JPS61265127A - Apparatus for continuously measuring blood pressure - Google Patents

Apparatus for continuously measuring blood pressure

Info

Publication number
JPS61265127A
JPS61265127A JP60106628A JP10662885A JPS61265127A JP S61265127 A JPS61265127 A JP S61265127A JP 60106628 A JP60106628 A JP 60106628A JP 10662885 A JP10662885 A JP 10662885A JP S61265127 A JPS61265127 A JP S61265127A
Authority
JP
Japan
Prior art keywords
blood pressure
gas
pressure
chamber
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60106628A
Other languages
Japanese (ja)
Inventor
中根 央
丸山 仁司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60106628A priority Critical patent/JPS61265127A/en
Publication of JPS61265127A publication Critical patent/JPS61265127A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は連続的血圧測定装置に関し、特に間接的に且
つ連続的に血圧を簡易に測定できる連続的血圧測定装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a continuous blood pressure measuring device, and more particularly to a continuous blood pressure measuring device that can easily measure blood pressure indirectly and continuously.

(従来の技術) 血圧応答の定量的且つ簡易な追跡測定の要望は、生体負
荷試験的見地上、特に循環器系機能検査等(動脈血管の
弾力性等の評価及び急激な血圧変動の検査)の幅広い分
野で極めて強く、その早急なる実現が待たれている。
(Prior art) The desire for quantitative and simple follow-up measurement of blood pressure response is desired from the viewpoint of biological stress testing, especially circulatory system function tests (evaluation of arterial blood vessel elasticity, etc., and examination of rapid blood pressure fluctuations). It is extremely strong in a wide range of fields, and its immediate realization is awaited.

従来、この種の血圧測定を被測定者に苦痛や不快感等精
神的緊張を与えず、生体を侵襲することなく、間接点的
方法で血圧を連続的に測定する方法が望まれ、その方法
として容積補償法に基づく測定方法が提案されている。
Conventionally, there has been a desire for a method to continuously measure blood pressure using an indirect method without causing mental stress such as pain or discomfort to the person being measured, and without invading the living body. A measurement method based on the volume compensation method has been proposed.

この方法は基本的に手指部位にカフ圧を加え、この部位
の動脈血管床容積を血管壁の無負荷状態に対応した一定
値になるように前記カフ圧を外部圧で逐次フィードバッ
ク補償し、このとき容積補償に要するカフ圧を血管内圧
(血圧)として測定するものである。
This method basically applies cuff pressure to the finger area, and sequentially feedback-compensates the cuff pressure using external pressure so that the arterial vascular bed volume at this area becomes a constant value corresponding to the unloaded state of the blood vessel wall. The cuff pressure required for volume compensation is measured as intravascular pressure (blood pressure).

具体的には、測定対象となる指が挿入された剛体チャン
バ内に水等の流体を満たし、このチャンバ内面対向部に
発光素子と受光素子を設け、発光素子からの光が指向の
血管を通過した光を受光素子で検出することで面管内の
血液量(容81)と脈波を測定していた。このような光
電方式による測定は、血液(赤血球)に含まれているヘ
モグロビンが可視光領域に強い吸収帯をもつことを利用
している。
Specifically, a rigid chamber into which the finger to be measured is inserted is filled with a fluid such as water, a light emitting element and a light receiving element are provided on opposite sides of the inner surface of the chamber, and light from the light emitting element passes through the oriented blood vessel. By detecting the emitted light with a light-receiving element, the blood volume (volume 81) and pulse wave in the canal were measured. Such photoelectric measurement utilizes the fact that hemoglobin contained in blood (red blood cells) has a strong absorption band in the visible light region.

(発明が解決しようとする問題点) しかしながら、この方式では、カフ圧印加制御のためチ
ャンバ内に流体を満たし、この流体の加減圧を、チャン
バの一方側に結合したベローズを振動板で振動伸縮する
ことで調整しているため、装置全体が大型1重量化して
しまい、例えば、連動時の血圧測定時等の場合には不適
当で、また携帯にも不便である。さらに、ベローズの伸
縮のためにはスプリングを含む電磁的な摺動調整(電磁
式加圧器)が必要であるため、更に大型、電縫化してし
まう。
(Problem to be solved by the invention) However, in this method, a chamber is filled with fluid to control cuff pressure application, and the pressure of this fluid is controlled by a bellows connected to one side of the chamber that vibrates and expands and contracts using a diaphragm. Since the adjustment is made by doing this, the entire device becomes large and heavy, making it unsuitable for, for example, measuring blood pressure during interlocking, and is also inconvenient to carry. Furthermore, in order to expand and contract the bellows, an electromagnetic sliding adjustment (electromagnetic pressurizer) including a spring is required, which results in an even larger size and electric resistance welding.

この発明はかかる点に鑑みてなされたもので、極めて簡
単な構造で、より小型、軽量化を図ることを可能とする
連続的血圧測定装置を提供するものである。
The present invention has been made in view of these points, and it is an object of the present invention to provide a continuous blood pressure measuring device that has an extremely simple structure and can be made smaller and lighter.

(問題点を解決するための手段) この発明は前記問題点を解決するために、被検部位が挿
入されるチャンバと、このチャンバ内に気体を満たすた
めの気体供給手段と、前記被検部位の血管の血圧脈動的
変化に伴なって変動する容積の変化を光電的に検出する
光電検出手段と、この光電検出手段からの出力信号を基
準信号と比較する比較手段と、この比較手段の出力に基
づいて前記チャンバからの気体の流敬を制御する調整手
段とを備え、前記気体の圧力を血圧として測定すること
を特徴としている。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides a chamber into which a test site is inserted, a gas supply means for filling the chamber with gas, and a gas supply unit for filling the test site with gas. a photoelectric detection means for photoelectrically detecting a change in volume that varies with a pulsating change in blood pressure of a blood vessel; a comparison means for comparing an output signal from the photoelectric detection means with a reference signal; and an output of the comparison means. and an adjusting means for controlling the flow of gas from the chamber based on the pressure of the gas, and the pressure of the gas is measured as blood pressure.

(作用) この発明では、気体によるカフ圧を調整するとともに、
デユーティファクタ制御されたパルスで電磁弁を駆動制
御しているので、特別な機械的加圧手段を必要とせず、
しかも電磁弁に小型なものが選択でき測定装置の小型化
、軽量化が大幅に達成される。
(Function) In this invention, while adjusting the cuff pressure with gas,
Since the solenoid valve is driven and controlled by duty factor controlled pulses, no special mechanical pressurizing means is required.
Moreover, a small solenoid valve can be selected, and the measuring device can be made much smaller and lighter.

(実施例) 第1図はこの発明の基本構成図を示す構成ブロック図で
ある。
(Embodiment) FIG. 1 is a block diagram showing the basic configuration of the present invention.

図において符号1は円環状のチャンバで、このチャンバ
l内には第2図に示すように被測定部位、例えば指2が
挿入される。そして、この指2を挟んでチャンバ1内の
対向面には発光素子1例えばLED3と受光素子、例え
ばフォ))ランジスタ4が設けられている。
In the figure, reference numeral 1 denotes an annular chamber, into which a part to be measured, for example, a finger 2, is inserted as shown in FIG. A light emitting element 1 such as an LED 3 and a light receiving element such as a transistor 4 are provided on opposing surfaces in the chamber 1 with the finger 2 in between.

前記チャンバ1には1.8気圧の7レオンガスがフレオ
ンガスポンベ5から固定しぼり弁6を介して常に一定圧
のガスとして供給され、カフ圧として印加される。フレ
オンガスは安定で無害かつ不燃焼であるため、その使用
に適している。
7 Leon gas at a pressure of 1.8 atmospheres is always supplied to the chamber 1 from a Freon gas pump 5 as a gas at a constant pressure via a fixed throttle valve 6, and is applied as cuff pressure. Freon gas is suitable for use because it is stable, non-toxic and non-flammable.

前記受光素子4で検出された指2等の血管の透過光信号
は前記の如く血液中のヘモグロビンに対する吸収特性に
基づいて血管の血流の容積変化を示し、直流(DC)増
幅器7で増幅された後、スイッチ8を介して交流(AC
)増幅器9、ピーク検出器10、低域ろ波器11及びサ
ンプルホールド回路12からなる初期設定器13で設定
された基準レベルと比較器14にて比較される。そして
、比較結果を、パルス幅変調(PWM)回路15に送出
する。
The light signal transmitted through the blood vessel of the finger 2 or the like detected by the light receiving element 4 indicates a change in the blood flow volume of the blood vessel based on the absorption characteristics of hemoglobin in the blood as described above, and is amplified by the direct current (DC) amplifier 7. After that, the AC
) A comparator 14 compares the level with a reference level set by an initial setter 13 consisting of an amplifier 9, a peak detector 10, a low-pass filter 11, and a sample-and-hold circuit 12. The comparison result is then sent to the pulse width modulation (PWM) circuit 15.

一方、チャンバl内に送り込まれたフレオンガスは切換
バルブ16を介して電磁弁17に供給される。この電磁
弁17はPWM回路15からのデユーティファクタが制
御されたパルスで、その開閉比率が変化されることでチ
ャンバl内の圧力(カフ圧)を調整している。
On the other hand, the Freon gas sent into the chamber I is supplied to the electromagnetic valve 17 via the switching valve 16. This electromagnetic valve 17 adjusts the pressure (cuff pressure) in the chamber 1 by changing its opening/closing ratio using a pulse whose duty factor is controlled from the PWM circuit 15.

前記切換バルブ16の上流側には分岐管に圧カドランス
デューサ18が設けられ、この圧カドランスデューサ1
8で、測定時のカフ圧を電気信号に変換し、記録計19
に送出して血圧変化として記録する。圧カドランスデュ
ーサ18に付随した回路には電磁弁17の動作により生
じた高周波成分を除くために、図示しない低域ろ波器(
LPF)やノツチフィルタを内蔵している。
A pressure cadence transducer 18 is provided in a branch pipe on the upstream side of the switching valve 16.
8, the cuff pressure during measurement is converted into an electrical signal, and the recorder 19
and record it as a change in blood pressure. The circuit associated with the pressure transducer 18 is equipped with a low-pass filter (not shown) in order to remove high frequency components generated by the operation of the solenoid valve 17.
It has a built-in LPF) and notch filter.

また、前記切換バルブ16は初期設定器12及び固定し
ぼり20とともに容積補償のためのサーボ11標値を初
期設定するものであり、初期設定時には、電磁弁17へ
のフレオンガスの供給は停止トされ、固定しぼり20へ
のみ供給される。この初期設定は予め脈圧変動に対応し
た容積脈波成分が最大となるときの血管内容積をプリセ
ットする。
Further, the switching valve 16, together with the initial setting device 12 and the fixed throttle 20, is used to initialize the target value of the servo 11 for volume compensation, and at the time of initial setting, the supply of Freon gas to the solenoid valve 17 is stopped. It is supplied only to the fixed iris 20. In this initial setting, the intravascular volume at which the volume pulse wave component corresponding to pulse pressure fluctuations becomes maximum is preset.

血管内容積は前記発光素子3からの赤外線の透過酸を受
光素子4で計測することで検知される。
The intravascular volume is detected by measuring the transmitted infrared rays from the light emitting element 3 using the light receiving element 4.

第3図(A)、(B)、(C)及び(D)はフレオンガ
スによるカフ圧、光電容積脈波信号、脈波成分及び低周
波成分を示す。
FIGS. 3(A), (B), (C) and (D) show the cuff pressure due to Freon gas, the photoplethysmographic signal, the pulse wave component and the low frequency component.

図を参照すると、フレオンガスによるカフ圧を固定しぼ
り20によって最高血圧よりも十分高い圧から徐々に減
圧させていくと、ある点で光電容積信号に重畳した正弦
波状変動成分(脈派成分)が出現する。容積補償法の原
理から明らかなように、この出現点とのカフ圧は最大血
圧に対応する。さらに、カフ圧を減圧すると光電容積信
号の低周波成分はほぼ直線的に降下し、ある点で脈波成
分が最大となる。この点でのカフ圧は平均血圧に対応す
るから、その時の光電容積信号の低周波成分をプリセッ
トすれば良いことになる。
Referring to the figure, when the cuff pressure caused by Freon gas is gradually reduced from a pressure sufficiently higher than the systolic blood pressure using the fixed squeezer 20, a sinusoidal fluctuation component (pulse component) superimposed on the photoelectric volume signal appears at a certain point. do. As is clear from the principle of volume compensation, the cuff pressure at this point of appearance corresponds to the systolic blood pressure. Furthermore, when the cuff pressure is reduced, the low frequency component of the photoelectric volume signal drops almost linearly, and the pulse wave component reaches a maximum at a certain point. Since the cuff pressure at this point corresponds to the average blood pressure, it is sufficient to preset the low frequency component of the photoelectric volume signal at that time.

第1図と第4図を用いて更に詳細に電気的動作を説明す
る。
The electrical operation will be explained in more detail using FIGS. 1 and 4.

今、カフ圧を第4図(A)のように徐々に下げていくも
のとすると、受光素子4からの検知信号(第4図(B)
)はDC増幅器7を通り、一方の信号はAC増幅器9を
通って脈波成分だけが残り(第4図(C))、 ピーク
検出器IOにてピークを検出して(第4図(D))、対
応する信号を出力する(第4図(E))。
Now, if the cuff pressure is gradually lowered as shown in Fig. 4 (A), the detection signal from the light receiving element 4 (Fig. 4 (B)
) passes through the DC amplifier 7, and one signal passes through the AC amplifier 9, leaving only the pulse wave component (Fig. 4 (C)). The peak is detected by the peak detector IO (Fig. 4 (D)). )) and outputs the corresponding signal (FIG. 4(E)).

DC増幅器7の出力は、また低域ろ波器(LPF)11
を通って平均透過量を示す信号を出力する。この信号は
サンプルホールド回路13にてピーク検出器10からの
脈波成分のピーク値信号をトリガとしてサンプルすると
、それは制御目標値の血圧値に相当し、外部回路に基準
信号として出力する。
The output of the DC amplifier 7 is also passed through a low pass filter (LPF) 11.
A signal indicating the average amount of transmission is output. When this signal is sampled by the sample-hold circuit 13 using the peak value signal of the pulse wave component from the peak detector 10 as a trigger, it corresponds to the blood pressure value of the control target value and is output as a reference signal to an external circuit.

こうして初期設定が終了すると、切換バルブ16を電磁
弁17側に切換えると共にスイッチ8をオフして、血圧
の自動計測準備が完了する。
When the initial settings are completed in this manner, the switching valve 16 is switched to the electromagnetic valve 17 side, and the switch 8 is turned off, thereby completing preparations for automatic blood pressure measurement.

受光素子4からの透過量信号は比較器14に供給され、
サンプルホールド回路13からの基準信号と比較され、
比較結果(透過量信号と基準信号との偏差(差分))が
PWM回路15に送出される。パルス幅変調回路15は
、この比較結果に基づいて所定周期のパルスのデユーテ
ィファクタを制御し、こうしてパルス幅制御したパルス
で電磁弁17の開閉比率を制御することによりカフ内圧
を制御する。
The transmission amount signal from the light receiving element 4 is supplied to a comparator 14,
It is compared with the reference signal from the sample and hold circuit 13,
The comparison result (deviation (difference) between the transmission amount signal and the reference signal) is sent to the PWM circuit 15. The pulse width modulation circuit 15 controls the duty factor of the pulse of a predetermined period based on the comparison result, and controls the cuff internal pressure by controlling the opening/closing ratio of the electromagnetic valve 17 using the pulse width-controlled pulse.

以−1−の実施例は被検部として手指部を対象としたが
、この発明は小型軽量であるから他の末梢部位において
も測定が容易にできる。
In the embodiments described in 1-1 below, the fingers and fingers were tested, but since the present invention is small and lightweight, measurements can be easily performed on other peripheral parts as well.

例えば、第5図に示すようにチャンバを耳甲介部に取付
けることもできる。第2図では血液容積変化の測定を透
過光量を測定する透過型光電脈波法によっていたが、こ
の実施例では生体セブセント(耳甲介部)の厚さを考慮
して反射光量変化を測定する反射型光電脈波法によって
いる。すなわち、耳甲介部21の一方の側には発光素子
(例えばLED)22と受光素子(フォトトランジスタ
)23が並設され、耳甲介部21の被検部を介して対向
部にチャンバlが設けられ、カフ圧がフレオンガスの供
給で印加される。
For example, the chamber can be attached to the concha as shown in FIG. In Figure 2, changes in blood volume were measured using a transmission photoplethysmography method that measures the amount of transmitted light, but in this example, changes in the amount of reflected light are measured taking into account the thickness of the living body's sevcent (concha). It uses reflection photoplethysmography. That is, a light-emitting element (for example, an LED) 22 and a light-receiving element (phototransistor) 23 are arranged side by side on one side of the concha part 21, and a chamber l is connected to the opposite part through the test part of the concha part 21. is provided and cuff pressure is applied with a supply of Freon gas.

また、上述実施例における光電脈波法に用いる光として
は、可視光または赤色光を用いる。
Furthermore, visible light or red light is used as the light used in the photoplethysmography method in the above embodiments.

さらに、カフ圧印加のために用いるフレオンガスの代わ
りに他の気体に用いても良いことは明らかである。
Furthermore, it is clear that other gases may be used instead of Freon gas for applying cuff pressure.

第6図(A)には以上のようにして得られた測定データ
が示されている。こうして得られたデータをローパスフ
ィルタで、電磁弁17の動作により生じた30Hz以上
の周波数成分をカットした後の測定データが第6図(B
)に示されている。
FIG. 6(A) shows the measurement data obtained in the above manner. The data obtained in this way is filtered using a low-pass filter to remove frequency components of 30 Hz or more generated by the operation of the solenoid valve 17, and the measured data is shown in Figure 6 (B
) is shown.

ここでは血液波形は20Hz以上の周波数成分を含まな
いものとする。
Here, it is assumed that the blood waveform does not include frequency components of 20 Hz or higher.

(発明の効果) 以上説明したようにこの発明では、気体の圧力でカフ圧
印加を行なっているめで、特別な機械的な圧力手段を必
要としない、従って、従来の液体を用いた場合は機械的
加圧手段を必要であるが。
(Effects of the Invention) As explained above, in this invention, cuff pressure is applied using gas pressure, and no special mechanical pressure means is required. However, a suitable means of pressurization is required.

この発明は気体を圧縮して小型の容器に収容し、この気
体の圧力をカフ圧とすることができ、小型、軽量化が極
めて容易になる。
In this invention, gas can be compressed and stored in a small container, and the pressure of this gas can be used as cuff pressure, making it extremely easy to reduce the size and weight.

また、この発明では、カフ圧調整をデユーティファクタ
で制御されたパルスによるミニチュア電磁弁により行な
っているので、特にその小型、軽量化が促進され、携帯
して使用することが可能になる。また、この発明は種々
の部位での測定が可能であり、特に末梢部位での測定が
容易であるため、運動時に測定することができる等、そ
の医学的利用分野は広い。
Further, in the present invention, cuff pressure is adjusted by a miniature solenoid valve using pulses controlled by a duty factor, which particularly facilitates miniaturization and weight reduction, making it possible to carry and use the device. In addition, the present invention allows measurement at various sites, and is particularly easy to measure at peripheral sites, so it has a wide range of medical applications, such as measurement during exercise.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の基本構成図、第2図はこの発明の実
施例である被検部(手指部)の模式図、第3図(A)〜
(D)及び第4図(A)〜(G)はこの発明におけるサ
ーボ目標基準設定を説明するためのタイミングチャート
、第5図はこの発明の他の実施例である被検部(耳甲介
部)の模式図、第6図(A)、(B)はこの発明により
得られた光電信号とこの光電信号を信号処理して得られ
る血圧波形図である。 l・・・チャンバ 2・・・指 3.22・・・発光素子 4.23・・・受光素子 5・・・フレオンガスボンベ 6.20・・・固定しぼり 7・・・DCklIIg器 9・・・AC増幅器 lO・・・ピーク検出器 11・・・低域ろ波器(LPF) 13・・・サンプルホールド回路 14・・・比較器 15・・・パルス幅変調器 16・・・切換バルブ 17・・・電磁弁 18・・・圧カドランスデューサ 19・・・記録計 21・・・耳中′介部
Fig. 1 is a basic configuration diagram of the present invention, Fig. 2 is a schematic diagram of a test subject (hand and finger) according to an embodiment of the invention, and Figs. 3 (A) -
(D) and FIGS. 4(A) to (G) are timing charts for explaining the servo target standard setting in this invention, and FIG. FIGS. 6(A) and 6(B) are diagrams of the photoelectric signal obtained according to the present invention and the blood pressure waveform obtained by signal processing the photoelectric signal. l...Chamber 2...Finger 3.22...Light emitting element 4.23...Light receiving element 5...Freon gas cylinder 6.20...Fixed squeezer 7...DCklIIg device 9... AC amplifier lO... peak detector 11... low pass filter (LPF) 13... sample hold circuit 14... comparator 15... pulse width modulator 16... switching valve 17... ...Solenoid valve 18...Pressure transducer 19...Recorder 21...Ear concha

Claims (2)

【特許請求の範囲】[Claims] (1)被検部位が挿入されるチャンバと、このチャンバ
内に気体を満たすための気体供給手段と、前記被検部位
の血管の血圧脈動的変化に伴なって変動する容積の変化
を光電的に検出する光電検出手段と、この光電検出手段
からの出力信号を基準信号と比較する比較手段と、この
比較手段の出力に基づいて前記チャンバからの気体の流
量を制御する調整手段とを備え、前記気体の圧力を血圧
として測定することを特徴とする連続的血圧測定装置。
(1) A chamber into which the test site is inserted, a gas supply means for filling the chamber with gas, and a photoelectric system that measures changes in volume that vary with blood pressure pulsation changes in the blood vessels of the test site. comprising: a photoelectric detection means for detecting, a comparison means for comparing an output signal from the photoelectric detection means with a reference signal, and an adjustment means for controlling the flow rate of gas from the chamber based on the output of the comparison means, A continuous blood pressure measuring device, characterized in that the pressure of the gas is measured as blood pressure.
(2)前記調整手段は、前記比較手段の出力に基づいて
、所定周波数のパルスのデューティファクタを制御して
出力するパルス幅変調手段と、このパルス幅変調手段か
らのパルスに従って、その開閉比率が調整される電磁弁
とからなることを特徴とする特許請求の範囲第1項記載
の血圧測定装置。
(2) The adjustment means includes a pulse width modulation means that controls and outputs a duty factor of a pulse of a predetermined frequency based on the output of the comparison means, and a pulse width modulation means that adjusts the opening/closing ratio according to the pulse from the pulse width modulation means. 2. The blood pressure measuring device according to claim 1, further comprising a controlled solenoid valve.
JP60106628A 1985-05-18 1985-05-18 Apparatus for continuously measuring blood pressure Pending JPS61265127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60106628A JPS61265127A (en) 1985-05-18 1985-05-18 Apparatus for continuously measuring blood pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60106628A JPS61265127A (en) 1985-05-18 1985-05-18 Apparatus for continuously measuring blood pressure

Publications (1)

Publication Number Publication Date
JPS61265127A true JPS61265127A (en) 1986-11-22

Family

ID=14438373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60106628A Pending JPS61265127A (en) 1985-05-18 1985-05-18 Apparatus for continuously measuring blood pressure

Country Status (1)

Country Link
JP (1) JPS61265127A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006102251A (en) * 2004-10-06 2006-04-20 Terumo Corp Circulation index measuring device, circulation index measuring method, control program and computer-readable storage medium
JP2006102264A (en) * 2004-10-06 2006-04-20 Terumo Corp Blood pressure monitoring device and blood pressure monitoring method
JP2006102252A (en) * 2004-10-06 2006-04-20 Terumo Corp Circulatory organ function measuring device, circulatory organ function measuring method, control program and computer-readable storage medium
JP2006102267A (en) * 2004-10-06 2006-04-20 Terumo Corp Hemadynamometer and ear-hook-type support
JP2006102266A (en) * 2004-10-06 2006-04-20 Terumo Corp Hemadynamometer and control method therefor
JP2006102265A (en) * 2004-10-06 2006-04-20 Terumo Corp Evaluating device and evaluating method for autonomic nerve function
JP2006102253A (en) * 2004-10-06 2006-04-20 Terumo Corp Blood pressure measuring device, blood pressure measuring method, control program and computer-readable storage medium
JP2006288627A (en) * 2005-04-08 2006-10-26 Terumo Corp Blood pressure measuring apparatus, blood pressure measuring method and control program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5060694A (en) * 1973-09-29 1975-05-24
JPS5754407B2 (en) * 1975-06-20 1982-11-18
JPS5828604B2 (en) * 1976-05-10 1983-06-17 株式会社ニコン High voltage large current constant voltage power supply
JPS59156325A (en) * 1983-02-25 1984-09-05 株式会社 ウエダ製作所 Indirect blood pressure measuring apparatus
JPS59167702A (en) * 1983-03-14 1984-09-21 Komatsu Ltd Flow rate control circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5060694A (en) * 1973-09-29 1975-05-24
JPS5754407B2 (en) * 1975-06-20 1982-11-18
JPS5828604B2 (en) * 1976-05-10 1983-06-17 株式会社ニコン High voltage large current constant voltage power supply
JPS59156325A (en) * 1983-02-25 1984-09-05 株式会社 ウエダ製作所 Indirect blood pressure measuring apparatus
JPS59167702A (en) * 1983-03-14 1984-09-21 Komatsu Ltd Flow rate control circuit

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006102251A (en) * 2004-10-06 2006-04-20 Terumo Corp Circulation index measuring device, circulation index measuring method, control program and computer-readable storage medium
JP2006102264A (en) * 2004-10-06 2006-04-20 Terumo Corp Blood pressure monitoring device and blood pressure monitoring method
JP2006102252A (en) * 2004-10-06 2006-04-20 Terumo Corp Circulatory organ function measuring device, circulatory organ function measuring method, control program and computer-readable storage medium
JP2006102267A (en) * 2004-10-06 2006-04-20 Terumo Corp Hemadynamometer and ear-hook-type support
JP2006102266A (en) * 2004-10-06 2006-04-20 Terumo Corp Hemadynamometer and control method therefor
JP2006102265A (en) * 2004-10-06 2006-04-20 Terumo Corp Evaluating device and evaluating method for autonomic nerve function
JP2006102253A (en) * 2004-10-06 2006-04-20 Terumo Corp Blood pressure measuring device, blood pressure measuring method, control program and computer-readable storage medium
JP4673031B2 (en) * 2004-10-06 2011-04-20 テルモ株式会社 Autonomic nerve function evaluation device
JP4673032B2 (en) * 2004-10-06 2011-04-20 テルモ株式会社 Sphygmomanometer
JP4673030B2 (en) * 2004-10-06 2011-04-20 テルモ株式会社 Blood pressure measurement device
JP2006288627A (en) * 2005-04-08 2006-10-26 Terumo Corp Blood pressure measuring apparatus, blood pressure measuring method and control program

Similar Documents

Publication Publication Date Title
EP0060252B1 (en) Non-invasive continuous blood pressure meter
US5094244A (en) Apparatus and process for determining systolic blood pressure, diastolic blood pressure, mean arterial blood pressure, pulse rate, pulse wave shape, respiratory pattern, and respiratory rate
EP1011434B1 (en) Method and arrangement for blood pressure measurement
JP5193224B2 (en) Apparatus for continuous noninvasive measurement of arterial pressure and its use
JPH0417651B2 (en)
JP2664926B2 (en) Blood pressure measurement device
JPH03505533A (en) How to continuously measure human blood pressure
JPH0131370B2 (en)
JP2015521071A (en) Method and apparatus for continuous noninvasive measurement of blood pressure
JPH0458973B2 (en)
JPS61265127A (en) Apparatus for continuously measuring blood pressure
JP4412660B2 (en) Blood pressure monitor, blood pressure correction method, and measurement start pressure correction method
US7014611B1 (en) Oscillometric noninvasive blood pressure monitor
JPH0663024A (en) Instrument for simultaneous and continuous bloodless measurement of blood pressure and degree of oxygen saturation in blood
JPS595296B2 (en) indirect continuous blood pressure measurement device
JP2002320593A (en) Method and apparatus for measuring arterial blood pressure
JPH0618555B2 (en) Photoplethysmograph
JP2020142070A (en) Continuous blood pressure measurement system by phase difference method
US4473080A (en) Blood pressure instrument
JPH01214339A (en) Blood pressure monitoring method and apparatus
JPH032246Y2 (en)
Davis Continuous recording of arterial pressure: An analysis of the problem.
JPS6329616A (en) Continuous blood pressure measuring apparatus
Singh et al. Towards a Simple System for Indicating Temporal Variations in Blood Pressure
Panula et al. Continuous Blood Pressure Monitoring using Non-Pulsatile Photoplethysmographic Components for Low-Frequency Vascular Unloading