JPS62270133A - Indirect lowest blood pressure measuring method by cuff vibration method - Google Patents

Indirect lowest blood pressure measuring method by cuff vibration method

Info

Publication number
JPS62270133A
JPS62270133A JP61115492A JP11549286A JPS62270133A JP S62270133 A JPS62270133 A JP S62270133A JP 61115492 A JP61115492 A JP 61115492A JP 11549286 A JP11549286 A JP 11549286A JP S62270133 A JPS62270133 A JP S62270133A
Authority
JP
Japan
Prior art keywords
pressure
cuff
blood pressure
component
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61115492A
Other languages
Japanese (ja)
Inventor
憲一 山越
秀昭 島津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP61115492A priority Critical patent/JPS62270133A/en
Publication of JPS62270133A publication Critical patent/JPS62270133A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 C産業上の利用分野〕 本発明はカフ加振法による間接的最低血圧1jll定法
に関するもので、・動脈血管壁に加わる圧力に高い周波
数成分を重畳させるもので、容積振動法の原理に基づく
新しい最低血圧の測定法を得ることを目的とする。
Detailed Description of the Invention 3. Detailed Description of the Invention C Industrial Field of Application] The present invention relates to an indirect diastolic blood pressure 1jll method using a cuff excitation method. The purpose is to obtain a new method for measuring diastolic blood pressure based on the principle of volume oscillation method.

〔従来の技術〕[Conventional technology]

一般に被験者の指や腕等にカフを装着して行う容積振動
法による血圧測定法は、血管の圧−容積特性の強い非線
形性を利用し、その容積振動法による平均血圧の判定法
では、血管壁にかかる圧力(Lransmural p
ressure略称:Pt)が零において、血管のコン
プライアンスが最大となるという血管の力学特性に基づ
き、血管外圧(カフ圧Pc)が平均内圧(平均血圧Pa
m)と等しいとき容積脈波ΔVが最大となり、平均血圧
判定が可能であった。このpt=oにおける血管のコン
プライアンスが広範な周波数帯域で最大となることは」
川明している。
The blood pressure measurement method using the volumetric vibration method, which is generally performed by attaching a cuff to the subject's finger or arm, takes advantage of the strong nonlinearity of the pressure-volume characteristics of blood vessels. Pressure on the wall (Lransmural p
Based on the mechanical property of blood vessels that the compliance of blood vessels is maximum when stress (abbreviation: Pt) is zero, the extravascular pressure (cuff pressure Pc) is equal to the mean internal pressure (mean blood pressure Pa
m), the volume pulse wave ΔV was at its maximum, and it was possible to determine the mean blood pressure. The fact that the compliance of the blood vessel at pt=o is maximum in a wide frequency range is that
The river is clear.

[発明が解決しようとする問題点] 従来の容積振動法による平均血圧測定法では、血管壁が
無負荷状態、すなわち血管壁にかかる圧力(Pt)が零
となるとき、血管のコンプライアンスが最大となること
を利用して、カフ圧が平均血圧と一致したときに、容積
脈波の振幅が最大値を呈することを利用していた。
[Problems to be solved by the invention] In the conventional mean blood pressure measurement method using the volume oscillation method, the compliance of the blood vessel reaches its maximum when the blood vessel wall is in an unloaded state, that is, when the pressure (Pt) applied to the blood vessel wall is zero. Taking advantage of this fact, the amplitude of the plethysmogram reaches its maximum value when the cuff pressure matches the mean blood pressure.

ところが、前記の容積振動法による血圧測定法では、最
高血圧及び平均血圧の測定はできても、最低血圧の測定
はできなかった。そのため、最低血圧の測定には最高血
圧及び平均血圧から演算機能を介して最低血圧を算出し
ていたが、その計算値は必ずしも適正でないのが実情で
あった。
However, in the blood pressure measuring method using the volumetric oscillation method described above, although it was possible to measure the systolic blood pressure and the mean blood pressure, it was not possible to measure the diastolic blood pressure. Therefore, in order to measure the diastolic blood pressure, the diastolic blood pressure is calculated from the systolic blood pressure and the mean blood pressure using an arithmetic function, but the actual situation is that the calculated value is not necessarily appropriate.

〔問題点を解決するための手段] そこで本発明はその目的を達成し、且つ従来技術の問題
点を解決するために、カフ加振法による間接的最低血圧
測定法において、容積脈波法を利用した容積振動法に基
づいて、加圧用カフに10Hz程度の周波数の正弦波状
の圧力を重畳させると、動脈血管壁にかかる圧力には血
圧波形にカフ圧の加振成分を重畳し、ここで前記カフ圧
の直流成分を変化させて拡張期において、血管壁にかか
る平均圧力が零となった時点で、血管コンプライアンス
が最大になって、カフ圧の加振成分に対応する拡張朋容
積脈波の振幅を最大とし、この時に対応するカフ圧の直
流成分から最低血圧を測定するものである。
[Means for Solving the Problems] Therefore, in order to achieve the object and solve the problems of the prior art, the present invention uses the volume pulse wave method in the indirect diastolic blood pressure measurement method using the cuff vibration method. Based on the volume oscillation method used, when a sinusoidal pressure with a frequency of about 10 Hz is superimposed on the pressure cuff, the pressure applied to the arterial blood vessel wall is determined by superimposing the excitation component of the cuff pressure on the blood pressure waveform, and here When the DC component of the cuff pressure is changed and the average pressure applied to the blood vessel wall becomes zero during diastole, the blood vessel compliance reaches its maximum and a diastolic volume pulse wave corresponding to the excitation component of the cuff pressure is generated. The amplitude of the cuff is maximized, and the diastolic blood pressure is measured from the DC component of the cuff pressure corresponding to this time.

〔実施例〕〔Example〕

■ 基本原理 従来の容積振動法による平均血圧測定法では、血管壁が
無負荷状態すなわち、PL−Ommllgにおける血管
コンプライアンスが最大となることを利用してカフ圧(
Pc)が平均血圧(Pam)と一致したときに、容積脈
波(ΔV)の振幅が最大値を呈することを利用していた
。このPt= OmmHgにおけるコンプライアンスが
最大となる、血管系の圧−容積特性の非線形性を利用す
ることにより、以下の方法で最低血圧測定も可能である
■ Basic principle In the conventional mean blood pressure measurement method using the volume oscillation method, the cuff pressure (
The method utilized the fact that the amplitude of the plethysmogram (ΔV) reaches its maximum value when Pc) matches the average blood pressure (Pam). By utilizing the nonlinearity of the pressure-volume characteristics of the vascular system, in which the compliance is maximum at Pt=OmmHg, the diastolic blood pressure can also be measured by the following method.

第1図に血圧波形(Pa)、第2図にカフ圧(Pc)、
第3図はtransmural pressure (
Pt)の変化を示す。
Figure 1 shows blood pressure waveform (Pa), Figure 2 shows cuff pressure (Pc),
Figure 3 shows transmural pressure (
Pt).

カフ圧(Pc)は、DC(直流)成分圧(Pc)にAC
(交流)成分圧(ΔPc)が重畳しているものとする。
Cuff pressure (Pc) is DC (direct current) component pressure (Pc)
It is assumed that (AC) component pressures (ΔPc) are superimposed.

このとき、Pt−Pa−Pcであることから、Ptは血
圧脈波にAC成分が重畳した状態となる。このAC成分
を、周波数が脈波の基本周波数より十分太きな正弦波と
して、■に加え、(Pc=Pc+ΔPc)、PcをQm
mHgより増加したとする。
At this time, since Pt-Pa-Pc, Pt is in a state where an AC component is superimposed on the blood pressure pulse wave. This AC component is added to ■ as a sine wave whose frequency is sufficiently thicker than the fundamental frequency of the pulse wave, (Pc=Pc+ΔPc), and Pc is Qm
Suppose that it increases from mHg.

このときptは、Pt=Pa−Pc−ΔPcとなり、第
4図に示すように、圧脈波一定振幅のAC成分が重畳し
たまま線軸方向にシフトする。
At this time, pt becomes Pt=Pa-Pc-ΔPc, and as shown in FIG. 4, the AC component of the constant amplitude of the pressure pulse wave is shifted in the linear axis direction while being superimposed.

■ 実施例1 第4図はAC成分の重畳した、血管壁にかかる圧力(P
 t)の変化にともなう容積脈波の振幅変化の発生機序
を示す。手指基部に光電容積脈波センサと加圧用カフ(
2)を装着しく第6図)、その装着したカフの圧(Pc
)に10Hz程度の正弦波状の圧力(ΔPc)を重畳さ
せると、血管壁にかかる圧力(Pt)には血圧波形にカ
フ圧のAC成分を重畳させる。ここで、カフ圧(Pc)
を変化させると、拡張期において前記血管壁にかかる圧
力(Pt)が零(血管コンプライアンスが最大)となっ
た時点(第4図(ト)))で、カフ圧の加振成分(ΔP
c)に対応する光電容積脈波の振幅が最大となり、この
とき対応するカフ圧の平均値(Pc)から最低血圧を間
接的に測定する。
■ Example 1 Figure 4 shows the pressure (P
t) shows the mechanism of occurrence of a change in the amplitude of the plethysmogram due to a change in t). A photoelectric plethysmography sensor and a pressure cuff (
2) When wearing the cuff (Figure 6), the pressure of the attached cuff (Pc
), when a sinusoidal pressure (ΔPc) of about 10 Hz is superimposed on the pressure (Pt) applied to the blood vessel wall, the AC component of the cuff pressure is superimposed on the blood pressure waveform. Here, cuff pressure (Pc)
When the pressure (Pt) applied to the blood vessel wall during diastole reaches zero (the maximum blood vessel compliance) (Fig. 4 (G)), the excitation component of the cuff pressure (ΔP) changes.
The amplitude of the photoplethysmogram corresponding to c) is maximum, and the diastolic blood pressure is indirectly measured from the corresponding average value (Pc) of the cuff pressure at this time.

そして本発明において、その妥当性を大聡頚動脈モデル
実験、家兎による直接法との比較の結果、原理の妥当性
を確認した。また、第5閲において、年令22歳の男子
の右手中[部を対象に本発明を実施して得られた記録の
一例を示す。手指カフ圧(Pc)を拡張期でのみ加振し
て徐々に加圧していくと、光電容積脈波(PG)の拡張
期に重畳した加振周波数成分(PCAC)の振幅は、P
c=72+nHgで最大となり、本発明による最低血圧
値(Pcd)と判定される。
In the present invention, the validity of the principle was confirmed through a large carotid artery model experiment and comparison with a direct method using domestic rabbits. In addition, in the fifth review, an example of the records obtained by implementing the present invention on the right middle part of a 22-year-old male is shown. When the hand cuff pressure (Pc) is excited only during the diastole and gradually increased, the amplitude of the excitation frequency component (PCAC) superimposed on the diastole of the photoplethysmogram (PG) is P
The maximum value is reached at c=72+nHg, which is determined to be the diastolic blood pressure value (Pcd) according to the present invention.

一方、光電容積脈波(PG)の−心拍の振幅の振幅最大
点を平均血圧(Pcm)、PGの消失点を最高血圧(P
cs)と判定するのは、従来の容積振動法と同様である
On the other hand, the maximum amplitude point of the -heartbeat amplitude of photoplethysmography (PG) is the mean blood pressure (Pcm), and the vanishing point of PG is the systolic blood pressure (Pcm).
cs) is determined as in the conventional volume vibration method.

なお本発明の精度検討は、成人右手中指基部を測定対象
とし、左上腕部における聴診法(第5点)による最低血
圧測定値(Pkd)との比較を行い、最低血圧値Pcd
=1.131’kd −17,1<r =0.837)
を得た。
In addition, the accuracy study of the present invention takes the base of the middle finger of the right hand of an adult as a measurement object, and compares it with the diastolic blood pressure value (Pkd) measured by the auscultation method (fifth point) on the left upper arm.
=1.131'kd -17,1<r =0.837)
I got it.

■ 実施例2 第8図に示すものは、被験者の手指2本に第7図示のカ
フ(2)を装若し、指(B)には光電脈波センサを装着
する。また、指(A)には光Tg、脈波センサを装着せ
ず、適当な平均カフ圧の下で、カフを一定の周波数、振
幅で連続加振する。すなわち、解剖学的に比較的近くに
存在する血管を外部より振動させることにより、その血
管周面の内圧に加振成分を重畳させる。
Example 2 In the experiment shown in FIG. 8, the cuff (2) shown in FIG. 7 is attached to two fingers of a subject, and a photoplethysmographic sensor is attached to the finger (B). Furthermore, without attaching an optical Tg or a pulse wave sensor to the finger (A), the cuff is continuously vibrated at a constant frequency and amplitude under an appropriate average cuff pressure. That is, by externally vibrating a blood vessel that is anatomically located relatively close to it, an excitation component is superimposed on the internal pressure around the blood vessel.

この方法によれば、前記実施例1と同様に血管壁にかか
る圧力(Pt)に高周波成分をもたせることが可能とな
る。
According to this method, as in the first embodiment, it is possible to cause the pressure (Pt) applied to the blood vessel wall to have a high frequency component.

そしてまた、指(A)にて血管内圧に加振成分を加え、
指CB)のカフ圧を静的に減圧(或いは加圧)したとき
に指(B)の光電脈波信号(PGAC)の拡張期部分の
重畳成分に着目して血圧測定を行う。
Then, add an excitation component to the intravascular pressure with the finger (A),
When the cuff pressure of the finger (CB) is statically reduced (or increased), the blood pressure is measured by focusing on the superimposed component of the diastolic portion of the photoplethysmographic signal (PGAC) of the finger (B).

■ 次に本発明を実施するのに用いるンステムは次の通
りである。
(2) Next, the system used to carry out the present invention is as follows.

まず、第6図に示すブロック図のように、主要素として
、(イ)光電容積脈波検出部+11、(0)手指加圧用
カフ(2)、(ハ)カフ加圧及び圧検出部(3)、(ニ
)記録部(4)とから成る。
First, as shown in the block diagram shown in FIG. 6, the main elements are (a) photoplethysmogram detection unit +11, (0) finger pressurization cuff (2), and (c) cuff pressurization and pressure detection unit ( 3) and (d) a recording section (4).

以下にその各主要素を詳述する。Each of its main elements will be explained in detail below.

(イ)光電容積脈波検出部(1)について光電容積脈波
センサには、動脈血管内容積変化を検出するための光源
として、近赤外線領域(λ−940hm )の[、ED
を3個直列とし、受光部にフォトトランジスタを2個並
列に接続したものを用いる。前記のフォトトランジスタ
及びL E Dは、プラスチック材によりモールドして
絶縁しである。
(B) About the photoplethysmogram detection unit (1) The photoplethysmographic sensor uses [, ED,
Three phototransistors are connected in series, and two phototransistors are connected in parallel to the light receiving section. The phototransistor and LED are insulated by molding with a plastic material.

また、動脈血管内容積変化検出部は、光センサにより受
光された充電流変化を受信し、増幅する回路である。検
出部は、透過光量を検出するDC(直IJt)増幅器と
、透過光量の変化分を検出するAC(交流)増幅器の2
つの部分から構成されている。
Further, the arterial intravascular volume change detection section is a circuit that receives and amplifies the charge flow change received by the optical sensor. The detection unit has two components: a DC (direct IJt) amplifier that detects the amount of transmitted light and an AC (alternating current) amplifier that detects changes in the amount of transmitted light.
It consists of two parts.

そしてDC増幅器は、光電流のDC成分すなわち、通過
光量の検出に当たり、カフ圧のバイアス圧の加減にとも
なう血管内容積変化に対応したフォトトランジスタの平
均的受光照度が検出される。
The DC amplifier detects the DC component of the photocurrent, that is, the amount of transmitted light, and detects the average light-receiving illuminance of the phototransistor corresponding to the change in intravascular volume caused by the adjustment of the bias pressure of the cuff pressure.

−心拍間における平均的透過光量が得られるような周波
数帯域を有するように、高域遮断周波数2゜5Hzの2
次の高域遮断フィルタにて構成されていまた、AC増幅
器においては、光電流のAC成分、すなわち透過光量の
変化分の検出に使用される。光電的に検出される血管内
容積波形は、血圧自身の脈圧波形に応して変化する。こ
のため、光電容積波の忠実な再現にあたっては、血圧波
形のもつ周波数成分全て検出できる帯域が必要である。
- A high cut-off frequency of 2° to 5 Hz, so as to have a frequency band that provides an average amount of transmitted light between heartbeats.
It is composed of the following high-pass cutoff filter, and is used in an AC amplifier to detect the AC component of photocurrent, that is, the change in the amount of transmitted light. The intravascular volume waveform detected photoelectrically changes according to the pulse pressure waveform of blood pressure itself. For this reason, faithful reproduction of photoelectric volume waves requires a band in which all frequency components of the blood pressure waveform can be detected.

−Cにv1脈圧波形は、その基本周波数(心拍数に相当
)の8倍の周波数までの成分が有効に検出できれば、波
形の再現が可能であるといわれている。
It is said that the pulse pressure waveform can be reproduced if components up to a frequency up to eight times the fundamental frequency (corresponding to the heart rate) can be effectively detected.

通常の心拍数の上限を約3112と考えると、最低約2
5Hz以上の周波数が必要となる。本実施例では、低域
遮断フィルタは、高域d断フィルタ特性をもつ、帯域幅
0.4〜30Hz (−3dB)の増幅2:を用いてい
る。
Considering that the upper limit of normal heart rate is about 3112, the minimum heart rate is about 2
A frequency of 5Hz or higher is required. In this embodiment, the low-pass cut-off filter uses an amplification 2 with a bandwidth of 0.4 to 30 Hz (-3 dB) and has high-pass d-cut filter characteristics.

([])手指加圧用カフ(2)について手指を測定対象
部位とした手指加圧用カフの構成として第7図に示す。
([]) Regarding the cuff for pressurizing fingers (2), FIG. 7 shows the configuration of the cuff for pressurizing fingers using the finger as the measurement target site.

カフの形状寸法については、手指を円筒とみなした場合
、カフ中央部でカフ圧を測定手指(動脈血管)へ正確に
伝達するには、測定対象直径の1゜2倍以上のカフ幅が
必要とされている。本実施例では、光センサ装着を考I
Cシ、センサ装着部手指の1.5倍に設定しである。さ
らに、カフ加振における:h制御系の特性を良好に保つ
ため、カフの空気容量を低減させるため、被験者の指径
に合わせて2種類のカフを用いである。
Regarding the shape and dimensions of the cuff, if the finger is considered to be a cylinder, in order to accurately transmit cuff pressure at the center of the cuff to the measuring finger (arterial blood vessel), the cuff width must be at least 1.2 times the diameter of the object to be measured. It is said that In this example, we will consider attaching an optical sensor.
C, the sensor attachment part is set to 1.5 times the finger size. Furthermore, in order to maintain good characteristics of the :h control system in cuff excitation and to reduce the air capacity of the cuff, two types of cuffs are used depending on the finger diameter of the subject.

(ハ)カフ加圧及び圧検出部(3)にについてコンプレ
ッサとして、マイクロポンプ(吐出111ii 7  
(1/min ’J吐出圧380mmftg)を使用し
、空気圧の脈動を平滑化するため、容量240ccの空
気タンクを直列に挿入しである。
(c) Regarding the cuff pressurization and pressure detection unit (3), a micro pump (discharge 111ii 7) is used as a compressor.
(1/min'J discharge pressure 380 mmftg), and an air tank with a capacity of 240 cc was inserted in series to smooth out the pulsation of air pressure.

そしてまた、加圧基率信号発生部では、カフ圧の加振の
ための空気圧制でコl系において、目標値信号を発生す
る。カフ加振法で必要とされる信号は、DCバイアスに
AC成分が重畳したものであり、且つDCバイアスの一
定速度での上昇、下降が必要とされる。AC成分は正弦
波信号とし、これを一定の速度で上昇、下降可能な三角
波形成回路に合成した。本実施例での加圧も(!−を信
号発生部は、加振周波数、振幅、DCバイアスの上昇、
下降速度のそれぞれのパラメータの変更機能を有してい
る。
Furthermore, the pressurization base rate signal generating section generates a target value signal in the col system using air pressure control for excitation of the cuff pressure. The signal required by the cuff excitation method is a DC bias superimposed with an AC component, and the DC bias needs to rise and fall at a constant rate. The AC component was a sine wave signal, which was synthesized into a triangular wave forming circuit that can rise and fall at a constant speed. In this embodiment, the pressurization (!-) is caused by an increase in the vibration frequency, amplitude, and DC bias.
It has a function to change each parameter of descending speed.

さらに、リークバルブユニットにあっては、カフ加振法
が、カフ圧Pcとして一定周波数、一定振幅の脈圧成分
を重畳させ、且つ任意の速度で加圧或いは減圧する必要
がある。そのため、本実施例ではスピーカーを利用した
カフ加圧コントロール用リークバルブにしである。
Furthermore, in the leak valve unit, the cuff excitation method requires that a pulse pressure component of a constant frequency and constant amplitude be superimposed as the cuff pressure Pc, and that the pressure be increased or decreased at an arbitrary speed. Therefore, in this embodiment, a leak valve for cuff pressure control using a speaker is used.

そして、本実施例のリークバルブは、駆動部として口径
7cmフルレンジスピーカを使用する。スピーカのセン
タードーム部にアクリルヘースを接着し、カフ、圧セン
サ、コンプレッサ部とし十字状につながった管路端のノ
ズル部とベース間に鋼球を挟み込んである。スピーカの
コーン紙の上下動により鋼球が上下し、ノズルと鋼球に
よる仕切り面積変化により、空気リーク量が変化する。
The leak valve of this embodiment uses a full range speaker with a diameter of 7 cm as a driving section. An acrylic head is glued to the center dome of the speaker, and a steel ball is sandwiched between the base and the nozzle at the end of the conduit, which serves as the cuff, pressure sensor, and compressor parts. The steel ball moves up and down as the speaker cone moves up and down, and the amount of air leak changes as the partition area between the nozzle and the steel ball changes.

コンプレッサ一部からの流入側には、ニードルバルブを
介して管路抵抗要素を可変できるようになっている。
On the inflow side from a part of the compressor, a pipe resistance element can be varied via a needle valve.

なお、圧カドランスデューサとカフとの間の管路抵抗や
動圧によるカフ圧の誤差は、カフ直結の圧カドランスデ
ューサと同時測定により、1m履11g未満であること
が確認されている。圧カドランスデューサは、拡散形半
導体圧カドランスデューサを用いている。
It has been confirmed that the error in cuff pressure due to conduit resistance and dynamic pressure between the pressure transducer and the cuff is less than 11 g per 1 m by simultaneous measurement with the pressure transducer directly connected to the cuff. The pressure quadrature transducer uses a diffusion type semiconductor pressure quadrature transducer.

次にリークバルブユニッ)PID制御装置は、カフ圧を
検出する圧カドランスデューサからの信号を、リークバ
ルブユニットのスピーカーの駆動回路に負帰還をかけて
制御するようになっている。
Next, the leak valve unit PID control device controls the signal from the pressure quadrature transducer that detects the cuff pressure by applying negative feedback to the drive circuit of the speaker of the leak valve unit.

前記のカフ圧は、加圧基準信号発生部からのリファレン
ス信号と、圧カドランスデューサからの信号の差分にP
ID制御を行い一定周波数、一定振幅の歪みの少ない正
弦波圧力をバイアス圧に重畳させである。
The cuff pressure is determined by the difference between the reference signal from the pressurization reference signal generator and the signal from the pressure transducer.
ID control is performed to superimpose a low-distortion sine wave pressure of a constant frequency and constant amplitude on the bias pressure.

第9図及び第1O図は、オーブンループ及びPID補償
時の本リークバルブユニットのカフ圧の周波数特性を示
す0周波数特性測定時のカフ圧のDC成分は100 m
m1g、加振成分の振幅は0.25Hzで±lQmml
1gとした。本特性の試験は、実際の手指の代わりにア
クリル捧を使用したが、手指のカフ空気容量は、4 、
8ccとした。
Figures 9 and 1O show the frequency characteristics of the cuff pressure of this leak valve unit during oven loop and PID compensation.The DC component of the cuff pressure when measuring the 0 frequency characteristic is 100 m
m1g, the amplitude of the excitation component is ±lQmml at 0.25Hz
It was set as 1g. In this characteristic test, an acrylic cuff was used instead of an actual hand, but the cuff air capacity of the hand was 4,
It was set to 8cc.

なお、カフ圧のDC成分が501111gの場合も同図
と同様の周波数特性が得られた。
Incidentally, when the DC component of the cuff pressure was 501111 g, a frequency characteristic similar to that shown in the figure was obtained.

また、第11図は加振周波数80Hzで、カフ圧のDC
成分50〜180 m11gにおけるカフ圧波形を示す
In addition, Fig. 11 shows the DC cuff pressure at an excitation frequency of 80Hz.
The cuff pressure waveform in components 50 to 180 ml is shown.

カフ空気容量は、同しく 4.8ccとした。The cuff air capacity was also 4.8 cc.

(ニ) 記録部(4)について 計測に際して、波形記録用にメモリレコーダを、測定時
のモニタとして三現象オンロスコープヲ使用している。
(d) Recording section (4) During measurement, a memory recorder is used to record waveforms, and a three-phenomenon onroscope is used as a monitor during measurement.

〔発明の効果〕〔Effect of the invention〕

本発明は上記の構成であるから、容積振動法の基本原理
における血管内圧と外圧(カフ圧)が等しい時、動脈血
管のコンプライアンスが最大となる現象は、広範な周波
数領域で成立するという特性を、カフ加振法を利用して
最高血圧及び平均血圧とは独立して間接的に最低血圧の
11111定ができる効果が得られる。
Since the present invention has the above configuration, the phenomenon in which the compliance of the arterial blood vessel reaches its maximum when the intravascular pressure and the external pressure (cuff pressure) are equal in the basic principle of the volume oscillation method is realized in a wide frequency range. By using the cuff vibration method, it is possible to indirectly determine the diastolic blood pressure independently of the systolic blood pressure and the mean blood pressure.

この本発明方法の実施により、一定のインターバルでの
長時間の血圧測定が実現し、また、通院患者の血圧管理
や高血圧症患者の降圧剤投与時期の判定及びその効果の
把握等臨床分野、さらに、時間生物学の領域や血圧バイ
オフィードバックの研究手段として新規有益である。
By implementing the method of the present invention, long-term blood pressure measurement at regular intervals is realized, and it is also useful in clinical fields such as blood pressure management of outpatients, determining when to administer antihypertensive drugs for hypertensive patients, and understanding their effects. It is novel and useful in the field of chronobiology and as a research tool in blood pressure biofeedback.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明方法に係るカフ加振法による間接最低血圧
測定法の実施例を示すもので、第1図〜第3図はカフ加
振法による最低血圧測定法の原理を示す波形で、第1図
は血圧波形、第2図はカフ圧、第3図は血管壁にかかる
圧力の変化を表す図、第4図は容積脈波の振幅変化の発
生機序を示す波形である。第5図は波形記録の一例を示
す波形、第6図本発明方法の実施に用いるシステムを示
すブロック図、第7図は手指加圧用カフの縦断面図、第
8図は第6図に示す測定法におけるカフ加振手段の他の
例を示す斜視図、第9図及び第1O図はり=クハルブユ
ニノトのカフ圧の周波数特性を示すグラフで、第9図は
リークバルブ制御オーブン時の周波特性のグラフで、同
図fatは振1陥特性、同図Cb)は位相特性を示す。 第10図はリークバルブPID補償時周波数特性のグラ
フで、同図ia)は振幅特性、同図(blは位相特性を
示す。、第11図は周波数80Hzのカフ圧加振波形サ
ンプルのグラフである。 (1)・・・・・・光電容積脈波検出部(2)・・・・
・・手指加圧用カフ イ3)・・・・・・カフ圧及び圧検出部(4)・・・・
・・記録部
The drawings show an example of the indirect diastolic blood pressure measurement method using the cuff vibration method according to the method of the present invention. 1 shows a blood pressure waveform, FIG. 2 shows a cuff pressure, FIG. 3 shows a change in pressure applied to a blood vessel wall, and FIG. 4 shows a waveform showing a mechanism of a change in the amplitude of a volume pulse wave. FIG. 5 is a waveform showing an example of waveform recording, FIG. 6 is a block diagram showing a system used to carry out the method of the present invention, FIG. 7 is a longitudinal cross-sectional view of a hand pressure cuff, and FIG. 8 is shown in FIG. A perspective view showing another example of the cuff excitation means in the measurement method, and Fig. 9 and Fig. 1O are graphs showing the frequency characteristics of the cuff pressure of KHARUBU UNINOTO. In the graph, fat in the same figure shows the swing-first characteristic, and Cb) in the same figure shows the phase characteristic. Figure 10 is a graph of the frequency characteristics during leak valve PID compensation, ia) in the same figure shows the amplitude characteristics, and Figure 11 shows the graph of the cuff pressure excitation waveform sample at a frequency of 80 Hz. (1)...Photoelectric plethysmogram detection section (2)...
・・Cuff for pressurizing fingers 3)・・・Cuff pressure and pressure detection part (4)・・・・
・Recording department

Claims (1)

【特許請求の範囲】[Claims] 容積脈波法を利用した容積振動法に基づいて、加圧用カ
フに10Hz程度の周波数の正弦波状の圧力を重畳させ
ると、動脈血管壁にかかる圧力には血圧波形にカフ圧の
加振成分が重畳し、ここで前記カフ圧の直流成分を変化
させて拡張期において、血管壁にかかる圧力の直流成分
が零となった時点で血管コンプライアンスが最大になっ
て、カフ圧の加振成分に対応する拡張期容積脈波の振幅
を最大とし、これに対応するカフ圧の直流成分から最低
血圧を測定することを特徴とするカフ加振法による間接
的最低血圧測定法。
Based on the volume vibration method using the volume pulse wave method, when a sinusoidal pressure with a frequency of about 10 Hz is superimposed on the pressurizing cuff, the pressure applied to the arterial blood vessel wall includes an excitation component of the cuff pressure in the blood pressure waveform. Then, the DC component of the cuff pressure is changed, and during diastole, when the DC component of the pressure applied to the blood vessel wall becomes zero, the blood vessel compliance reaches its maximum and corresponds to the excitation component of the cuff pressure. An indirect diastolic blood pressure measurement method using a cuff excitation method, which is characterized in that the amplitude of the diastolic plethysmogram is maximized, and the diastolic blood pressure is measured from the DC component of the corresponding cuff pressure.
JP61115492A 1986-05-19 1986-05-19 Indirect lowest blood pressure measuring method by cuff vibration method Pending JPS62270133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61115492A JPS62270133A (en) 1986-05-19 1986-05-19 Indirect lowest blood pressure measuring method by cuff vibration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61115492A JPS62270133A (en) 1986-05-19 1986-05-19 Indirect lowest blood pressure measuring method by cuff vibration method

Publications (1)

Publication Number Publication Date
JPS62270133A true JPS62270133A (en) 1987-11-24

Family

ID=14663852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61115492A Pending JPS62270133A (en) 1986-05-19 1986-05-19 Indirect lowest blood pressure measuring method by cuff vibration method

Country Status (1)

Country Link
JP (1) JPS62270133A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006255133A (en) * 2005-03-17 2006-09-28 Nippon Telegr & Teleph Corp <Ntt> Hemadynamometer with chamber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006255133A (en) * 2005-03-17 2006-09-28 Nippon Telegr & Teleph Corp <Ntt> Hemadynamometer with chamber

Similar Documents

Publication Publication Date Title
US6554773B1 (en) Method and arrangement for blood pressure measurement
US4475554A (en) Noninvasive continuous blood pressure meter
US6432061B1 (en) Method and arrangement for measuring venous pressure
CN100398058C (en) Non-wound method and device for measuring blood pressure
US5840037A (en) Sphygmomanometer
WO2006125348A1 (en) A method and an apparatus for measuring arterial pressure and individual correction method thereof
JPH0417651B2 (en)
CN107019504A (en) A kind of blood pressure detector and method based on volume pulsation wave graded
JPS62270133A (en) Indirect lowest blood pressure measuring method by cuff vibration method
JPH08140948A (en) Blood pressure measuring system
JP4680411B2 (en) Arterial blood pressure measuring method and arterial blood pressure measuring device
JP3675586B2 (en) Aortic pressure waveform detector
JP3733379B2 (en) Automatic blood pressure meter measurement display method
JPS61265127A (en) Apparatus for continuously measuring blood pressure
JP3240324B2 (en) Electronic sphygmomanometer
JPS61179131A (en) Blood non-observing type continuous hemomanomometer
JPS61247431A (en) Method for correcting blood non-observing type continuous blood pressure measurement and blood non-observing type continuous hemomanometer using said method
JPH08257002A (en) Measuring device for pulse wave propagation velocity
Wikstrand et al. Distortion of non-invasive cardiac pulse curves. A capillary-damped pick-up and a calibration unit forapex cardiograms and other pulse curves.
JPH01214339A (en) Blood pressure monitoring method and apparatus
JPS6216096B2 (en)
JP2664920B2 (en) Blood pressure monitoring device
JPH0349731A (en) Pulse wave and arterial sound compounding recorder
JPH0415036A (en) Blood pressure measuring device
SU1197634A1 (en) Hemodynamograph