っている
と考えられる( Si 、 AX ) n1tride
s以外のインヒビターであるところのMn S +Mn
S eが鋼中に存在しても仕上焼鈍中の窒化処理を変え
ることによシ、2次再結晶は安定する。従って2次再結
晶という点から原則的にはMn1S$Beに対する規制
はない。しかしながらSやBeが高いと線状細粒と呼ば
れる2次再結晶不良部が発生する傾向にあシ、この2次
再結晶不良部の発生を予防するためには窒化処理が充分
であれば(S+0.405 Be)≦0.014%以下
であることが望ましい。SあるいはBeがこれ以上であ
るといかに窒化処理によ’) (Si e At、 )
 n1tridesを鋼中に作ルインヒビターを強化し
ても2次再結晶不良部が発生する確率が高くなシ好まし
くない。また、窒化処理に要する窒化7エロマンガンの
量、仕上焼鈍に要する時間などがかさみこのような観点
からもSあるいはBeを不必要に増やすことは意味がな
い。
AjN or (Si, AX) n1tride which is considered to have an important role in the present invention
Mn S + Mn which is an inhibitor other than s
Even if S e is present in the steel, secondary recrystallization can be stabilized by changing the nitriding treatment during final annealing. Therefore, in principle, there are no restrictions on Mn1S$Be from the point of view of secondary recrystallization. However, if S and Be are high, secondary recrystallization defects called linear fine grains tend to occur, and if nitriding is sufficient to prevent the occurrence of secondary recrystallization defects ( It is desirable that S+0.405 Be)≦0.014% or less. If the S or Be content is higher than this, the nitriding process will be difficult.
Even if n1trides are made in steel to strengthen the inhibitor, the probability of secondary recrystallization defects is high, which is not preferable. Further, the amount of 7-eromanganese nitride required for nitriding treatment, the time required for final annealing, etc. increase, and from this point of view, it is meaningless to unnecessarily increase S or Be.

Mnの下限値は0.05%である。これ以上低くすると
熱延板の耳形状が悪ぐなシ歩留シが劣化する。しかし、
良好な7オルステライト皮膜を形成するという観点から
はMnは(0,05+7 (S+0.405Be))1
以上であることが望ましい。すなわち、本発明者等が%
願昭59−53819号に詳述したように、フォルステ
ライト皮膜の生成反応であるところのMgO−Sin、
固相反応に際してMnOは触媒的役割を果たす。このた
めに必要なMn活量を鋼中に確保するためKはMnをM
nSあるいはMnBeの形でトラップする鋼中のS及び
Be :tに対して一定量以上のMnが必要であシ、こ
の観点からMnは[0,05+7 (S+0.405 
Be ) )1以上であることが望ましい。Mnがこの
量以下であると7オルステライトの結晶粒径が大きくな
シ皮膜の密着性も多少劣化する。しかし、通常はこのフ
ォルステライト皮膜の上にさらにコロイダルシリカを主
体とした2次コーティングを付加して製品とするわけで
あシ、現実の使用に際して問題となることはない。
The lower limit of Mn is 0.05%. If it is lower than this, the edge shape of the hot rolled sheet will be poor and the yield will be degraded. but,
From the viewpoint of forming a good 7-orsterite film, Mn is (0.05+7 (S+0.405Be))1
The above is desirable. That is, the inventors
As detailed in Application No. 59-53819, MgO-Sin, which is a reaction for forming a forsterite film,
MnO plays a catalytic role during the solid phase reaction. To ensure the necessary Mn activity in the steel, K is
S and Be in steel to be trapped in the form of nS or MnBe: More than a certain amount of Mn is required for t, and from this point of view, Mn is [0,05+7 (S+0.405
Be)) Desirably 1 or more. If the Mn content is less than this amount, the adhesion of the 7-orsterite film, which has a large crystal grain size, will deteriorate to some extent. However, usually a secondary coating mainly composed of colloidal silica is added on top of this forsterite film to produce a product, and this does not pose a problem in actual use.

Mnがこの値以下であると皮膜が劣化し、また二次再結
晶も不安定となるので好ましくない。Mnの上限値は0
.8%と定めた。これ以上Mn tが増えると成品の磁
束密度が劣化するので好ましくない0 スラブ加熱温度は、本発明の本来の目的が一方向性電磁
鋼板のスラブ加熱温度を普通銅盤みにするということで
あるから、1280℃未満と限定した。望ましくは11
50℃以下である。
If Mn is less than this value, the film deteriorates and secondary recrystallization becomes unstable, which is not preferable. The upper limit of Mn is 0
.. It was set at 8%. If Mn t increases further than this, the magnetic flux density of the finished product will deteriorate, which is undesirable.0 Slab heating temperature is because the original purpose of the present invention is to change the slab heating temperature of grain-oriented electrical steel sheet to that of ordinary copper plate. , was limited to less than 1280°C. Preferably 11
The temperature is below 50°C.

窒化7 z ロマンガン、Mn1−x F”xNyK関
する限定理由を次に述べる。Feの含有量がx>0.8
となると窒素の解離温度が下がシ過ぎ、仕上焼鈍中の窒
素分圧の確保をはかるという本来の目的の達成が困難と
なるのでX≦帆8でなければならない。
The reason for the limitation regarding nitride 7 z Romanganese, Mn1-x F”xNyK is described below.The content of Fe is x>0.8
If this happens, the dissociation temperature of nitrogen will be too low, making it difficult to achieve the original purpose of ensuring nitrogen partial pressure during final annealing, so X≦8 must be satisfied.

またx=Qすなわち純粋な窒化マンガンとしても二次再
結晶に対しては充分効果を持つ。このことからFe量は
Oくx≦0.8の範囲と、する。窒素量、yの範囲は次
の理由で定めた。y<o、otであると第1図の状態図
に基づく考察から明らかなように窒化物としてはほとん
ど(Mn、Fe)−N−次回溶体のみとなってしまい、
必要な窒素分圧を確保できないばかシか、分解温度も低
く添加物として実用にならない。またy≧0.6の窒化
物は作成が困難なばかシか、大気圧下でそのような窒化
物の存在が確認されていない。一方、特願昭59−21
5827号において詳述した本研究者等によるMn−F
e−N系の相平衡論的な実験結果と考察から、この系に
は室温においてζ−Mn、、N型、ζ−Fe、N型、δ
−Fe4N型の結晶構造を持つ3つの相が少なくとも存
在し、それぞれy=0.43.0.50.0.25であ
ることがわかっている。(寮際には各相においてはある
程度の非化学量論性を持って広がっている。)従って(
M” 1−zFex ) Ny (0,01≦y<0.
s)で表される化合物は、最も一般的に表現すれば(M
n 、 Fe )−N−次回溶体及び上述の3つ以上の
相のいずれかによシ構成される混合物であるといえる。
Furthermore, even if x=Q, that is, pure manganese nitride, it is sufficiently effective against secondary recrystallization. From this, it is assumed that the amount of Fe is in the range of Oxx≦0.8. The amount of nitrogen and the range of y were determined for the following reasons. If y<o, ot, as is clear from the consideration based on the phase diagram in Figure 1, the nitride will almost exclusively be a (Mn, Fe)-N-order solution;
Either the necessary nitrogen partial pressure cannot be secured, or the decomposition temperature is too low to make it practical as an additive. Further, nitrides with y≧0.6 are either difficult to produce or the existence of such nitrides under atmospheric pressure has not been confirmed. On the other hand, the patent application
Mn-F by the present researchers described in detail in No. 5827
From the experimental results and considerations of the phase equilibrium theory of the e-N system, this system has ζ-Mn, , N-type, ζ-Fe, N-type, δ
It is known that there are at least three phases having a -Fe4N type crystal structure, and y=0.43.0.50.0.25, respectively. (At the dormitory, each phase is spread with some degree of non-stoichiometry.) Therefore, (
M"1-zFex) Ny (0,01≦y<0.
The compound represented by s) is most generally expressed as (M
It can be said that it is a mixture composed of the n,Fe)-N-order solution and any of the three or more phases described above.

以上の点を考慮して本発明のMn 1− z Fe z
 Ny  の組成範囲は第1図のABCDで示す領域(
A(0%o、o i >、B(0,0,6)、C(0,
8,0,6)、D (0,8,0,01)で囲まれる領
域)Ic限定される。
Considering the above points, the Mn 1-z Fe z of the present invention
The composition range of Ny is the region shown by ABCD in Figure 1 (
A(0% o, o i >, B(0,0,6), C(0,
8,0,6), D (area surrounded by (0,8,0,01)) Ic is limited.

脱炭焼鈍後、マグネシアを主体とする焼鈍分離材を塗布
しコイル状に巻きとる際コイル板間の間隔を20μm以
上、かつこの板間のマグネシアの充填率を0.9 f/
cm”以下とする必要がある。この範囲を越えるとコイ
ル板間へのガスの供給、特に窒素ガスの供給が充分でな
く仕上焼鈍時の昇温速度を上げた際、コイル巾方向中央
部にインヒビター不足に起因する2次再結晶不良部が発
生する確率が高くなる。仕上焼鈍中6℃〜700℃の温
度域から8℃〜900’Cの温度域までの温度間の雰囲
気は、この温度間で窒素吸収が進行するとbう理由から
、窒素を5チ以上含むものでなければならない。この間
の昇温速度は30℃/hr以下である必要がある。これ
以上速いと窒化が充分に進まないt12次再結晶温度に
到達し、結果として2次再結晶不良域が発生する。以上
を規定する仕上焼鈍中の温度の開始域と終了域をそれぞ
れ6℃〜700℃及び8℃〜900℃としたのは、l)
素材成分や脱炭焼鈍の条件、あるいは焼鈍分離材として
用いるマグネシアの種類や添加物の種類によってこれら
の窒素吸収開始及び終了の温度が少しずつ異なること、
2)10トンあるいは20トンコイル内の温度の分布は
大きく、コイル内部での温度差は通常100’C以上あ
シ、コイルすべての部位にわたって一意に均等な昇温速
度等を確保するのは不可能であるとの2つの理由による
After decarburization annealing, an annealing separation material mainly composed of magnesia is applied and when wound into a coil, the interval between the coil plates is 20 μm or more, and the magnesia filling rate between the plates is 0.9 f/
cm" or less. If this range is exceeded, the supply of gas, especially nitrogen gas, between the coil plates will be insufficient, and when the temperature increase rate during final annealing is increased, the central part in the width direction of the coil may The probability of occurrence of secondary recrystallization defects due to lack of inhibitor increases.During final annealing, the atmosphere between the temperature range of 6°C to 700°C to the temperature range of 8°C to 900'C is at this temperature. Because nitrogen absorption progresses during this period, it must contain 5 or more nitrogen.The heating rate during this period must be 30°C/hr or less.If it is faster than this, nitriding will not proceed sufficiently. t12 recrystallization temperature is reached, and as a result, a secondary recrystallization failure area occurs.The starting and ending temperature ranges during finish annealing that define the above are 6°C to 700°C and 8°C to 900°C, respectively. The reason was l)
The temperature at which nitrogen absorption begins and ends varies slightly depending on the material composition, decarburization annealing conditions, the type of magnesia used as an annealing separation material, and the type of additives.
2) The temperature distribution inside the 10-ton or 20-ton coil is large, and the temperature difference inside the coil is usually more than 100'C, making it impossible to ensure a uniquely uniform heating rate across all parts of the coil. This is due to two reasons.

よる。evening.

コイル板間空隙の広さく間隔)、マグネシアを主体とし
た焼鈍分離材の充填率等を前述の範囲にするためには種
々の方法があるが、最も確実で効果的な方法はスラリー
状に塗布乾燥する焼鈍分離材の量を一定量以下にし、そ
の上に静電塗装にょシマグネシアを塗布する方法である
。コイル状に巻きとる時の巻き取シテンシ1ンによシこ
れらの量は若干変化するが、前述の条件を満たすために
はスラリー状に塗布乾燥することによる湿式塗布量を両
面あたシ1〜12g/m2、その上に乾式静電塗装する
ことによる塗布量を6〜2097m”の範囲にする必要
がある。これらの値よシ少ないとガス拡散に必要なコイ
ル板間の空隙の広さが確保されず、また多すぎても経済
的に意味がない。
There are various methods for achieving the above-mentioned ranges such as widening the gap between the coil plates and filling rate of the annealing separator mainly composed of magnesia, but the most reliable and effective method is to apply it in the form of a slurry. This is a method in which the amount of annealed separation material to be dried is kept below a certain amount, and electrostatically coated magnesia is applied thereon. These amounts will vary slightly depending on the winding tension when winding into a coil, but in order to satisfy the above conditions, the wet coating amount by coating and drying in a slurry form should be increased to 1 to 1 on both sides. 12 g/m2, and the coating amount by dry electrostatic coating on top of that needs to be in the range of 6 to 2097 m''.If these values are smaller, the gap between the coil plates necessary for gas diffusion will be If it is not secured or there is too much, it is not economically meaningful.

〔実施例〕〔Example〕

実施例1:  C:0.055%、Si:3.25%、
Mn : o、t 7%、P:0.025%、S : 
0.008 %、酸化溶性Aj: 0.029%、N 
: 0.0080%を含有する溶鋼を連続鋳造法によシ
鋼塊とした。このスラブを1150’Cの温度に加熱し
た後、熱延して2.Otmの熱延板を作った。この熱延
板を1120’CX 2 min焼鈍した後0.23m
mの最終板厚まで冷延し、8300Cの温度で湿水素中
の脱炭焼鈍を行なった。この後TiO2を4%含むMg
Oをスラリー状にして塗布乾燥する方法及び静電塗装法
によシ表1に示す量だけ付着させた後、コイル状に巻き
とシ10トンコイルとした。この際一部のコイルを除い
てスラリー状のパウダー中にMlo、80F80.2O
N0.26を添加した。この時の板間の間隔とこれに基
づいて計算した焼鈍分離材のコイル板間の充填率も同表
中に示す。これらのコイルを620℃〜870℃の温度
間を23℃/hrの昇温速度でN。
Example 1: C: 0.055%, Si: 3.25%,
Mn: o, t 7%, P: 0.025%, S:
0.008%, oxidation solubility Aj: 0.029%, N
: Molten steel containing 0.0080% was made into a steel ingot by continuous casting. This slab was heated to a temperature of 1150'C and then hot rolled.2. I made OTM hot-rolled sheets. After annealing this hot-rolled plate for 1120'CX 2 min,
It was cold rolled to a final thickness of m and decarburized annealed in wet hydrogen at a temperature of 8300C. After this, Mg containing 4% TiO2
After applying O in the form of a slurry and applying and drying it and electrostatic coating method, the amount shown in Table 1 was deposited, and then wound into a coil to form a 10 ton coil. At this time, except for some coils, Mlo, 80F80.2O was added to the slurry powder.
N0.26 was added. The spacing between the plates at this time and the filling rate between the coil plates of the annealed separation material calculated based on this are also shown in the same table. These coils were heated with N between temperatures of 620°C and 870°C at a heating rate of 23°C/hr.

20%H280%の雰囲気中仕上焼鈍し1200’02
0時間保定後炉冷した。得られたコイルの巾方向中央部
及びコイル上部の透磁率をB、の形で表1に示した。
Finish annealing in 20%H280% atmosphere 1200'02
After holding for 0 hours, the mixture was cooled in the furnace. The magnetic permeability of the widthwise central part of the obtained coil and the upper part of the coil are shown in Table 1 in the form of B.

以下余日 成品の磁気特性のバラつき、特にコイル巾方向中央部の
磁性劣化に対し、コイル板間の広さ、焼鈍分離材の充填
率及び窒化7エロマンガンが効果的に作用し、全体の磁
性レベルを上げていることがわかる。
Below, the width between the coil plates, the filling rate of the annealing separation material, and the 7-eromanganese nitride work effectively to prevent variations in the magnetic properties of Yunichi products, especially the deterioration of the magnetic properties at the center in the width direction of the coil. I can see that you are raising your level.

実施例2 c : o、o 59%、Si:3.33%、Mn :
 0.09%、p : 0.02 s%、s : o、
o 12%、酸可溶性AI: 0.026%、N: 0
.0070%t−含有−t−ル溶鋼を連続鋳造法により
鋼塊とした。このスラブを1180℃の温度に加熱した
後熱延して2.0mm厚の熱延板とした。この熱延板を
1100’CX 2.5m1n焼鈍した後帆20■の最
終板厚まで冷延し850’Cの温度で湿水素中の脱炭焼
鈍を行なった。
Example 2 c: o, o 59%, Si: 3.33%, Mn:
0.09%, p: 0.02 s%, s: o,
o 12%, acid soluble AI: 0.026%, N: 0
.. The 0070% t-containing molten steel was made into a steel ingot by a continuous casting method. This slab was heated to a temperature of 1180° C. and then hot-rolled to obtain a hot-rolled plate having a thickness of 2.0 mm. This hot-rolled sheet was annealed at 1100'CX 2.5ml1n, then cold rolled to a final plate thickness of 20cm sail, and decarburized annealed in wet hydrogen at a temperature of 850'C.

この板11C’l’iQ!を3チ窒化フ工ロマンガンM
nO,?5 Fe0.25 No、25を7チ含むMg
Oをスラリー状に塗布乾燥した後、静電塗装法によ!+
MgOを塗布し、5トンコイルを作成した。このコイル
を窒素25チ水素75%露点−10℃(PH,o/PH
This board 11C'l'iQ! 3-chi nitride fluorocarbon M
nO,? 5 Fe0.25 No, Mg containing 7 pieces of 25
After applying O in the form of a slurry and drying it, use the electrostatic coating method! +
MgO was applied to create a 5 ton coil. This coil is made of nitrogen 25% hydrogen 75% dew point -10℃ (PH, o/PH
.

= 0.004 )の雰囲気中で600’C〜900℃
の昇温速度18℃/hrで仕上焼鈍した。得られた鋼板
の磁気特性の平均値と標準偏差を表2に示す。
= 0.004) in an atmosphere of 600'C to 900°C
Final annealing was performed at a temperature increase rate of 18° C./hr. Table 2 shows the average value and standard deviation of the magnetic properties of the obtained steel sheets.

コイル板間の広さとこの間の焼鈍分離材の充填率とによ
シ成品の磁気特性のバラつきが軽減化することがわかる
It can be seen that variations in the magnetic properties of the finished product are reduced depending on the width between the coil plates and the filling rate of the annealing separation material between the coil plates.

以下余臼 〔発明の効果〕 以上詳述した如く、本発明は、熱延に先立って行なうス
ラブ加熱における、方向性電磁鋼板製造に特有の高温加
熱を普通銅皿みの温度で行なうことが工業的に可能にな
シ、 方向性電磁鋼板専用のスラブ加熱炉が不要となった他、
使用エネルギーの減少、ノロ発生の減少などによシ製造
コストが大巾に減少し、磁気特性の向上と相伴なって産
業上稗益するところが極めて大である。
[Effects of the Invention] As described in detail above, the present invention has the advantage that the high-temperature heating peculiar to the production of grain-oriented electrical steel sheets during slab heating prior to hot rolling can be carried out at the temperature of an ordinary copper plate. In addition to eliminating the need for a dedicated slab heating furnace for grain-oriented electrical steel sheets,
The manufacturing cost is greatly reduced due to the reduction in energy consumption and the reduction in the generation of slag, and along with the improvement in magnetic properties, there are enormous industrial benefits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は室温におけるMn−Fe−N三元系の暫定的な
状態図、 第2図は仕上焼鈍中の鋼中の窒素の増加量を示す図、第
3図は第2図において用いたのと同一の試料の1000
8C付近における平均結晶粒径の変化を表わす図である
。 第4図は仕上焼鈍中の昇温速度の増加に伴なうコイル巾
方向の磁性のバラつきが8→−1゛         
   コイル板間の!!
Figure 1 is a provisional phase diagram of the Mn-Fe-N ternary system at room temperature, Figure 2 is a diagram showing the increase in nitrogen in the steel during final annealing, and Figure 3 is the diagram used in Figure 2. 1000 of the same sample as
It is a figure showing the change of the average crystal grain size in the vicinity of 8C. Figure 4 shows the variation in magnetism in the width direction of the coil due to an increase in temperature increase rate during final annealing from 8 to -1.
Between the coil plates! !

Claims (1)

【特許請求の範囲】 1、重量でC:0.025〜0.075%、Si:2.
5〜4.5%、酸可溶性M:0.010〜0.060%
、N:0.0030〜0.0130%、S+0.405
、Be:0.014%以下、Mn:0.05〜0.8%
を含有し、残部がFe及び不可避不純物からなるスラブ
を1280℃未満の温度で加熱した後、熱延、冷延、湿
水素雰囲気中での脱炭焼鈍、マグネシアを主体とする焼
鈍分離材の塗布、仕上焼鈍による通常の方法で一方向性
電磁鋼板を作成する方法において、脱炭焼鈍ストリップ
を巻き取る際、コイル板間の距離(間隔)を20μm以
上とするか、もしくはこの板間のマグネシアを主体とす
る焼鈍分離材の充填率を0.9g/cm^3以下とし、
このようにして作成したコイルを仕上焼鈍する際、60
0℃〜700℃の温度域から800℃〜900℃の温度
域までの温度間の雰囲気を窒素ガスを5%以上含むもの
とし、昇温速度を30℃/hr以下とすることを特徴と
する一方向性電磁鋼板の製造方法。 2、マグネシアを主体とした焼鈍分離材をいったんスラ
リー状にした後、塗布・乾燥することによる湿式塗布量
(下塗り塗布量)を鋼板の両面で1〜12g/m^2の
範囲にし、その上に両面当り6〜20g/m^2のマグ
ネシアを乾式静電塗布することを特徴とする特許請求の
範囲第1項に記載の方法。 3、マグネシアを主体とした焼鈍分離材中に第1図で示
す点A、B、C、Dで囲まれた領域に相当する組成の窒
化フェロマンガン(Mn_1_−_xFe_xN_y)
を単独あるいは混合して0.2〜20重量部加えること
を特徴とする特許請求の範囲第1項あるいは第2項に記
載の方法。
[Claims] 1. C: 0.025 to 0.075% by weight, Si: 2.
5-4.5%, acid-soluble M: 0.010-0.060%
, N: 0.0030-0.0130%, S+0.405
, Be: 0.014% or less, Mn: 0.05 to 0.8%
After heating a slab containing iron with the balance consisting of Fe and unavoidable impurities at a temperature below 1280°C, hot rolling, cold rolling, decarburization annealing in a wet hydrogen atmosphere, and application of an annealing separation material mainly composed of magnesia. In the method of creating unidirectional electrical steel sheets using the usual method of finish annealing, when winding the decarburized annealed strip, the distance (spacing) between the coil plates is 20 μm or more, or the magnesia between the plates is The filling rate of the main annealing separation material is 0.9 g/cm^3 or less,
When final annealing the coil created in this way, 60
One characterized in that the atmosphere between the temperature range of 0°C to 700°C to the temperature range of 800°C to 900°C contains 5% or more of nitrogen gas, and the temperature increase rate is 30°C/hr or less. A method for manufacturing grain-oriented electrical steel sheets. 2. Once the annealing separation material mainly composed of magnesia is made into a slurry, it is coated and dried so that the wet coating amount (undercoat coating amount) is in the range of 1 to 12 g/m^2 on both sides of the steel plate, and then The method according to claim 1, characterized in that magnesia is dry-electrostatically applied in an amount of 6 to 20 g/m^2 per both surfaces. 3. Ferromanganese nitride (Mn_1_-_xFe_xN_y) with a composition corresponding to the area surrounded by points A, B, C, and D shown in Fig. 1 in an annealed separation material mainly composed of magnesia.
The method according to claim 1 or 2, characterized in that 0.2 to 20 parts by weight of these are added alone or in a mixture.
JP61113477A 1986-05-20 1986-05-20 Production of grain oriented electrical steel sheet having high magnetic flux density Granted JPS62270724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61113477A JPS62270724A (en) 1986-05-20 1986-05-20 Production of grain oriented electrical steel sheet having high magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61113477A JPS62270724A (en) 1986-05-20 1986-05-20 Production of grain oriented electrical steel sheet having high magnetic flux density

Publications (2)

Publication Number Publication Date
JPS62270724A true JPS62270724A (en) 1987-11-25
JPS6320887B2 JPS6320887B2 (en) 1988-05-02

Family

ID=14613262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61113477A Granted JPS62270724A (en) 1986-05-20 1986-05-20 Production of grain oriented electrical steel sheet having high magnetic flux density

Country Status (1)

Country Link
JP (1) JPS62270724A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888066A (en) * 1987-09-18 1989-12-19 Nippon Steel Corporation Method for producing grain-oriented electrical steel sheet with very high magnetic flux density
JPH02259020A (en) * 1989-03-31 1990-10-19 Nippon Steel Corp Production of grain-oriented silicon steel sheet excellent in magnetic property

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888066A (en) * 1987-09-18 1989-12-19 Nippon Steel Corporation Method for producing grain-oriented electrical steel sheet with very high magnetic flux density
JPH02259020A (en) * 1989-03-31 1990-10-19 Nippon Steel Corp Production of grain-oriented silicon steel sheet excellent in magnetic property

Also Published As

Publication number Publication date
JPS6320887B2 (en) 1988-05-02

Similar Documents

Publication Publication Date Title
KR100596115B1 (en) Method for producing grain-oriented silicon steel plate with mirror surface
JPH0774388B2 (en) Method for manufacturing unidirectional silicon steel sheet with high magnetic flux density
JPS6250529B2 (en)
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
US5190597A (en) Process for producing grain-oriented electrical steel sheet having improved magnetic and surface film properties
JPS6160895B2 (en)
JPH10130727A (en) Production of low core loss mirror finished grain oriented silicon steel sheet high in magnetic flux density
JPS60197883A (en) Formation of insulating forsterite film on grain-oriented silicon steel sheet
JPS62270724A (en) Production of grain oriented electrical steel sheet having high magnetic flux density
JP2674917B2 (en) Method for producing high magnetic flux density grain-oriented silicon steel sheet without forsterite coating
JP3412959B2 (en) Method for producing mirror-oriented silicon steel sheet with low iron loss
JP2599069B2 (en) Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet with excellent glass coating properties and good magnetic properties
KR950002895B1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
JP2663229B2 (en) Method for producing grain-oriented electrical steel sheet having a uniform glass film and extremely excellent magnetic properties
JPH09279247A (en) Production of grain-oriented silicon steel sheet high in density of magnetic flux
JPS633008B2 (en)
US5478410A (en) Process for producing grain-oriented electrical steel sheet having low watt loss
JPH1136018A (en) Manufacture of grain oriented silicon steel sheet having extremely excellent glass film and magnetic property
JP4422384B2 (en) Method for producing grain-oriented electrical steel sheet
JPH0832928B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties and glass film properties
JPH04350124A (en) Production of grain-oriented silicon steel sheet reduced in thickness
JP4427225B2 (en) Method for producing grain-oriented electrical steel sheet
JPH02259017A (en) Production of grain-oriented silicon steel sheet excellent in film characteristic as well as in magnetic property
JPS6372825A (en) Manufacture of grain-oriented silicon steel sheet having superior surface property and small iron loss
JP2689193B2 (en) Method for producing mirror-oriented silicon steel strip

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term