JPS62269743A - Method and device for producing isolated or short-chain ultra-fine particle - Google Patents
Method and device for producing isolated or short-chain ultra-fine particleInfo
- Publication number
- JPS62269743A JPS62269743A JP61112790A JP11279086A JPS62269743A JP S62269743 A JPS62269743 A JP S62269743A JP 61112790 A JP61112790 A JP 61112790A JP 11279086 A JP11279086 A JP 11279086A JP S62269743 A JPS62269743 A JP S62269743A
- Authority
- JP
- Japan
- Prior art keywords
- chamber
- vacuum
- vacuum chamber
- ultrafine
- ultrafine particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011882 ultra-fine particle Substances 0.000 title claims abstract description 119
- 238000000034 method Methods 0.000 title description 7
- 238000004519 manufacturing process Methods 0.000 claims abstract description 31
- 239000000463 material Substances 0.000 claims abstract description 17
- 238000001704 evaporation Methods 0.000 claims description 54
- 230000008020 evaporation Effects 0.000 claims description 44
- 238000000576 coating method Methods 0.000 claims description 15
- 239000011248 coating agent Substances 0.000 claims description 14
- 230000005415 magnetization Effects 0.000 claims description 11
- 238000004381 surface treatment Methods 0.000 claims description 10
- 239000007789 gas Substances 0.000 abstract description 29
- 239000011261 inert gas Substances 0.000 abstract description 2
- 230000015572 biosynthetic process Effects 0.000 abstract 4
- 238000009834 vaporization Methods 0.000 abstract 3
- 230000008016 vaporization Effects 0.000 abstract 2
- 238000010438 heat treatment Methods 0.000 description 14
- 239000002245 particle Substances 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 239000000956 alloy Substances 0.000 description 5
- 239000012159 carrier gas Substances 0.000 description 5
- 238000005192 partition Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- -1 that is Substances 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 229920003002 synthetic resin Polymers 0.000 description 4
- 239000000057 synthetic resin Substances 0.000 description 4
- 210000005239 tubule Anatomy 0.000 description 4
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000000779 smoke Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000010574 gas phase reaction Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 239000011364 vaporized material Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J3/00—Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
- B01J3/006—Processes utilising sub-atmospheric pressure; Apparatus therefor
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
五 発明の詳細な説明
(産業上の利用分野)
本発明は、孤立又は短チェイン状超微粒子の製造法益に
製造装置に関する。Detailed Description of the Invention V. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method and apparatus for producing isolated or short chain-shaped ultrafine particles.
(従来の技術)
従来の超微粉体の製造は、ガス中蒸発法により生成して
いるが、捕集室で付着し、回収し念超微粒子tit凝集
状態となったり、超微粒子が40〜50ケつながり、長
さにして1部穐以上の長チェイン状超微粒子の集合体と
して得られるので、磁気記録材料として基材に塗布する
場合、容易に分散しなかったり、高密度磁性塗膜が得ら
れないなどの不都合をも念らした。この従来の製造法の
欠点を解消する発明は、孤立超微粒子の生成法益に生成
装置は、特開昭60−71635号などで公知である。(Prior art) Conventional production of ultrafine powder involves evaporation in gas. Since it is obtained as an aggregate of long chain-shaped ultrafine particles with a length of 50 pieces or more, when applied to a substrate as a magnetic recording material, it may not be easily dispersed or a high-density magnetic coating may be formed. I also worried about the inconvenience of not being able to get it. An invention for solving the drawbacks of this conventional manufacturing method is a method for producing isolated ultrafine particles, and a production apparatus is known in Japanese Patent Application Laid-open No. 71635/1983.
(発明が解決しようとする問題点)
上記に鑑み、上記提案の発明に基き、その孤立超微粒子
から成る超微粉の生産性を高めることが望ましい。又、
例えば磁気記録材料として基材に塗布用として最適とさ
れる孤立超微粒子或は短チェイン状超微粒例えば、超微
粒子が5〜10ケ程度つながり、長さでα15〜(L3
μ鳥程鹿の短チェイン超微粒子の集合体から成る超微粉
体が必要に応じ製造できることが望ましい。(Problems to be Solved by the Invention) In view of the above, it is desirable to increase the productivity of ultrafine powder made of isolated ultrafine particles based on the above proposed invention. or,
For example, isolated ultrafine particles or short chain-like ultrafine particles are ideal for coating on substrates as magnetic recording materials.
It is desirable that an ultrafine powder consisting of an aggregate of short-chain ultrafine particles of μ Torihodeka can be produced as needed.
C問題点を解決するための手段)
本発明は、上記の要望を満足する孤立超微粒子の製造法
を提供するもので、ガス中蒸発法により生成した超微粒
子蒸気を生成せしめる超微粒子生成室と、該生成室内の
蒸廃源に対向して先端が開口し後端が高真空室に連通ず
る細管を設け、該真空室内の真空度を該生成室内の真空
度を高めて差圧を生ぜしめ、これにより該生成室内の蒸
気を該細管を介して該真空室側へ引込むようにした孤立
超微粒子の製造法において、細管を多数本で構成し、そ
の該細管群を介して生成室内に生成した超微粒子蒸気を
該真空室側へ引込むようにし念ことを特徴とする。Means for Solving Problem C) The present invention provides a method for producing isolated ultrafine particles that satisfies the above requirements, and includes an ultrafine particle generation chamber that generates ultrafine particle vapor by an in-gas evaporation method; A thin tube is provided with a tip opening facing the evaporation waste source in the generation chamber and a rear end communicating with a high vacuum chamber, and increasing the degree of vacuum in the vacuum chamber to generate a pressure difference. In this method for producing isolated ultrafine particles, the vapor in the generation chamber is drawn into the vacuum chamber through the capillary, and the method is composed of a large number of capillaries, and the particles are generated in the production chamber via a group of capillary tubes. It is characterized by making sure that ultrafine particle vapor is drawn into the vacuum chamber.
その8g2発明は、前記の短チェイン状超微粒□子の製
造法を提供するもので、ガス中蒸発法により生成した超
微粒子蒸気を生成せしめる超微粒子生成室と、該生成室
内の蒸発源に対向して先端が開口し後端が高真空室に連
通ずる細管を多数本併設し、該細管群の外周に、磁化装
置を設け、該真空室内の真空度を該生成室内の真空度よ
り高めて差圧を生ぜしぬ、これにより該生成室内の蒸気
を該細管群を介して該真空室側へ引込むようにすると共
に各細管内に該磁化装置により生成せしめた磁場内を該
超微粒子を通過させるようにし念ことを特徴とする。The 8g2 invention provides a method for producing the short chain-shaped ultrafine particles described above, and includes an ultrafine particle generation chamber that generates ultrafine particle vapor generated by an evaporation method in a gas, and an evaporation source in the generation chamber that is opposite to the evaporation source. A large number of thin tubes each having an open tip and a rear end communicating with a high vacuum chamber are provided, and a magnetization device is provided around the outer periphery of the group of thin tubes, so that the degree of vacuum in the vacuum chamber is higher than the degree of vacuum in the generation chamber. No pressure difference is generated, so that the vapor in the generation chamber is drawn into the vacuum chamber through the group of capillary tubes, and the ultrafine particles are passed through the magnetic field generated by the magnetization device in each capillary. It is characterized by a remembrance.
更に、その第3発明は、上記の孤立又は短チェイン状超
微粒子の製造装置を提供するもので、ガス中蒸発法によ
り生成した超微粒蒸気を生成せしめる超微粒子生成室と
、該生成室内の蒸発源忙対向して先端が開口し後端が高
真空室に夫々連通して設けた多数本の細管と該細管群の
外周に設けた磁化装置とから成り、且つ該高真空室の1
部を超微粒子表面処理室に構成して成る。Furthermore, the third invention provides an apparatus for producing the above-mentioned isolated or short chain-shaped ultrafine particles, which includes an ultrafine particle generation chamber for generating ultrafine vapor generated by an evaporation method in a gas, and an evaporation chamber in the generation chamber. It consists of a large number of thin tubes, each of which has an open tip facing the source and a rear end that communicates with a high vacuum chamber, and a magnetization device provided on the outer periphery of the group of thin tubes, and one of the high vacuum chambers.
The chamber is configured as an ultrafine particle surface treatment chamber.
(実施例)
第1図及び第2図は、本発明の方法益に装置の実施例を
示す。+11は、超微粒子を蒸発生成せしめる生成室を
示し、該生成室(1)は、その底壁にガス導入管(2+
を有し、その内部下位に蒸発材料(3)を収容したるつ
ぼ(4)とその外周に誘電加熱フィル(5)とを有し、
その生成室+11の口縁壁に外部の真空排気装置に接続
する排気口(6)を設ける。(Example) FIGS. 1 and 2 show an example of an apparatus for implementing the method of the present invention. +11 indicates a generation chamber in which ultrafine particles are evaporated and generated, and the generation chamber (1) has a gas introduction pipe (2+
having a crucible (4) containing an evaporation material (3) in its lower interior and a dielectric heating filter (5) around its outer periphery,
An exhaust port (6) connected to an external vacuum evacuation device is provided on the edge wall of the generation chamber +11.
本発明によれば、前記蒸発源、即ちるつぼ(4)の上方
に1所要の間隔を存して多数本の細管(7)を垂直に且
つ互て平行に延び、生成室(1)の上端壁を気密に貫通
する細管群(8)を設ける。これら細管群(8)は、細
管(7)相互を接して束状に併設してもよいが、図示の
ように1後記するように、各細管(7)は冷却又は加熱
媒体により冷却又は加熱を夫々受けるように、互に所望
の空隙(9)を存するように併設できる。外部に導出し
た細管群(8)の外端、即ち各細管(7)の外端は、後
記するように、生成室(1)の真空度より高い真空度に
保たれる高真空室al内に開口連通している。該高真空
室α〔は、外部の真空排気ポンプに連なる真空排気管α
υを備え、と九に介入した調節弁13を介し、高真空室
aQ内を所要の真空度に保持するようKする。該高真空
室(1Gの端部側は超微粒子捕集室α3とする。即ち、
該高真空室(1(Iの土壁の1部にその内部を2つに仕
切り自在の仕切りバルブα4を、上下方向に前進後退動
自在に設け、その高真空室a1の端部側の空間内を捕集
室αJとする。According to the present invention, a plurality of thin tubes (7) extend vertically and parallel to each other at a required interval above the evaporation source, that is, the crucible (4), and the upper end of the production chamber (1) A group of thin tubes (8) is provided which hermetically penetrates the wall. These thin tube groups (8) may be arranged in a bundle with the thin tubes (7) in contact with each other, but as shown in the figure and as described below, each thin tube (7) is cooled or heated by a cooling or heating medium. They can be placed side by side with a desired gap (9) between them so as to receive each of them. The outer end of the group of capillary tubes (8) led out to the outside, that is, the outer end of each capillary tube (7), is located in a high vacuum chamber al maintained at a higher vacuum level than the vacuum level of the production chamber (1), as described later. The opening communicates with the The high vacuum chamber α is a vacuum exhaust pipe α connected to an external vacuum pump.
The high vacuum chamber aQ is maintained at a required degree of vacuum through a control valve 13 which is provided with a pressure υ and a control valve 13 interposed between the valves υ and υ. The end side of the high vacuum chamber (1G) is an ultrafine particle collection chamber α3. That is,
A partition valve α4 that can freely partition the interior into two is provided in a part of the earthen wall of the high vacuum chamber (1 (I) so as to be movable forward and backward in the vertical direction, and a space on the end side of the high vacuum chamber a1 is provided. The inside is designated as the collection chamber αJ.
該捕集室(13の下端KFi、大気に連なる前記真空排
気装置の真空排気管α9を調節弁Uを介して設ける。捕
集室0内には、必要に応じ皿状の回収容器やサブストレ
ートなどを予め収容してもよい。捕集室αlの端壁は気
密の閉開扉に構成する。The lower end KFi of the collection chamber (13) is provided with an evacuation pipe α9 of the evacuation device connected to the atmosphere via a control valve U.Inside the collection chamber 0, a dish-shaped collection container or a substrate is installed as necessary. etc. may be accommodated in advance.The end wall of the collection chamber αl is configured as an airtight closing/opening door.
図面でα?)は、覗き窓を示す。図示の実施例の該細管
群(8)は、高さスペースを可及的に取らないように、
その途中より屈曲し水平に延びる屈曲細管群に構成した
。該高真空室αlFi、必要に応じ、その下方に、その
水平細管群(7)の下方に位置して超微粒子フーティン
グ用の蒸発材料の加熱蒸発装置α♂を収容した蒸発室0
を設けて超微粒子用表面処理室に構成することができる
。α in the drawing? ) indicates a viewing window. The group of capillary tubes (8) in the illustrated embodiment is arranged so as to occupy as little height space as possible.
It was constructed into a group of bent thin tubes that bend from the middle and extend horizontally. The high vacuum chamber αlFi, if necessary, has an evaporation chamber 0 located below the horizontal thin tube group (7) and housing a heating evaporation device α♂ for evaporation material for ultrafine particle footing.
The surface treatment chamber for ultrafine particles can be constructed by providing the following.
又、該高真空室α1は、必要に応じ、これに連通開口す
る酸素、窒素などの超微粒子の表面を気相反応などで表
面処理するためのガス導入管■を接続して超微粒子用表
面処理室に構成することができる。図示のように、蒸発
室0とガス導入管■の両者を設けた或は図示しないが、
そのいづれか1方のみを設けた表面処理室に構成できる
。In addition, if necessary, the high vacuum chamber α1 can be connected with a gas inlet pipe (2) for surface treatment of the surface of ultrafine particles such as oxygen and nitrogen by gas phase reaction, etc., which communicates with the high vacuum chamber α1. It can be configured in a processing chamber. As shown in the figure, both the evaporation chamber 0 and the gas introduction pipe (■) are provided, or although not shown,
A surface treatment chamber can be configured with only one of them.
細管群(8)の途中には、図面では、その生成室(1)
の上方に位置して、その外周に、これら細管群(8)を
気液密に被包してジャケットQυを設ける。In the drawing, there is a generation chamber (1) in the middle of the tubule group (8).
A jacket Qυ is provided on the outer periphery of the capillary tube group (8) so as to enclose the tube group (8) in an air-liquid tight manner.
該ジケントQυの下部には、冷媒又は熱媒の供給管@が
その上部にはその排出管のが接続されている。A refrigerant or heat medium supply pipe @ is connected to the lower part of the Jiken Qυ, and a discharge pipe thereof is connected to the upper part thereof.
更に、必要に応じ、該細管群(8)の下部外周には、外
部のDo電源に接続する環状磁場形成用ソレノイドから
成る磁化装置(ハ)を設ける。該磁化袋fiff:12
4は、該生成室(1)内壁に固設した腕部材(ハ)と該
磁化装置(24の外周に突設した7ランジ■との間に介
在せしめた高さ:lIm装置(潤によりその高さ位置を
調節できるようにした。Furthermore, if necessary, a magnetization device (c) consisting of an annular magnetic field forming solenoid connected to an external Do power source is provided on the lower outer periphery of the thin tube group (8). The magnetized bag fiff: 12
4 is the height of the lIm device (with moisture) interposed between the arm member (c) fixed on the inner wall of the generation chamber (1) and the 7 langes (2) protruding from the outer periphery of the magnetization device (24). The height position can be adjusted.
即ち、該高さ調節装置@は、蛇腹、ばね、などの伸縮部
材(27a)と調節ねじ(27b)とから成り、そのね
じ(27b)の回動によりソレノイド(2IOのるつぼ
上端からの高さ位置を例えば50〜100咽に調節し得
るようくし、磁化装置C滲の作動時に1細管群(7)内
に生成する磁場の高さ位置を予め設定できるようにした
。ジャケットQυは筒壁(21a)と該筒壁(21a)
の両端の閉塞板(2l b)(21b)とから成る。該
閉塞板(2l b)は、細管群(8)の各細管(7)を
所定位置で挿通し溶接により固定保持すると共に、これ
ら細管(7)間の空間を閉塞しその内部空間を水などの
冷却又は加熱用媒体の流通空間に構成する。更に、閉塞
板(2l b)は、ジャケットごυの筒壁(21m)よ
り外方へ突出の7ラング部■を設け、これと該生成室[
11の頂壁口縁部との間に、前記と同様の高さ調節装置
(至)を設けた。該細管用の高さ調節袋#四は、伸縮部
材(29a)とねじ(29b)とから成る。これにより
〜該細管群(8)の下端と蒸発源(3)との高さ距離を
例えば80〜150錫の範囲で調節し得るようにした。That is, the height adjustment device @ consists of an elastic member (27a) such as a bellows or a spring, and an adjustment screw (27b), and the height of the solenoid (2IO from the upper end of the crucible) is adjusted by rotating the screw (27b). The position can be adjusted, for example, from 50 to 100 degrees, and the height position of the magnetic field generated in one tube group (7) when the magnetizer C is activated can be set in advance.The jacket Qυ is set on the cylinder wall ( 21a) and the cylinder wall (21a)
It consists of a closing plate (2l b) and (21b) at both ends. The closing plate (2l b) inserts each capillary tube (7) of the capillary group (8) at a predetermined position and fixes it by welding, and closes the space between these capillary tubes (7) to keep the internal space free of water, etc. The cooling or heating medium is arranged in the circulation space of the cooling or heating medium. Furthermore, the closing plate (2l b) is provided with a 7-rung part (2) that protrudes outward from the cylindrical wall (21 m) of the jacket υ, and this and the production chamber [
A height adjustment device similar to that described above was provided between the top wall and the mouth edge of No. 11. The height adjustment bag #4 for the thin tube consists of a telescopic member (29a) and a screw (29b). This makes it possible to adjust the height distance between the lower end of the thin tube group (8) and the evaporation source (3) within a range of, for example, 80 to 150 tin.
図面で該細管群(8)は外周を略円形となるよう配設し
、その下端面の外周径は、るつぼ(3)の蒸発材料(2
)を収容し念口径より大径することが好ましく、例えば
、少くとも略2倍の大きさとすることが好ましい。かく
して該蒸発材料(2)の加熱により生成した蒸気の上昇
流は、か\る大径の細管群(8)下面で充分受は入れる
ようにし九。更に、細管群(8)の下端面を図示のよう
に中央が高い凹面とし、蒸発超微粒子の外部への逸出を
可及的に防止することが好ましい。該生成室(1)の上
部壁に、細管群(8)の外r!RK位置して蒸発超微粒
子受壁■を突設すると共にその受壁ωの下面に位置して
排出口Gυを設けて、該細管群(7)に吸込まれない余
分の蒸発超微粒子は、前記の受壁(至)で受止められて
排気口(3υより、該排気口C311に接続の排出管G
3を介して外部で回収されるようにした。In the drawing, the thin tube group (8) is arranged so that the outer circumference is approximately circular, and the outer circumference diameter of the lower end surface is equal to the evaporation material (2) of the crucible (3).
), and preferably has a diameter larger than the nominal diameter, for example, preferably at least approximately twice the diameter. In this way, the upward flow of steam generated by heating the evaporative material (2) is sufficiently received by the lower surface of the large-diameter thin tube group (8). Furthermore, it is preferable that the lower end surface of the capillary tube group (8) be made into a concave surface with a high center as shown in the figure to prevent the evaporated ultrafine particles from escaping to the outside as much as possible. On the upper wall of the generation chamber (1), there is a group of capillary tubes (8) outside r! A protruding evaporated ultrafine particle receiving wall ■ is provided at the RK position, and an outlet Gυ is provided at the lower surface of the receiving wall ω, so that the excess evaporated ultrafine particles that are not sucked into the thin tube group (7) are The exhaust pipe G connected to the exhaust port C311 is received by the receiving wall (to) of the exhaust port (from 3υ).
3 to be collected externally.
尚、本装置の真空室側は、図示しない固定壁より突設し
九上下の支持腕(至)に、前記高さ調節装置(2!Iと
同様の高さ調節装置などの伸縮自在装置(至)を介して
支持するようにした。The vacuum chamber side of this device is provided with a telescopic device (such as a height adjustment device similar to 2! ).
次に本発明の上記装置の作動を説明する。Next, the operation of the above device of the present invention will be explained.
生成室(1)内の真空度を例えばlX10 )−ルと
してガス中蒸発を行なうとき、高真空室(1(l内の真
空度を生成室(1)内の前記真空度より高い例えば5X
10−”)−ル〈真空排気する。かくするときは、るつ
ぼ(4)より蒸発する蒸発材料、例えば金属又は合金材
料の蒸気は、その上方に附属する大径の細管群(8)の
下面に達するが、その各細管(71Kは、後端が高真空
室(1〔に開口しているので、該高真空室(IGの前記
高真空によりその各細管(7)内に強い吸引作用を生じ
、その各細管(7)の下端吸引口より前気の蒸気(超微
粒子)は吸引されて急速度で(秒速数10メートル)で
、その生成室(1)内の不活性ガスと共に流入し高真空
室uI内へ引き込まれる。かくして、その捕集室a3内
に孤立超微粒子が集積されて得られる。When performing evaporation in gas with the degree of vacuum in the production chamber (1) set to, for example, 1×10, the degree of vacuum in the high vacuum chamber (1
10-") - vacuum evacuation. When doing so, the vaporized material evaporated from the crucible (4), such as the vapor of metal or alloy material, is transferred to the lower surface of the large-diameter thin tube group (8) attached above. However, each of the thin tubes (71K) has its rear end open to the high vacuum chamber (1), so the high vacuum of the high vacuum chamber (IG) exerts a strong suction action inside each of the thin tubes (7). The vapor (ultrafine particles) in the previous air is sucked in from the lower end suction port of each thin tube (7) and flows at a rapid rate (several tens of meters per second) together with the inert gas in the generation chamber (1). The particles are drawn into the high vacuum chamber uI.In this way, isolated ultrafine particles are accumulated in the collection chamber a3.
この場合、本発明装置では、蒸発する超微粒子を多数の
細管(7)により吸引捕集するので、大量生産が可能と
なる。得られる孤立超微粒子の粒径は、通常のガス中蒸
発法における条件(蒸発材料の溶湯温度、ガスの種類(
分子量)、真空度)の他、細管群(8)の下端吸入口と
蒸発材料との距離を、細管群(8)の上下動又は図示し
ないが蒸発面の上下動によって適宜変えることにより、
10〜500Aの範囲で変えることができる。In this case, in the apparatus of the present invention, the evaporating ultrafine particles are collected by suction through a large number of thin tubes (7), so that mass production is possible. The particle size of the isolated ultrafine particles obtained depends on the conditions of the usual gas evaporation method (molten temperature of the evaporation material, type of gas (
(molecular weight), degree of vacuum), and by appropriately changing the distance between the lower end inlet of the capillary group (8) and the evaporation material by the vertical movement of the capillary group (8) or the vertical movement of the evaporation surface (not shown).
It can be varied in the range of 10-500A.
上記の作動において、高真空室α1内に予め設けである
蒸発室α3内の加熱装置aB内に収容した蒸発材料とし
て、コーテイング材、例えば合成樹脂を用意し、これを
加熱蒸発させる。然るときは、前記の細管群(8)より
高真空室αQ内へ排出される無数の孤立超微粒子は夫々
合成樹脂蒸気のコーティングを施され、合成樹脂被覆の
孤立超微粒子の集合体が得られる。In the above operation, a coating material such as a synthetic resin is prepared as an evaporation material stored in a heating device aB in an evaporation chamber α3 provided in advance in a high vacuum chamber α1, and is heated and evaporated. In such a case, the countless isolated ultrafine particles discharged from the thin tube group (8) into the high vacuum chamber αQ are each coated with synthetic resin vapor to obtain an aggregate of isolated ultrafine particles coated with synthetic resin. It will be done.
上記の合成樹脂に代え、例えばOuを被覆するには、予
め細管群(8)の各細管(7)中を通過するM1超微粒
子流を400〜500℃に加熱しておくことが好ましい
。この場合には、ジャケット(21)内に加熱オイルな
どの加熱媒体を通して、各細管(7)を加熱し、その中
を通るN1超微粒子を400〜s o o ’cに加熱
した状態として高真空室(IG内へ放出させ、これに、
前記蒸発源αaより蒸発のOu超微粒子をコーティング
してOu被匿M1孤立超微粒子の集合体が得られる。In order to coat Ou instead of the above-mentioned synthetic resin, for example, it is preferable to heat the M1 ultrafine particle flow passing through each capillary tube (7) of the capillary group (8) to 400 to 500° C. in advance. In this case, each thin tube (7) is heated by passing a heating medium such as heating oil into the jacket (21), and the N1 ultrafine particles passing through the tube are heated to 400 to 400 to s o 'c and placed in a high vacuum. chamber (released into the IG, to this,
By coating the Ou ultrafine particles evaporated from the evaporation source αa, an aggregate of O-enclosed M1 isolated ultrafine particles is obtained.
又、細管群(8)より放出の孤立金属超微粒子に酸素、
窒素などの気相反応を行ないその表面を酸化、窒化など
の被膜を形成し九孤立超微粒子を製造するときは、ガス
導入管■より酸素、窒素などの所望のガスを導入する。In addition, oxygen,
When producing isolated ultrafine particles by performing a gas phase reaction with nitrogen or the like to form a coating such as oxidation or nitridation on the surface, a desired gas such as oxygen or nitrogen is introduced from the gas introduction pipe (2).
この場合、所望の反応温度は、前記のジャケラ)12υ
内を通す所要温度に加熱した媒体を通して得られる。通
常ガスで搬送される各細管(7)内の超微粒子は、20
0〜sOO°Cであるが、特にそれ以下の温度が例えば
100℃以下の望まれるときは、冷水などの冷却媒体を
ジャケットQυに通すことにより達成される・
上記の装置により、短チェイン超微粒子の集合体を製造
する場合には、前記磁化装置1241の磁場形成ソレノ
イドにDat流を流し、その内部空間に、部ちその細管
群(8)の各細管(7)内にその所定の長さ範囲に磁場
を形成せしめた状態をつくり、各細管(7)中を20〜
S Oys / 3の高速で通過するIF@、 00.
Niなどの遷移金属もしくはこれらの合金の磁性材料
の蒸発超微粒子は、温度がキューリ一点より降下したの
ち、前記の磁場の所定域内を通過する間に磁化されて、
個々の粒子が配向され、例えば粒子が5〜10ケ程度の
範囲でつながり、長さα15〜α3μ鴇の短チ゛エイン
状超微粒子が形成されて各細管(7)より高真空室α〔
内へ放出されて捕集室αJ内に短チェイン超微粒子の集
合体、即ち粉末が得られる。In this case, the desired reaction temperature is 12υ
It is obtained by passing a medium heated to the required temperature. The ultrafine particles in each capillary (7), usually transported by gas, are 20
0 to sOO°C, but if a lower temperature is desired, e.g. 100°C or less, this can be achieved by passing a cooling medium such as cold water through the jacket Qυ. When manufacturing an assembly of Create a state in which a magnetic field is formed in the range, and apply 20~
IF @ passing at high speed of S Oys / 3, 00.
The evaporated ultrafine particles of magnetic materials of transition metals such as Ni or alloys thereof are magnetized while passing within the predetermined region of the magnetic field after the temperature drops below the Curie point,
Individual particles are oriented and, for example, about 5 to 10 particles are connected to form short chain-like ultrafine particles with a length of α15 to α3 μm, which are transported from each capillary (7) to a high vacuum chamber α [
An aggregate of short chain ultrafine particles, that is, powder, is obtained in the collection chamber αJ.
上記の短チェイン状超微粒子を得るKは、磁化装置@の
ソレノイドの長さく高さ)、高真空室と生成室との圧力
差、高真空室の真空度の大きさ、形成すべき磁場と蒸発
源との距離などをmeする。この短チェイン超微粒子に
気相反応や蒸着などによりコーティングするなどの表面
処理されたものを得るには、上記と仝様に、該蒸発源σ
1やガス導入管■などを利用して達成される。K to obtain the above-mentioned short chain-shaped ultrafine particles depends on the length and height of the solenoid of the magnetization device, the pressure difference between the high vacuum chamber and the generation chamber, the degree of vacuum in the high vacuum chamber, and the magnetic field to be formed. Measure the distance to the evaporation source. In order to obtain surface-treated short-chain ultrafine particles such as coating by vapor phase reaction or vapor deposition, the evaporation source σ
This can be achieved by using 1 or gas introduction pipe 2.
第3図は、上記の高真空室QGの上流側、刀ち、細管群
(8)の放出端との間知多孔板(至)で区劃された中間
排気室aゲを設けてもよい。該中間排気室σC1は真空
排気用導管(至)を介し真空装置に接続されて居り、そ
の作動時は、生成室(1)と高真空室a〔との夫々の真
空度の中間の真空度例えば1×10 程度に排気減圧さ
れるようにする。Figure 3 shows that an intermediate exhaust chamber AGE may be provided on the upstream side of the high vacuum chamber QG, which is separated by a perforated plate (toward) from the outlet end of the thin tube group (8). . The intermediate evacuation chamber σC1 is connected to a vacuum device via an evacuation conduit (to), and during operation, the intermediate evacuation chamber σC1 is at a vacuum degree intermediate between the respective vacuum degrees of the production chamber (1) and the high vacuum chamber a. For example, the exhaust pressure is reduced to about 1×10 5 .
然るときは、各細管(7)より放出されるキャリヤガス
は、この真空排気用導管(至)より排出される。1方、
各細管(7)より放出の孤立又は短チェイン超微粒子は
、慣性により直進し、該多孔板(至)の該細管(71に
対向して予め設けた多数の透孔(35&)を通過して高
真空室C10内に入り高真空処理室C10内に過剰なキ
ャリヤーガスの流入による影響が少なく又は全くなくし
て、該真空処理室Ql内でのコーテング処理を良好に行
なえるようにすることができる。In such a case, the carrier gas discharged from each thin tube (7) is discharged from this evacuation conduit (to). One side,
Isolated or short-chain ultrafine particles released from each capillary (7) move straight due to inertia and pass through a large number of through holes (35 &) previously provided opposite to the capillary (71) of the perforated plate (end). The influence of excessive carrier gas flowing into the high vacuum processing chamber C10 into the high vacuum processing chamber C10 is reduced or completely eliminated, and coating processing within the vacuum processing chamber Ql can be performed satisfactorily. .
尚、孤立又は短チェイン超微粒子のコーティングを1種
の物質でその被膜の厚さを増大せしめるとき、或は2種
又はそれ以上の物質の積層被膜を形成する場合には、図
示しないが、上記の蒸発室翰やガス導入管■をもつ同様
の表面処理室を2つ以上構成する。Note that when coating isolated or short chain ultrafine particles with one type of substance to increase the thickness of the coating, or when forming a laminated coating of two or more types of substances, the above-mentioned method (not shown) may be used. Configure two or more similar surface treatment chambers with evaporation chamber canopies and gas introduction pipes.
上記のようにして捕集室α3に蓄積された孤立超微粒子
、短チェイン超微粒子、或はこれらの表面処理されt孤
立超微粒子又は短チェイン超微粒子などの集合体、即ち
、粉体を外部に取り出すときは、原料の加熱蒸発、g主
排気などの運転を止めた後真空排気管αりの連なる真空
排気装置の作動を止め、大気を該調節弁net−介して
該捕集室α3内に導入して、高真空室αl(捕集室α3
を含む)を大気圧とし、常法に従い外部に取り出し所望
の容器に回収する。The isolated ultrafine particles, short chain ultrafine particles accumulated in the collection chamber α3 as described above, or aggregates of these surface-treated isolated ultrafine particles or short chain ultrafine particles, that is, powder, are removed to the outside. When taking out the raw material, heat evaporation of the raw material, main exhaust, etc. are stopped, and then the operation of the vacuum exhaust system connected to the vacuum exhaust pipe α is stopped, and the atmosphere is introduced into the collection chamber α3 through the control valve net. high vacuum chamber αl (collection chamber α3
) to atmospheric pressure, and take it out to the outside and collect it in the desired container according to the usual method.
尚、運転を完全に止めないで継続するときは、仕切りパ
ルプα4を下動させて捕集室(13を仕切り、該捕集室
a3のみを前記と同様の操作で大気圧とする1方、るつ
ぼ内の材料が蒸発しないよう加熱を一時中断し、或は加
熱温度を下げる。粉体の外部への取出し終了後、仕切り
パルプ(14Jを上動後退させて、再び蒸発温度に加熱
する。In addition, when the operation is continued without completely stopping, the partition pulp α4 is moved downward to partition the collection chamber (13), and only the collection chamber a3 is brought to atmospheric pressure in the same manner as described above. Temporarily interrupt the heating or lower the heating temperature so that the material in the crucible does not evaporate. After the powder is taken out to the outside, move the partition pulp (14J up and back) and heat it again to the evaporation temperature.
次に更に詳細な実施例を説明する。Next, more detailed examples will be described.
実施例1 (孤立超微粒子の製造)
生成室の内部に設けた内径150asの耐火物製るつぼ
の中にショット状電解N1をa5ゆ充填し、先づ、1X
10 トールの高真空に排気したのち、H・ガス2トー
ルを導入する。1方高周波電源からの併給電力IKH,
38KWで加熱し、るつぼ内のNiを溶解し、1B、0
0℃の溶m温度を保持する。生成室の底部よりHeガス
を11017Wの流量で供給し、生成室の真空度を2ト
ールとし、蒸発するN1超微粒子(黒い煙状で観察され
る)を搬送するようにする。るつぼの上方には、るつぼ
上端から1301111mの距離を存してその上方に吸
入口上対面して多数本の細管群を予め設けである。該細
管群が構成する円形外周の直径は略20Gasとし、そ
の各細管は、内径2鴎、肉厚115IIIIIの銅製の
円形細管から成り、その150本により細管群を構成す
る。細管相互間に150の空隙ピッチを存して併設する
ように配設しである。1方高真空室内を油回転ポンプと
メカニカルブースターとを組合せた排気系で排気し、5
×10 トールとし、生成室の真空度2トールとの間に
圧力差を付けて該細管群の下端吸込面からその下方から
上昇してくるN1蒸気の煙をHeガスと共に各細管内へ
吸引し勢い良く秒速4001の高速で高真空室側へ吸引
する。Example 1 (Manufacture of isolated ultrafine particles) A refractory crucible with an inner diameter of 150 as provided inside a generation chamber was filled with shot-shaped electrolytic N1 to a size of 5 mm, and first, 1X
10 After evacuating to a high vacuum of 2 torr, introduce 2 torr of H gas. Combined power IKH from one-way high frequency power supply,
Heating with 38KW, melting Ni in the crucible, 1B, 0
Maintain a melt temperature of 0°C. He gas is supplied from the bottom of the generation chamber at a flow rate of 11017 W, the degree of vacuum in the generation chamber is set to 2 Torr, and the evaporating N1 ultrafine particles (observed as black smoke) are transported. Above the crucible, a large number of thin tube groups were provided in advance at a distance of 1,301,111 m from the upper end of the crucible, facing above the suction port. The diameter of the circular outer periphery of the thin tube group is approximately 20 Gas, and each of the thin tubes is made of copper circular thin tubes with an inner diameter of 2 mm and a wall thickness of 115 mm, and 150 of them constitute the thin tube group. The thin tubes are arranged side by side with a gap pitch of 150 between them. One side, the high vacuum chamber is evacuated using an exhaust system that combines an oil rotary pump and a mechanical booster.
x 10 torr, and by creating a pressure difference between the vacuum level of the generation chamber and the vacuum level of 2 torr, the N1 vapor smoke rising from below from the lower end suction surface of the capillary group was sucked into each capillary along with He gas. It is vigorously sucked into the high vacuum chamber at a high speed of 4001 seconds.
かくして、生成室で蒸発のN1超微粒子は、該細管群を
介して高真空室側へ急速に引込まれるので細管群より放
出された無数のN1孤立超微粒子はそのt−飛行して捕
集室内に蓄積する。In this way, the N1 ultrafine particles evaporated in the generation chamber are rapidly drawn into the high vacuum chamber through the capillary group, and the countless isolated N1 ultrafine particles released from the capillary group are collected by their t-flight. Accumulate indoors.
或はサブストレート面忙付着し捕集される。得られたN
1孤立超微粒子の平均粒径は200Aで、その半値幅は
30人のシャープな粒径分布を示していた。Alternatively, it may be deposited on the substrate surface and collected. Obtained N
The average particle size of 1 isolated ultrafine particles was 200A, and its half width showed a sharp particle size distribution of 30 people.
本運転でのN1超微粒子蒸発生成速度は1209/h
rでその捕集室に得られるN1孤立超微粒子の生成速度
Fi49 g/hrであった。これは蒸発量の約41%
が孤立超微粒子として製造できることを示す。The N1 ultrafine particle evaporation generation rate in the actual operation was 1209/h.
The production rate of isolated ultrafine particles of N1 obtained in the collection chamber was Fi49 g/hr. This is approximately 41% of the amount of evaporation.
We show that nanoparticles can be produced as isolated ultrafine particles.
尚、細管群下端とるつぼ上端から100−の距離とし、
上記と同様に実施し死所粒径100AのN1超微粒子が
得られ念。In addition, the distance is 100- from the lower end of the tube group and the upper end of the crucible,
It was carried out in the same manner as above, and N1 ultrafine particles with a dead particle size of 100A were obtained.
実施例2(コーティング孤立超微粒子の製造)るつぼと
N1原料並に生成室内の初期は実施例1の場合と同じと
し、その後H・ガスを導入し1.5トールを導入する。Example 2 (Production of Coated Isolated Ultrafine Particles) The initial conditions in the crucible, N1 raw material, and production chamber are the same as in Example 1, and then H gas is introduced and 1.5 Torr is introduced.
高周波電源からの供給電力IKH,32Kwで加熱し、
るつぼ内のN1を溶解し′%1750 ”Cの溶湯温度
を保持する。生成室の底部よりH・ガスを(L 61/
HRの流量で供給し、Ni蒸発超微粒子をるつぼ上端か
ら100Mの位置に固定された細管群へ搬送する。細管
群は15本の細管から成り、各細管は内径21111゜
肉厚α5謡、長さ200鰭である。1方、高真空室内に
設けた蒸発室にはアルミナ製るつぼ内に予め充填し九1
00gのポリスチレンをるつぼ外部カラニクロム線ヒー
ターで加熱して250’Cの温度に保ち、高真空室内は
油拡散ポンプと油回転ポンプとメカニカルブースターを
組合わせた真空排気系で真空排気しlX10−’)−ル
に保たれ、ざリスチジンa、3597mの蒸発を行なう
。Heated with IKH, 32Kw power supplied from a high frequency power supply,
The N1 in the crucible is melted and the temperature of the molten metal is maintained at 1750"C. H gas (L 61/
It is supplied at a flow rate of HR, and the Ni evaporated ultrafine particles are transported to a group of thin tubes fixed at a position 100M from the upper end of the crucible. The tubule group consists of 15 tubules, each of which has an inner diameter of 21111°, a wall thickness of α5, and a length of 200 fins. On the other hand, an alumina crucible was filled in advance in the evaporation chamber installed in the high vacuum chamber.
00g of polystyrene was heated with a Kalanichrome wire heater outside the crucible and maintained at a temperature of 250'C, and the high vacuum chamber was evacuated using a vacuum pumping system that combined an oil diffusion pump, an oil rotary pump, and a mechanical booster. - to carry out the evaporation of Zarystidine A, 3597m.
該高真空室とこれに連通ずる細管群の導入端との間に1
透孔版を介在し、該細管群導入端と透孔板との間に設け
た中間排気室内をこれに接続し死活回転ポンプとメカニ
カルブースターを組合せ念排気系で真空排気しlX10
)−ルに保持する。かくして、該高真空室側の高真
空と生成室の低真空との差圧により前記蒸発N1超微粒
子の煙は該細管群の下端吸口群より細管群内へキャリヤ
ガスと共に吸い込まれて流速350シーの高速で先づ中
間排気室内へ引込まれ、鼓でキャリヤーガスは排除され
る1方M1超微粒子流は直進し該透孔板の透孔板の透孔
を通り該高真空室内へ引込まれる。このとき飛行N1孤
立超微粒子は前記のポリエチレン蒸気ゾーンを通過する
ので、これによりコーテングされるが、この場合のコー
ティング処理を車行に行なうべく孤立超微粒子が、細管
群から中間排気室へ放出される以前の細管群内を通過す
る間に、Heガス及びN1孤立超微粒子をその外周のジ
ャケットに流す冷却水により100°C以下に冷却して
おく。1 between the high vacuum chamber and the introduction end of the group of thin tubes communicating therewith.
An intermediate exhaust chamber provided between the introduction end of the thin tube group and the perforated plate was connected to this via a perforated plate, and evacuated using a thorough evacuation system using a combination of a live rotary pump and a mechanical booster.
) - hold in the field. Thus, due to the differential pressure between the high vacuum on the high vacuum chamber side and the low vacuum in the generation chamber, the vaporized N1 ultrafine particle smoke is sucked into the capillary group from the lower end suction port group of the capillary tube group together with the carrier gas, and the flow rate is 350 seams. The M1 ultrafine particle stream is first drawn into the intermediate exhaust chamber at a high speed of 1, and the carrier gas is removed by the drum, while the M1 ultrafine particle flow goes straight and is drawn into the high vacuum chamber through the holes in the perforated plate. . At this time, the flight N1 isolated ultrafine particles pass through the polyethylene vapor zone and are coated with the polyethylene vapor zone.In order to perform the coating process on the vehicle, the isolated ultrafine particles are discharged from the thin tube group to the intermediate exhaust chamber. While passing through the group of thin tubes before the He gas and N1 isolated ultrafine particles are cooled to below 100°C by cooling water flowing through the outer jacket.
リエチジン蒸着膜が平均粒径IQOAのN1孤立超微粒
子の表面を被覆した製品が捕集室に得られる。捕集室に
は、サブストレートを予めセツトシ、これに付着させる
ようにしてもよい。本運転でのML超微粒子蒸発生成速
度は829/hで、その捕集室(得られるポリエチレン
被覆N1孤立超微粒子の生成速度は、7.29/hr
(14孤立超微粒子のみでFe44 g/hr )であ
った。これは、蒸発量の約!;′、5c’xがN1孤立
超微粒子として製造されたことを意味する。A product in which the surface of N1 isolated ultrafine particles having an average particle size of IQOA is coated with a lithidine vapor-deposited film is obtained in the collection chamber. A substrate may be set in advance in the collection chamber and adhered thereto. The ML ultrafine particle evaporation generation rate in this operation was 829/h, and the generation rate of the obtained polyethylene-coated N1 isolated ultrafine particles in the collection chamber was 7.29/hr.
(Fe44 g/hr for only 14 isolated ultrafine particles). This is about the amount of evaporation! ;', 5c'x means that it was produced as N1 isolated ultrafine particles.
実施例3(短チェイン状!Fe−0o合金孤立超微粒子
の製造)
生成室内の内径150IIImの耐火性るつぼ内に、蒸
発材料として、電解Fe49 J、電解Oo五6時計a
sIKgを+−y−ジし、先づlX10 )−/I/
の高真空に排気し九のち、Heガス2トールを導入する
。高周波電源からの供給電力1にM138Kwで加熱し
、るつぼ内のFe及びaoを溶解し、1800°Cの?
e−Oo合金溶湯を保持する。細管群の構成並に細管群
とるつぼとの高さ距離は実施例1と同じである。高真空
室内は、油回転ポンプとメカニカルブースターを組合せ
た排気系で5×10″″ffiトールに真空排気を保持
する。前記の蒸発した1・−Oo合金蒸気は、該細管群
の下端の吸込口群より吸い込まれるが、その超微粒子の
温度がキューリ一点より低くなつ次状態でソレノイドに
より形成される磁場内を通り磁化され、この実施例では
、ソレノイドの高さの上半部(200ms)の長さ域(
ゾーン)で磁化されるようにし、その超微粒子は10
s/sawの高速でこのゾーンを通過するので、そのゾ
ーンにおける滞留時間は比較的短か(,102秒であっ
た。Example 3 (Production of short chain-shaped Fe-0o alloy isolated ultrafine particles) Electrolytic Fe49 J and electrolytic Oo56 a were placed in a refractory crucible with an inner diameter of 150 III m in the generation chamber as evaporation materials.
sIKg +-y-di, first lX10 )-/I/
After evacuating to a high vacuum, 2 torr of He gas was introduced. Heating with M138Kw using power supplied from a high frequency power supply 1 melts Fe and ao in the crucible, and heats the crucible to 1800°C.
Holds the e-Oo alloy molten metal. The structure of the capillary group and the height distance between the capillary group and the crucible are the same as in Example 1. The high vacuum chamber is maintained at a vacuum level of 5×10″ffi torr by an exhaust system that combines an oil rotary pump and a mechanical booster. The evaporated 1.-Oo alloy vapor is sucked in through the suction port group at the lower end of the thin tube group, but in the next state when the temperature of the ultrafine particles becomes lower than the Curie point, it passes through the magnetic field formed by the solenoid and becomes magnetized. In this example, the length region (200ms) of the upper half of the solenoid height (
zone), and the ultrafine particles are magnetized at 10
Since it passes through this zone at a high speed of s/saw, the residence time in that zone is relatively short (102 seconds).
その結果8〜12ケの範囲内で孤立超微粒子がつらなっ
た短チェイン状超微粒子に形成され、これがそのま−キ
ャリヤーガスと共に細管群より高真空室内に引込まれて
捕集室に集積される。As a result, 8 to 12 isolated ultrafine particles are formed into short chain-shaped ultrafine particles, which are then drawn into the high vacuum chamber together with the carrier gas through the tube group and accumulated in the collection chamber. .
生成した601・−400oの孤立超微粒子の集合体の
平均粒径は、200A、その半値幅は30Aのシャープ
な粒度分布を示してい念。その短チェインの粒子の数は
、集合体の約80%が8〜12ケの範囲内であり、5〜
15ケの範囲外のチェインは殆んど見られなかつ九。The average particle diameter of the generated aggregate of isolated ultrafine particles of 601/-400o was 200A, and the half width was 30A, showing a sharp particle size distribution. The number of particles in the short chain is in the range of 8 to 12 in about 80% of the aggregates, and in the range of 5 to 12.
Chains outside the range of 15 were hardly seen and 9.
本運転での607・−4) Oo超微粒子蒸発生成速度
は108り/hrで、短チェイン状超微粒子の捕集速度
は479/hrであり、蒸発量の約44%が短チェイン
状超微粒子が製造できた。従来の数十ケの超微粒子がつ
らなった長チェイン状超微粒子を磁気気録テープの製造
においてそのテープ基材に塗布する際、分散、配向が困
難で、磁気記録特性に、ばらつきが多かったが、本実施
例で製造した短チェイン状超微粒子は、上記の難点を解
消し、良好な磁気記録特性が得られた。眞、ソレノイド
下端とるつぼ上端との間隔を50四とし、前記と仝様に
実施した所5〜10ケつながった短チェイン状超微粒子
が得られた。In the actual operation, the evaporation production rate of Oo ultrafine particles was 108/hr, and the collection rate of short chain ultrafine particles was 479/hr, and approximately 44% of the evaporation amount was short chain ultrafine particles. was able to be manufactured. When conventional long chain-shaped ultrafine particles made of dozens of ultrafine particles are applied to the tape base material in the production of magnetic recording tape, it is difficult to disperse and orient the particles, resulting in many variations in magnetic recording properties. However, the short chain-shaped ultrafine particles produced in this example solved the above-mentioned problems and provided good magnetic recording properties. In fact, when the distance between the lower end of the solenoid and the upper end of the crucible was set to 504, and the procedure was carried out in the same manner as described above, 5 to 10 short chain-shaped ultrafine particles were obtained.
実施例4(W1化被膜をもつ短チェイン状超微粒子の製
造)
前記実施例3と同じ条件で、且つ高真空室内へガス導入
管より酸素を4 X 10 1層で流入させて、細管群
より放出される短チェイン状607e−400o超微粒
子を酸素ガス雰囲気に触れさせてその表面を酸化被覆を
もつものに製造した。短チェインのア・超微粒子は、個
々の70超微粒子の表面に10〜201の膜厚の酸化鉄
(70304)の膜が均一に形成されてい念。Example 4 (Production of short chain-shaped ultrafine particles with W1 coating) Under the same conditions as in Example 3, oxygen was introduced into the high vacuum chamber from the gas introduction tube in one layer of 4 x 10, and from the thin tube group. The released short chain-shaped 607e-400o ultrafine particles were exposed to an oxygen gas atmosphere to produce an oxide coating on the surface. For short chain ultrafine particles, a film of iron oxide (70304) with a thickness of 10 to 201 is uniformly formed on the surface of each 70 ultrafine particle.
細管群内を運ばれる孤立又は短チェイン超微粒子の流速
は、差圧の調節、高真空室の真空度により所望の高速に
調節され、例えば20〜30%/Sである。固みに、従
来のガス中蒸発のみの場合は1〜211B/Sが一般で
ある。The flow rate of the isolated or short-chain ultrafine particles transported within the group of capillary tubes is adjusted to a desired high speed by adjusting the differential pressure and the degree of vacuum in the high vacuum chamber, and is, for example, 20 to 30%/S. In the case of conventional evaporation only in gas, the hardness is generally 1 to 211 B/S.
(発明の効果)
このように本発明によるときは、ガス中蒸発を行なう生
成室の真空度より高真空室の真空度より大きくシ、その
差圧によυ生成室内に生成の超微粒子蒸気を多数本の細
管から成る細管群を介して高真空室側へ吸込み捕集する
ようにしたので、蒸発材料の蒸発−量に対し大きい割合
で孤立超微粒子の集合体を得ることができ、又その細管
群内を超微粒子が高速に通過する途上で磁化装置により
磁化せしめるときは、短チェイン状超微粒子を捕集する
ことができ、更に、その高真空室側にコーテイング材の
蒸発装置或は/及びガス導入孔を設けた表面処理室を設
けるときは、細管群から出た孤立又は短チェイン超微粒
子をフーティング処理でき、表面処理された製品を得る
ことができ、この場合、細管群の外周に設けたジケット
内に冷媒又は加熱媒体を通すときは、適当な温度で良質
の表面処理された孤立又は短チェイン状孤立超微粒子を
得ることができる。(Effects of the Invention) According to the present invention, the degree of vacuum in the generation chamber for performing evaporation in gas is greater than the degree of vacuum in the high vacuum chamber, and the generated ultrafine particle vapor is generated in the υ generation chamber due to the differential pressure. Since the collection is carried out by suction into the high vacuum chamber through a group of thin tubes, it is possible to obtain aggregates of isolated ultrafine particles at a large proportion to the amount of evaporated material. When ultrafine particles are magnetized by a magnetization device while passing through the tube group at high speed, short chain-shaped ultrafine particles can be collected, and furthermore, a coating material evaporation device or / When a surface treatment chamber is provided with gas introduction holes, isolated or short-chain ultrafine particles emitted from the tube group can be subjected to footing treatment, and a surface-treated product can be obtained. When a refrigerant or a heating medium is passed through a wicket provided in the wick, it is possible to obtain high-quality surface-treated isolated or short chain-shaped isolated ultrafine particles at an appropriate temperature.
第1図は、本発明の実施例装置の1部を截除した側面図
、第2図til−IN截断百図、第3図は変形例の1部
の裁断側面図を示す。
+1)・・・生成室 (7)・・・細管(8
)・・・細管群 rlal・・・高真空室0
・・・蒸発室 ■・・・ガス導入管特許出頭
人 新技術開発事業団
外2名FIG. 1 is a partially cut-away side view of an apparatus according to an embodiment of the present invention, FIG. 2 is a partially cut-away side view, and FIG. 3 is a partially cut-away side view of a modified example. +1)... Generation chamber (7)... Thin tube (8
)...tubule group rlal...high vacuum chamber 0
...Evaporation chamber ■...Gas introduction pipe patent applicant: 2 people from outside the New Technology Development Corporation
Claims (1)
しめる超微粒子生成室と、該生成室内の蒸発源に対向し
て先端が開口し後端が高真空室に連通する細管を設け、
該真空室内の真空度を該生成室内の真空度を高めて差圧
を生ぜしめ、これにより該生成室内の蒸気を該細管を介
して該真空室側へ引込むようにした孤立超微粒子の製造
法において、細管を多数本で構成し、その該細管群を介
して生成室内に生成した超微粒子蒸気を該真空室側へ引
込むようにしたことを特徴とする孤立超微粒子の製造法
。 2 ガス中蒸発法により生成した超微粒子蒸気を生成せ
しめる超微粒子生成室と、該生成室内の蒸発源に対向し
て先端が開口し後端が高真空室に連通する細管を多数本
併設し、該細管群の外周に、磁化装置を設け、該真空室
内の真空度を該生成室内の真空度より高めて差圧を生ぜ
しめ、これにより該生成室内の蒸気を該細管群を介して
該真空室側へ引込むようにすると共に各細管内に該磁化
装置により生成せしめた磁場内を該超微粒子を通過させ
るようにしたことを特徴とする短チェイン状超微粒子の
製造法。 3 ガス中蒸発法により生成した超微粒蒸気を生成せし
める超微粒子生成室と、該生成室内の蒸発源に対向して
先端が開口し後端が高真空室に夫々連通して設けた多数
本の細管と該細管群の外周に設けた磁化装置とから成り
、且つ該高真空室の1部を超微粒子表面処理室に構成し
て成る孤立又は短チェイン状超微粒子の製造装置。 4 該超微粒子表面処理室は、該真空室内にコーティン
グ用材の蒸発源を設けて成る特許請求の範囲3に記載の
製造装置。 5 該超微粒子表面処理室は、該真空室内に連通するガ
ス導入管を設けて成る特許請求の範囲3に記載の製造装
置。 6 該細管群の下端面積は、蒸発源の面積よりも大きい
特許請求の範囲の3に記載の製造装置。 7 ガス中蒸発法により生成した超微粒蒸気を生成せし
める超微粒子生成室と、該生成室内の蒸発源に対向して
先端が開口し後端が高真空室に夫々連通して設けた多数
本の細管と、該細管群の外周を被包するジャケットと、
該細管群の外周に設けた環状磁化装置とから成り、且つ
該真空室の1部を超微粒子表面処理室に構成して成る孤
立又は短チェイン状超微粒子の製造装置。[Scope of Claims] 1. An ultrafine particle generation chamber that generates ultrafine particle vapor generated by an in-gas evaporation method, and a thin tube whose front end is open facing an evaporation source in the generation chamber and whose rear end communicates with a high vacuum chamber. established,
In a method for producing isolated ultrafine particles, the degree of vacuum in the vacuum chamber is increased to create a pressure difference, thereby drawing vapor in the production chamber into the vacuum chamber through the thin tube. . A method for producing isolated ultrafine particles, comprising a plurality of thin tubes, and the ultrafine particle vapor generated in the generation chamber is drawn into the vacuum chamber through the group of thin tubes. 2. An ultrafine particle generation chamber for generating ultrafine particle vapor generated by in-gas evaporation method, and a large number of thin tubes facing the evaporation source in the generation chamber, each having an open tip and a rear end communicating with a high vacuum chamber, A magnetization device is provided around the outer periphery of the group of capillary tubes, and the degree of vacuum in the vacuum chamber is made higher than the degree of vacuum in the generation chamber to create a pressure difference, thereby causing the vapor in the generation chamber to flow through the group of tubes into the vacuum. 1. A method for producing short chain-shaped ultrafine particles, characterized in that the ultrafine particles are drawn into a chamber and are caused to pass through a magnetic field generated by the magnetization device in each capillary. 3. An ultrafine particle generation chamber that generates ultrafine vapor generated by in-gas evaporation method, and a large number of tubes each having an open tip and a rear end communicating with a high vacuum chamber, facing the evaporation source in the generation chamber. An apparatus for producing isolated or short chain ultrafine particles, which comprises a thin tube and a magnetization device provided on the outer periphery of the group of thin tubes, and a part of the high vacuum chamber is configured as an ultrafine particle surface treatment chamber. 4. The manufacturing apparatus according to claim 3, wherein the ultrafine particle surface treatment chamber is provided with an evaporation source for a coating material within the vacuum chamber. 5. The manufacturing apparatus according to claim 3, wherein the ultrafine particle surface treatment chamber is provided with a gas introduction pipe communicating with the vacuum chamber. 6. The manufacturing apparatus according to claim 3, wherein the lower end area of the thin tube group is larger than the area of the evaporation source. 7. An ultrafine particle generation chamber that generates ultrafine vapor generated by in-gas evaporation method, and a large number of tubes facing the evaporation source in the generation chamber, each having an open front end and a rear end communicating with a high vacuum chamber. a thin tube; a jacket covering the outer periphery of the thin tube group;
An apparatus for producing isolated or short chain-shaped ultrafine particles, which comprises an annular magnetization device provided around the outer periphery of the group of thin tubes, and a part of the vacuum chamber is configured as an ultrafine particle surface treatment chamber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61112790A JPS62269743A (en) | 1986-05-19 | 1986-05-19 | Method and device for producing isolated or short-chain ultra-fine particle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61112790A JPS62269743A (en) | 1986-05-19 | 1986-05-19 | Method and device for producing isolated or short-chain ultra-fine particle |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62269743A true JPS62269743A (en) | 1987-11-24 |
JPH0434448B2 JPH0434448B2 (en) | 1992-06-08 |
Family
ID=14595581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61112790A Granted JPS62269743A (en) | 1986-05-19 | 1986-05-19 | Method and device for producing isolated or short-chain ultra-fine particle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62269743A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007522347A (en) * | 2004-02-16 | 2007-08-09 | クライマックス・エンジニアード・マテリアルズ・エルエルシー | Method and apparatus for producing silver nanoparticles |
US8048568B2 (en) | 2003-01-06 | 2011-11-01 | Samsung Sdi Co., Ltd. | Negative active material for rechargeable lithium battery and rechargeable lithium battery |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6078635A (en) * | 1983-10-07 | 1985-05-04 | Res Dev Corp Of Japan | Method and apparatus for forming discrete ultra-fine particles |
-
1986
- 1986-05-19 JP JP61112790A patent/JPS62269743A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6078635A (en) * | 1983-10-07 | 1985-05-04 | Res Dev Corp Of Japan | Method and apparatus for forming discrete ultra-fine particles |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8048568B2 (en) | 2003-01-06 | 2011-11-01 | Samsung Sdi Co., Ltd. | Negative active material for rechargeable lithium battery and rechargeable lithium battery |
JP2007522347A (en) * | 2004-02-16 | 2007-08-09 | クライマックス・エンジニアード・マテリアルズ・エルエルシー | Method and apparatus for producing silver nanoparticles |
Also Published As
Publication number | Publication date |
---|---|
JPH0434448B2 (en) | 1992-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20100126259A (en) | Industrial vapour generator for the deposition of an alloy coating onto a metal strip | |
JP3475403B2 (en) | Evaporation apparatus and method | |
JPS59208069A (en) | Evaporation device having radiation heat portion for evaporating many substances | |
JPS61177366A (en) | Production of ultrafine particle dispersed substrate | |
JPS59208004A (en) | Production of metallic fines | |
JPH04505478A (en) | Composite sample source evaporation device and evaporation method for alloy production | |
Chamorro‐Coral et al. | The role of oxygen on the growth of palladium clusters synthesized by gas aggregation source | |
JPS62269743A (en) | Method and device for producing isolated or short-chain ultra-fine particle | |
US20040241075A1 (en) | Silicon monoxide vapor deposition material and method for preparation thereof | |
JPH0160546B2 (en) | ||
Yumoto et al. | In situ synthesis of titanium-aluminides in coating with supersonic free-jet PVD using Ti and Al nanoparticles | |
JPH0524988B2 (en) | ||
CN206033865U (en) | Runner mould board is indulged to pure aluminium thickening coating film | |
JPS5987622A (en) | Magnetic recording body and its production | |
JPS6070176A (en) | Evaporating cylinder for solid source | |
US4048462A (en) | Compact rotary evaporation source | |
JP2005246339A (en) | Method and apparatus for manufacturing nanoparticle | |
US20090008842A1 (en) | Method and apparatus for producing metallic ultrafine particles | |
JPS5943988B2 (en) | Ultrafine particle membrane manufacturing method and manufacturing device | |
JPS60116705A (en) | Manufacture apparatus of ultrafine metallic powder | |
JPS61209032A (en) | Method and apparatus for mixing ultra-fine particles | |
US3640762A (en) | Method for vaporizing molten metal | |
JP2002239377A (en) | Highly pure standard particle former and highly pure standard particle made thereby | |
Ishii et al. | A new process for producing a granular material | |
JP2002285323A (en) | Forming equipment and forming method for superfine particle film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |