JPS62269350A - Semiconductor integrated circuit and manufacture thereof - Google Patents

Semiconductor integrated circuit and manufacture thereof

Info

Publication number
JPS62269350A
JPS62269350A JP61115354A JP11535486A JPS62269350A JP S62269350 A JPS62269350 A JP S62269350A JP 61115354 A JP61115354 A JP 61115354A JP 11535486 A JP11535486 A JP 11535486A JP S62269350 A JPS62269350 A JP S62269350A
Authority
JP
Japan
Prior art keywords
chips
substrate
circuit
chip
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61115354A
Other languages
Japanese (ja)
Inventor
Takashi Kato
隆 加藤
Shinpei Tsuchiya
土屋 真平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61115354A priority Critical patent/JPS62269350A/en
Publication of JPS62269350A publication Critical patent/JPS62269350A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/147Semiconductor insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/24137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To contrive to improve the high-speed efficiency and the yield of a semiconductor integrated circuit by a method wherein a plurality of semicon ductor chips with a circuit formed thereon are arranged on a substrate, these chips are filled with an insulative resin and wirings, by which the chips are 4 mutually connected, are provided thereon. CONSTITUTION:A plurality of semiconductor chips 20 with such a circuit block as a logic circuit, an RAM circuit or an ROM circuit formed thereon are arranged and adhered on an Si substrate 11, gaps between the chips 20 are filled with an insulator layer 12 consisting of insulative resin and also, the substrate surface is flatly formed being covered the chips 20 with the insulator layer 12. Connecting pads 13; which consist of a metal, such as Al, are positioned at the peripheral parts of the substrate and are used for connection with the outside; and wirings 14; by which the chips 20 are mutually connected and the chips 20 and the pads 13 are connected; are formed thereon. Thereby, the aptitude to speedup, which is the feature of a wafer scale IC, is succeeded intact and moreover, as non-defectives only can be used for the chips 20, the insurance of the yield of material becomes easier.

Description

【発明の詳細な説明】 〔概要〕 集積規模を拡大した゛ト導体隼積回路において、基扱ト
にlll路の形成された複数の半導体チップを配列し、
これを絶縁性樹脂で埋め、そのヒにチップ相互間を接続
する配線を設けた構成に−4−ることにより、 高速性を実現しながら製造歩留りの確保を容易にしたも
のである。
[Detailed Description of the Invention] [Summary] In a multi-conductor integrated circuit with an expanded integration scale, a plurality of semiconductor chips each having an Ill path formed therein are arranged on a base board,
By filling this with insulating resin and providing wiring to connect the chips to each other, it is possible to achieve high speed and easily maintain manufacturing yield.

〔産業上の利用分野〕[Industrial application field]

本発明は、梁積規模を拡大した半導体集積回路の構成に
関す。
The present invention relates to a structure of a semiconductor integrated circuit with an expanded beam stacking scale.

電子機器は、所望の機能を実現するため一般に多くの[
0回路を組み合わせ結合した構成になっている。そして
その機能には、初雑化、高速化が求められる仰向にある
Electronic devices generally have many [
It has a configuration in which 0 circuits are combined and connected. And its functions require simplicity and speed.

複雑化にり・1しては回路の船11み合わせ規模の(〕
1゜人が、高速化に対しては接続配線長の短小化がlシ
・要である。
Due to the complexity, the scale of the circuit board is 11 (1)
1. In order to increase the speed, it is necessary to shorten the length of the connection wiring.

半導体集積回路(IC)は、ト記要請に応えるJ〕のと
して多用されζおり、その回路の組み合わせ規模となる
築積規模には一層の拡大が望まれている。そしてその1
〃1人に当たってはIt!I造歩留りの確保が重要であ
る。
Semiconductor integrated circuits (ICs) are widely used to meet the above requirements, and there is a desire for further expansion in the scale of construction, which is the scale of circuit combinations. And part 1
〃It's for one person! It is important to ensure I-building yield.

〔従来の技術と発明が解決しようとする問題点〕多くの
回路を糾め合わせ結合するのに、従来は限られた回路を
具える従来のICなどを実装用基板に実装して例えば第
7図の平面図にボすようなl Cホー]・にする方式が
採用されている。
[Problems to be solved by the prior art and the invention] In order to assemble and connect many circuits, conventional ICs with limited circuits are mounted on a mounting board, for example, a 7th A method has been adopted in which it is shown in the plan view of the figure.

同図において、1は実装用基板、2は基板lに実装され
た論理回路I C,RAM−I C,)’?OM−IC
など従来のICである。
In the figure, 1 is a mounting board, and 2 is a logic circuit IC, RAM-IC, )'? mounted on the board l. OM-IC
These are conventional ICs.

基板1は、例えば合成樹脂などを基体にし予め配線が形
成された印刷配線基板である。
The substrate 1 is a printed wiring board made of, for example, synthetic resin and on which wiring is previously formed.

IC2は、回路が絹み込まれたICチップ2aをパッケ
ージしてリート端子2bを導出した形態をなし、リート
端子2bが基板1の配線に接続されて相t1″に結合さ
れている。
The IC2 has a configuration in which an IC chip 2a with a circuit embedded therein is packaged and a lead terminal 2b is led out, and the lead terminal 2b is connected to the wiring of the substrate 1 and coupled to the phase t1''.

ごのように構成されたICポートは、IC2が他の回路
とのインタフェースのためにハノソーr 11+1路な
どを内蔵すること、Icチップ2a相11間の間隔が大
きくなるためその配線長が長くなること、のために畠j
*化がUjげられている欠点がある。
The IC port configured as shown in the figure is because IC2 has a built-in circuit such as 11+1 for interfacing with other circuits, and the wiring length becomes longer because the interval between the IC chips 2a and 11 becomes larger. For the sake of Hatake
*There is a drawback that the conversion is lowered.

この欠点を除去する方策として、ICチップの大きさを
ウェーハサイズまで広げ、上記1cボードに含まゼる回
路の全てを一つのチップl−に形成して隼積規模を1」
i、人した例えば第8図の)ピ面図に示ずようなウェー
ハスケールICが提案され゛(いる。
As a measure to eliminate this drawback, the size of the IC chip is increased to the size of a wafer, and all of the circuits included in the above-mentioned 1C board are formed on one chip, reducing the stacking scale to 1.
For example, a wafer scale IC as shown in the top view of FIG. 8 has been proposed.

同図におい゛(、j3は一つの半導体チップとなるウェ
ーハ、4は論理回1/8.1ンへM回路、ROM回路な
どがそれぞれ望積されつη−ハ31−に形成された回路
ブロックであり、回路ゾし1ツク4が上記ICボードに
お(するIC2に4刊当し°ζいる。
In the same figure, ゛(, j3 is a wafer that will become one semiconductor chip, 4 is a circuit block formed in η-ha31- in which M circuits, ROM circuits, etc. are respectively deposited on the logic circuit 1/8.1 pin). , and one circuit block 4 is placed on the above IC board (IC2).

回路ブロック4は、相互の間隔がIcホードにおける相
当する間隔より極めて小さく配列されて、相互に図示さ
れ41い配線で接続されている。そしてその配線は、通
常のI C−1−ノブと同様な構成をなして微細パター
ンで形成され、回路ブIIJツク4内の回路素子から的
接導出されている。
The circuit blocks 4 are arranged with mutual spacing much smaller than the corresponding spacing in the Ic hoard, and are connected to each other by wires 41 (not shown). The wiring has a structure similar to that of an ordinary IC-1 knob, is formed in a fine pattern, and is directly led out from the circuit elements in the circuit board 4.

このためごのウェーハスケールIGは、回路ブロック4
において先に述べたバッファ回路の省略が可能になり、
回路ブロック4相1間の配線長の短小化と相俟って、高
速化に適している。
The wafer scale IG for this purpose is the circuit block 4.
It becomes possible to omit the buffer circuit mentioned earlier,
Combined with the shortening of the wiring length between four phases and one circuit block, it is suitable for high speed.

しかしながら、種々の回路を形成するため製造工程数が
多くなり、また回路ブロック4の数の増大に伴い製造歩
留りが指数関数的に低下する問題がある。
However, since various circuits are formed, the number of manufacturing steps increases, and as the number of circuit blocks 4 increases, there is a problem that the manufacturing yield decreases exponentially.

〔問題点を解決するための手段〕[Means for solving problems]

(−記問題点は、回路の形成された複数の半導体チップ
と該チップ相互の間隙を埋め目一つ該チップを覆う絶縁
物層とを基板トに有し、該チップ相互間を接続する配線
が該絶縁物層上に設けられてなる本発明のIcによって
解決される。
(The problem described in - is that the substrate has a plurality of semiconductor chips on which circuits are formed and an insulating layer that fills the gaps between the chips and covers the chips, and wiring that connects the chips. This problem is solved by the Ic of the present invention provided on the insulating layer.

また、回路の形成された複数の半導体チップを基板トに
配列接着する工程と、流動性を有する絶縁性樹脂を用い
て上記接着されたチップ相互の間隙を埋めると共に該チ
ップを覆った後膣樹脂を固化して表面が平坦な絶縁物層
を形成する工程と、しかる後膣チップ相互間を接続する
配線を該絶縁物層上に形成する1稈とを含む本発明の製
造方法によって解決される。
In addition, there is a step of arranging and bonding a plurality of semiconductor chips on which circuits are formed on a substrate, and filling the gaps between the bonded chips using a fluid insulating resin and covering the chips with resin. The problem is solved by the manufacturing method of the present invention, which includes a step of solidifying to form an insulating layer with a flat surface, and then forming a wiring on the insulating layer to connect the vaginal chips. .

〔作用〕[Effect]

上記構成のI Cは、先に述べたウェーハスケールIG
における回路ブロック4を上記半導体チップに置換した
ものと見なすごとが出来て、ウェーハスケールICの特
徴である+Mi速化への適性はそのまま継承される。
The IC with the above configuration is the same as the wafer scale IG mentioned earlier.
It can be considered that the circuit block 4 in is replaced with the above-mentioned semiconductor chip, and the suitability for the +Mi speed increase, which is a feature of the wafer scale IC, is inherited as is.

更に半導体チップとし°(、シリコン(Si)のものや
化合物半導体例えばガリウム砒素(GaAs)などのも
のを適宜選定し混用することが可能であり、ICとして
の機能をウェーハスケールICの場合より高めることが
可能である。
Furthermore, it is possible to appropriately select and mix semiconductor chips such as silicon (Si) and compound semiconductors such as gallium arsenide (GaAs), thereby improving the IC function compared to wafer scale ICs. is possible.

また製造においては、−上記半導体チップを個別に別途
製造して、その中の良品を基板十に配列することが可能
であるため、ICとしての歩留りを確保することが容易
である。
In addition, in manufacturing, it is possible to separately manufacture the above-mentioned semiconductor chips and arrange the good ones on the substrate, so it is easy to ensure the yield as an IC.

本発明打は、この構成のICをB I C(1ioad
Scale Integrated C1rcit )
  と名付けた。
The present invention uses an IC with this configuration as a BIC (1ioad
Scale Integrated C1rcit)
It was named.

r実施例〕 以ト、本発明によるIc(lうIc)の実施例について
第1図〜第4図を用い、また本発明による製造方θ、−
の実施例について第5図および第6図を用い説明する。
r Example] Hereinafter, FIGS. 1 to 4 will be used for examples of Ic (Ic) according to the present invention, and the manufacturing method θ, - according to the present invention.
An example will be described using FIGS. 5 and 6.

全図を1ffiシ同一符号は同一タ」象物をボす。The same symbols refer to the same symbols throughout the drawings.

第1図および第2Mはそれぞれ本発明1c(+3Ic)
の第一および第二の実施例の模式平面図ia)と模式側
断面図fblであり、第3図は実施例に組み込まれるチ
ップを説明する部分側断面図である。
Figures 1 and 2M are invention 1c (+3Ic), respectively.
FIG. 3 is a schematic plan view ia) and a schematic side sectional view fbl of the first and second embodiments, and FIG. 3 is a partial side sectional view illustrating a chip incorporated in the embodiment.

また第4図は本発明10実施例に対するパッケージ例を
ンFオ模式側断面図である。
Further, FIG. 4 is a schematic side sectional view of an example of a package for the tenth embodiment of the present invention.

第1図に示す第一の実施例となる+3 I Cは、Sl
からなる基板111−に、論理回路、RA M回路、R
OM l111路などからなる回路ブロックが形成され
た複数の半導体チップ20が配列接着され、絶縁性樹脂
こごではポリイミドからなる絶縁物層12がチップ20
相t1’の間隙を埋め1−1つチップ20を覆って表面
が平坦になり、そO目に、金属例えば7月ベニウム(A
l1などかビンなり、周辺部に(17置して外部との接
続用にイ1(すイ)1・v続用バソ1゛13と、ナツプ
2o相L1問およびチップ20  パソ]−13間を接
続する配線14とが、J ’7fsのIcチップの如く
配線層によ−っ゛(形成されていイ)。
+3 IC, which is the first embodiment shown in FIG.
Logic circuit, RAM circuit, R
A plurality of semiconductor chips 20 on which circuit blocks such as OM111 circuit blocks are formed are arranged and bonded, and an insulating layer 12 made of polyimide is bonded to the chips 20 in an insulating resin plate.
Fill the gap between the phases t1' and cover the chip 20 one by one to make the surface flat.
l1, etc., in the peripheral area (17 placed for connection with the outside, I1 and V connection baths 1 and 13, nap 2o phase L1 question and chip 20 paso) between -13 The wiring 14 connecting the two is formed in a wiring layer like the J'7fs IC chip.

第2図に示す第ニーの実施例となる131Cは、]−記
2−の実施例Cご佳しζ、基板11トにStからなりチ
ップ20群を囲む角棒状の枠15が設けられた点と、絶
縁物層12の材料にPMSS(シリル化ポリメチルシル
セスギオ+ザン)を使用した点が異なっている。またパ
/N3は絶縁物1−12を介して枠151−に位置して
いる。
131C, which is the second embodiment shown in FIG. The difference is that PMSS (silylated polymethylsilsesdio+thane) is used as the material for the insulating layer 12. Further, the P/N3 is located in the frame 151- via the insulator 1-12.

そして以−トの説明(,1第一および第二の実施例に共
1fflしたことで4)る。
The following explanation will be given below (1, 1, and 4) since 1ffl was applied to both the first and second embodiments.

即ち、図では?IW8されているが、配線14.0> 
、、l−はjm當のICチップと同様にバッジ−1−ジ
ョンが施されており、また配線14は1lii較する場
合必要に応して絶縁層を介した多層構成になっている。
In other words, in the diagram? IW8, but wiring 14.0>
.

チップ20は、第3図に示ず如く、通當のI Cチップ
と同様に半導体基板21Fに所要の回路素子(1−ラン
ジスタなど)22、回路素子22を接続する配ξ・泉2
3および絶縁層24が形成されており、更に表面にコン
タクl−$25を設けて配線14を配線23に接続する
ための中継用バット26、チップ20を重体で検査出来
るよう周辺部に配置された測定用バノF27およびチッ
プ20の1確な位置をF方から視認するための位置合わ
せマーク (図示省略)が設けられている。そしてF記
の如(配線14が回路素子22に接続されるため、先に
述べたウェーハスケールICの回路ブロック4と同様に
ハソファ回路が省略されている。
As shown in FIG. 3, the chip 20 includes a semiconductor substrate 21F, necessary circuit elements (1-transistor, etc.) 22, and a wiring ξ and a spring 2 for connecting the circuit elements 22, as shown in FIG.
3 and an insulating layer 24 are formed on the surface, and a relay bat 26 for connecting the wiring 14 to the wiring 23 by providing a contact l-$25 on the surface, and a relay bat 26 arranged around the chip 20 so that the chip 20 can be inspected under heavy conditions. Positioning marks (not shown) are provided for visually confirming the precise positions of the measuring vane F27 and the chip 20 from the direction F. As shown in Note F (because the wiring 14 is connected to the circuit element 22, the HASO circuit is omitted as in the circuit block 4 of the wafer scale IC described above).

基板用1−に配列されたチップ20のそれぞれは、本I
3 I Cの所望する機能の実現のためSiのものや化
合物半導体例えばGaAsのものが適宜選定されている
Each of the chips 20 arranged on the substrate 1-
In order to realize the desired function of the 3 IC, a material made of Si or a compound semiconductor such as GaAs is appropriately selected.

基板11の材料をSiにしたのは、チップ20の大部分
がSjのものであることに合わせて、動作時の発熱によ
る基板11の反りの発住を防いだもので、両者の熱膨張
率のバランスがとれるならば他の材木Iであっても良い
。第二の実施例における枠15の材料をSi/こしたの
4)同様な思想で基板11に合わセたものである。
The reason why the material of the substrate 11 was made of Si was to prevent the substrate 11 from warping due to heat generation during operation, since most of the chip 20 is made of Sj, and the thermal expansion coefficient of both Other lumber I may be used as long as the balance can be maintained. The material of the frame 15 in the second embodiment is Si/rubber, but it is combined with the substrate 11 based on the same concept as 4).

かく構成されたB I Cは、ウェーハスケールICに
おける回路ブ「2ツク4をチップ20に置換したものと
見なすことが出来て、ウェーハスケールICの特徴であ
る114I速化への適性はそのまま継承され、然も所望
する機能の実現に適するようにチップ20の材料が選定
されているため、その機能をウェーハスケールIcの場
合より高めることがrj1能である。またチップ20に
は良品のめを使用することが出来るので、製造歩留りの
確保が容易である。
The BIC configured in this way can be regarded as replacing the circuit board 20 in a wafer scale IC with a chip 20, and the suitability for increasing the speed of 114I, which is a characteristic of a wafer scale IC, is inherited as is. However, since the material of the chip 20 is selected to be suitable for realizing the desired function, it is possible to improve the function compared to the case of a wafer scale IC.Furthermore, a good quality metal plate is used for the chip 20. Therefore, it is easy to ensure manufacturing yield.

なおト記131 C:は、jm常パッケージして使用す
るのが望ましく、第4図はその−・例を示す。
Note 131 C: is preferably used in a regular package, and FIG. 4 shows an example of this.

同図におい−(HI Cは、基板11の裏面が11−か
らなる放熱)、イン31の基体裏面にタハ伝導性を持っ
て接着され、バノ113が、出力ビン32(夕(部との
接続用)とそれに繋がる内部接続用パット33とを旦え
て放熱フィン31の基体裏面にIM付けられたバノケー
ジ側壁34のバッド33に、ワイヤ35で接続され、側
壁34に蓋36が取付けられて封1)−されている。こ
のパッケージでは、基板11の裏面全面が放熱フィン3
1に結合しているため、極めて優れた冷却効果を1厚る
ことが出来る。
In the same figure, the back side of the substrate 11 (HIC is heat dissipating) is bonded to the back side of the substrate 31 with high conductivity, and the burner 113 is connected to the output bin 32 (the heat dissipation part consists of 11). The pad 33 for internal connection (for connection) and the pad 33 for internal connection connected thereto are connected by a wire 35 to the pad 33 of the vano cage side wall 34, which is IM attached to the back surface of the base of the heat dissipation fin 31, and a lid 36 is attached to the side wall 34 and sealed. 1) - has been done. In this package, the entire back surface of the board 11 is covered by the radiation fins 3.
Since it is bonded to 1, it is possible to obtain an extremely excellent cooling effect by 1 layer.

また本構成の13 I Cは、これをモジュールの単位
として初数個重ね接続用バソl’14を相^′に接続す
ることにより、回路の集積規模を更に大きくしたIcを
形成することが出来る。
In addition, the 13 IC of this configuration can be used as a unit of module, and by connecting the first few stacked connection baths l'14 to the phase, it is possible to form an IC with a larger circuit integration scale. .

なお上記実施例における絶縁層】2の材料に前者ではポ
リイミドを後者ではPMSSを使用したが、両材料は何
れも両者に使用可能である。
Note that although polyimide was used in the former and PMSS was used as the material for the insulating layer 2 in the above embodiment, both materials can be used for both.

以1一本発明によるBICの実施例について述べた。続
いて本発明による製造方法の実施例について以トに述べ
る。
Hereinafter, embodiments of the BIC according to the present invention have been described. Next, examples of the manufacturing method according to the present invention will be described below.

第5図は本発明製造方法第一の実施例のLn順側断面図
(al〜tC)であり、第1図図示+3 I Cの製造
の場合を示す。
FIG. 5 is a sectional view (al to tC) of the Ln forward side of the first embodiment of the manufacturing method of the present invention, and shows the case of manufacturing +3 IC shown in FIG.

即ち第5図において、先ず〔図fat参照〕、基板11
1−に半導体チップ20を配列接着する。使用するチッ
プ20は、個別に別途製造し検査を経′(得られた良品
である。
That is, in FIG. 5, first [see diagram fat], the substrate 11
Semiconductor chips 20 are arranged and bonded to 1-. The chips 20 used are manufactured separately and tested (obtained as non-defective products).

チップ20の接着は、例えばlVa族元素例えばチタン
(Ti)またはジルコニウム(Zr)などをチップ20
の裏面に堆積してこれを基板11に圧着し、基板11側
よりランプまたはレーザ光で加熱して珪化物(シリサイ
(−)化する方法で行う。この際の1va族元素の使用
は、チップ20を111+温例えば500℃以トにする
ことなくシリサイド化することが出来るので、チップ2
0の用傷防11−に有効である。
The bonding of the chip 20 is performed by attaching, for example, a lVa group element such as titanium (Ti) or zirconium (Zr) to the chip 20.
This is done by depositing it on the back surface of the chip, pressing it onto the substrate 11, and heating it from the substrate 11 side with a lamp or laser beam to turn it into a silicide (-). Chip 2 can be silicided without raising it to 111+ temperature, for example, 500°C or higher.
It is effective for injury prevention 11- of 0.

またチップ2()相nの間隙は、(多連する絶縁物層1
2の形成を容易にするためにも、出来るだけ狭く例えば
0.11ツ下にするのが望ましい。
In addition, the gap between chip 2 ( ) phase n is (multiple insulator layers 1
In order to facilitate the formation of 2, it is desirable to make it as narrow as possible, for example, 0.11 mm below.

次いで〔図fbl参jjQ)、流→iJ+ l’lを有
する絶縁性樹脂(この場合ボリイミ1−)を用いてチッ
プ20相17の間隙を埋めると1(にチップ20を覆い
、表面をI(i坦にした後樹脂を固化して絶縁物層12
を形成する。
Next, [see Figure fbl jjQ), the gap between the chip 20 phase 17 is filled using an insulating resin (in this case Boliimi 1-) having a flow → iJ+ l'l, the chip 20 is covered with 1(), and the surface is covered with I( After flattening, the resin is solidified to form an insulating layer 12.
form.

間隙を確実に充AI目シ表向を重用にするには、例えば
真空引き雰囲気中で流動性ポリイミドを滴下して振動を
与えた浅、表面に一様な風IEを加える方法が良い。千
ツブ20相Uの間隙に大小がある場合または全てが大の
場合には、先ず粘性の低いポリイミド°により全表面を
濡らすと〕(に間隙の小の部分を埋め、続いて粘性の高
いポリイミドにより充填不足になった間隙大の部分を埋
めるのが良い。
In order to reliably fill the gaps and make use of the AI surface, a good method is, for example, to drop fluid polyimide in a vacuum atmosphere and apply a uniform wind IE to the vibrated surface. If the gaps in the 20-phase U are large or small, or if all the gaps are large, first wet the entire surface with a polyimide with a low viscosity. It is better to fill in the large gaps that have become insufficiently filled.

なお]−記風圧を加えることは、絶縁物層12における
千ノゾ201の厚さが過大にならないようにすることに
も有効である。
Note that applying the above air pressure is also effective in preventing the thickness of the 1000 sliver 201 in the insulator layer 12 from becoming excessively large.

次いで〔図fcl参照〕、絶縁物層] 2 、、l−に
接続用パッド13と配線14とを形成する。これにはj
m常のホトリソグラフィ技術を用いれば良い。即ち先ず
チツブ20の中継用パット26(第を図に図示)を表出
させるコンタクト窓25を開孔し、配線14の材料をス
パッタ法また番J芸着法などにより堆積し、これをパタ
ーン化すれ(31丁)い。このパターン化の際、ナツプ
20に設けられた前述の位置合わせマークを利用するご
とにより、チップ20の配列位置に多少の誤差があって
もその誤差を補+1−することが出来る。
Next, [see Figure fcl], connection pads 13 and wiring 14 are formed on the insulator layers] 2 , . This has j
Any conventional photolithography technique may be used. That is, first, a contact window 25 is opened to expose the relay pad 26 (shown in the figure) of the chip 20, and the material for the wiring 14 is deposited by a sputtering method or a method such as a wafer method, and this is patterned. Slightly (31st). During this patterning, by using the alignment marks provided on the nap 20, even if there is some error in the arrangement position of the chips 20, the error can be compensated for.

配線14の層が多層になる場合には、層間絶縁に絶縁物
層12と同じ材料即ちポリイミドを用いれば良い。
When the wiring 14 has multiple layers, the same material as the insulator layer 12, ie, polyimide, may be used for interlayer insulation.

この後、通常のICチップと同様にバンシヘーションを
施して所望の13I Cを完成する。
Thereafter, the desired 13 IC is completed by performing banishing in the same way as a normal IC chip.

第6図は本発明も’J造方法第二の実施例の工程順側断
面図(ill〜fflであり、第2図図示B I Gの
製造の場合を示す。
FIG. 6 is a side sectional view (ill to ffl) of the second embodiment of the 'J manufacturing method of the present invention, and shows the case of manufacturing B I G shown in FIG. 2.

即ち第6図において、先ず〔図ta+参照〕、基板11
を切り出すことの出来る大きさの基板11aを例えば石
英などからなる補強&l161−に載せ、PI、O8(
ボリラダーオルガノシ「1キサン)を接着剤17にして
基板11a周縁部の複数明所を補強板16に固定する。
That is, in FIG. 6, first [see figure ta+], the substrate 11
Place the substrate 11a of a size that allows cutting out the PI, O8 (
A plurality of bright spots on the periphery of the substrate 11a are fixed to the reinforcing plate 16 using an adhesive 17 made of Boli Ladder Organos.

この固定は、P L OSを固定個所に滴士し、基板1
1aを押圧しながら約500℃に加熱してPLO3を硬
化さ・口れば良い。
This fixing is done by attaching the P L OS to the fixing location and attaching it to the substrate 1.
It is sufficient to harden PLO3 by heating it to about 500° C. while pressing 1a.

次いで〔図(bl参照)、Pl、O8を用いて枠15を
基板11aトに吹り付ける。これは枠15の裏面にI)
L OSを塗布し、基板11aに押圧しながら加熱硬化
させれば良い1.このl」[1熱硬化は基板11a固j
i′のためのそれと一緒に行っ°ζ1)良い。
Next, the frame 15 is sprayed onto the substrate 11a using Pl and O8 (see figure (bl)). This is on the back of frame 15 I)
1. Apply LOS and heat cure it while pressing it onto the substrate 11a. This heat curing hardens the substrate 11a.
Go with it for i′ ζ 1) Good.

次いで〔図icl参照〕、枠15の内側の基% ] ]
 a  トに半導体チップ20を配列接着する。使用す
るチップ20は、第一の実施例の場合と同様にした良品
である。
Then [see figure icl], the base% inside the box 15]
a Semiconductor chips 20 are arranged and bonded on the sheet. The chip 20 used is a good chip similar to that of the first embodiment.

チップ20の接着にはPMSSを用いる。即Jう溶媒に
溶かして約20%濃度にしたPMSSを基板118側に
スピン塗布して厚さ約1μmの接着膜12aを形成し、
その]−にチップ20を圧着し基板lj側よりランプま
たばレーザ光で400〜500°Cに加熱する。PMS
Sは−l−t7g融した後硬化してチップ20を固定ず
ろ。加熱硬化したI) M S Sは、再加熱により溶
融することがない。
PMSS is used to bond the chip 20. Immediately, PMSS dissolved in a solvent to a concentration of about 20% is spin-coated on the substrate 118 side to form an adhesive film 12a with a thickness of about 1 μm,
The chip 20 is pressure-bonded to the substrate lj side and heated to 400 to 500° C. using a lamp or laser beam. PMS
S is -l-t7g melted and then hardened to fix the chip 20. Heat-cured I) MSS does not melt when reheated.

チップ20相互の間隙は、第一の実施例の場合と同様に
出来るだけ狭くするのが望ましい。
It is desirable that the gap between the chips 20 be as narrow as possible, as in the case of the first embodiment.

次いで〔図(d+参照〕、溶媒に溶かして約30%濃度
にしたPMS Sを用い、第一の実施例の場合と同様に
して、チップ20相む゛および枠15との間隙を埋める
と共にチップ20および枠15のヒ面を覆った後、約1
50℃の加熱により溶媒を苺発させ更に約450℃の加
熱によりPMSSを硬化させて、表面が平坦な絶縁物j
−12を形成する。
Next, using PMS S dissolved in a solvent to a concentration of about 30%, as in the case of the first embodiment, the gap between the chip 20 and the frame 15 was filled, and the chip was removed. 20 and the A side of frame 15, about 1
The solvent is released by heating to 50°C, and the PMSS is cured by heating to approximately 450°C, resulting in an insulator with a flat surface.
-12 is formed.

この際PMSSに体積減少を伴うので、この[程は表面
が甲illになるまで繰り返し行う。初期の工程におい
て埋める間隙の大きい部分のP M S Sにクラック
が発生−4゛る場合があるが、そのクラックはその後に
繰り返されるL稈で埋められので支障ない。
At this time, since the PMSS is accompanied by a volume reduction, this step is repeated until the surface becomes thick. In the initial process, cracks may occur in the PMSS in the large gap to be filled, but this does not pose a problem because the cracks are filled with the L culm that is repeated later.

次いでc図te+参照〕、第一の実施例の場合と同様に
して、絶縁物層12−Hに接続用パッド13と配線14
とを形成する。但しコンタクト窓25の開孔には、酸素
プラズマによるりアクティブイオンエツチング(RI 
B)を用いそのマスクの材料にはAIを用いるのが望ま
しい。
Then, in the same manner as in the first embodiment, connection pads 13 and wiring 14 are formed on the insulating layer 12-H (see Fig. te+).
to form. However, the opening of the contact window 25 is formed by active ion etching (RI) using oxygen plasma.
It is preferable to use B) and use AI as the mask material.

次いで〔図ifl参照〕、パソシヘーション(図示省略
)を施した後、基板11aを補強板16がら分離し、更
に枠15の外周部をレーザ光により切断して基板11を
形成し、所望のBICを完成する。
[See Figure ifl] After performing passivation (not shown), the board 11a is separated from the reinforcing plate 16, and the outer periphery of the frame 15 is cut with a laser beam to form the board 11, and a desired BIC is formed. Complete.

ト述した二つの実施例は、何れもチップ2oに良品のみ
を使用し■っ全工程を通して不安定な技術が用いられな
いため、製造歩留りの確保が極めて容易である。
In both of the above-mentioned embodiments, only non-defective chips are used for the chip 2o, and unstable techniques are not used throughout the entire process, so it is extremely easy to ensure a manufacturing yield.

なおチップ20の接着については、2+1@の方法を述
べたが、上記実施例の組み合わせに限定されず何れの方
法をも任意に選択することが出来る。
Regarding the bonding of the chip 20, although the 2+1@ method has been described, the method is not limited to the combinations of the above embodiments, and any method can be arbitrarily selected.

絶縁物層12の材料(ポリイミドおよびPMSS)につ
いても同様である。
The same applies to the material of the insulating layer 12 (polyimide and PMSS).

また第二の実施例で述べた補強板16は、BIC完成に
至るまでの間に基板11が破損するのを防1卜するため
のものであり、その使用は必要に応じて行えば良い。
Further, the reinforcing plate 16 described in the second embodiment is for preventing the board 11 from being damaged until the BIC is completed, and may be used as necessary.

〔発明の効果〕〔Effect of the invention〕

以ヒ説明したように本発明の構成によれば、集積規模を
拡大し高速性を実現するICを、製造歩留り良く提供さ
せる効果がある。
As explained below, the configuration of the present invention has the effect of providing an IC that can increase the scale of integration and achieve high speed with a high manufacturing yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明rc第一の実施例の模式平面図ta+と
模式側断面図(bl、 第2図は本発明IC第二の実施例の模式平面図+a)と
模式側11i而図(b)、 第3図は実施例に組み込まれるデツプを説明する部分側
111而図、 第4図は本発明IC実施例に対するバ、ケージ例を示ず
模式側断面図、 第5図は本発明製造方法第一の実施例の工稈順側■面図
fat〜(cl、 第6図は本発明製造方法第二の実施例の丁程順側断面図
ta+〜ffl、 第7図はICボートを説明する平面図、第8図はウェー
ハスケール10を説明する平面図、 である。 図において、 ]は実装用基板、    2は従来のIc。 3はウェーハ、     4は回路ユニット、11は本
発明I Cの基板、llaは11切取り用基板、12は
絶縁物層、    12aは接着膜、】3は接続用バッ
ト、  14は配線、15は枠、        16
は補強板、+711−接着剤、     20は半導体
チップ、21は20の半導体草様、 22は回路素子、
23は20の配線、     24は絶縁層、25はコ
ンタクト窓、  26は中継用バノl”、27ば測定用
バソ]゛、  31は放熱フィン、32は出力ピン、 
    33は接続用バット、34はパッケージ側壁、
 35はワイヤ、36は蓋、 である。
FIG. 1 is a schematic plan view ta+ and a schematic side cross-sectional view (BL) of the first embodiment of the RC according to the present invention, FIG. b), Fig. 3 is a partial side view illustrating the depth incorporated in the embodiment, Fig. 4 is a schematic side sectional view of the IC embodiment of the present invention without showing an example of a cage, and Fig. 5 is a schematic side sectional view of the IC embodiment of the present invention. The culm forward side cross-sectional view of the first embodiment of the manufacturing method is fat~(cl, Figure 6 is the forward side cross-sectional view ta+~ffl of the second embodiment of the manufacturing method of the present invention, and Figure 7 is an illustration of an IC boat. FIG. 8 is a plan view illustrating the wafer scale 10. In the figure, ] is a mounting board, 2 is a conventional IC, 3 is a wafer, 4 is a circuit unit, and 11 is an IC of the present invention. 11 is the substrate for cutting, 12 is the insulating layer, 12a is the adhesive film, ]3 is the connection bat, 14 is the wiring, 15 is the frame, 16
is a reinforcing plate, +711-adhesive, 20 is a semiconductor chip, 21 is the semiconductor grass of 20, 22 is a circuit element,
23 is the wiring of 20, 24 is an insulating layer, 25 is a contact window, 26 is a relay vane, 27 is a measurement bath], 31 is a radiation fin, 32 is an output pin,
33 is a connection bat, 34 is a package side wall,
35 is a wire, and 36 is a lid.

Claims (1)

【特許請求の範囲】 1)回路の形成された複数の半導体チップと該チップ相
互の間隙を埋め且つ該チップを覆う絶縁物層とを基板上
に有し、該チップ相互間を接続する配線が該絶縁物層上
に設けられてなることを特徴とする半導体集積回路。 2)回路の形成された複数の半導体チップを基板上に配
列接着する工程と、流動性を有する絶縁性樹脂を用いて
上記接着されたチップ相互の間隙を埋めると共に該チッ
プを覆った後該樹脂を固化して表面が平坦な絶縁物層を
形成する工程と、しかる後該チップ相互間を接続する配
線を該絶縁物層上に形成する工程とを含むことを特徴と
する半導体集積回路の製造方法。
[Claims] 1) A substrate having a plurality of semiconductor chips on which circuits are formed and an insulating layer that fills gaps between the chips and covers the chips, and has wiring connecting the chips. A semiconductor integrated circuit characterized by being provided on the insulating layer. 2) A process of arranging and bonding a plurality of semiconductor chips with circuits formed thereon on a substrate, filling the gaps between the bonded chips using a fluid insulating resin, and covering the chips with the resin. manufacturing a semiconductor integrated circuit, comprising the steps of solidifying to form an insulating layer with a flat surface, and then forming wiring connecting the chips on the insulating layer. Method.
JP61115354A 1986-05-19 1986-05-19 Semiconductor integrated circuit and manufacture thereof Pending JPS62269350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61115354A JPS62269350A (en) 1986-05-19 1986-05-19 Semiconductor integrated circuit and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61115354A JPS62269350A (en) 1986-05-19 1986-05-19 Semiconductor integrated circuit and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS62269350A true JPS62269350A (en) 1987-11-21

Family

ID=14660449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61115354A Pending JPS62269350A (en) 1986-05-19 1986-05-19 Semiconductor integrated circuit and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS62269350A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6472745B1 (en) 1999-01-18 2002-10-29 Shinko Electric Industries Co., Ltd. Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6472745B1 (en) 1999-01-18 2002-10-29 Shinko Electric Industries Co., Ltd. Semiconductor device

Similar Documents

Publication Publication Date Title
US7550833B2 (en) Semiconductor device having a second semiconductor construction mounted on a first semiconductor construction and a manufacturing method thereof
US6603191B2 (en) Semiconductor device and method of manufacturing the same
TWI276215B (en) Semiconductor device having adhesion increasing film and method of fabricating the same
US9012269B2 (en) Reducing warpage for fan-out wafer level packaging
JP2792532B2 (en) Semiconductor device manufacturing method and semiconductor wafer
US6479900B1 (en) Semiconductor device and method of manufacturing the same
JPH0897217A (en) Semiconductor device and its manufacture
US10734328B2 (en) Semiconductor package and manufacturing method thereof
JPS6281745A (en) Lsi semiconductor device in wafer scale and manufacture thereof
JP2001320013A (en) Semiconductor device and its manufacturing method
JP2001068495A (en) Semiconductor device and manufacture thereof
KR20010043672A (en) Semiconductor device, method of manufacture thereof, circuit board, and electronic device
US11842902B2 (en) Semiconductor package with alignment mark and manufacturing method thereof
JP3439144B2 (en) Semiconductor device and manufacturing method thereof
JP2001144213A (en) Method for manufacturing semiconductor device and semiconductor device
US8030138B1 (en) Methods and systems of packaging integrated circuits
CN113594051B (en) Semiconductor packaging method
JPH053183A (en) Semiconductor device and manufacture thereof
US5102831A (en) Method of manufacturing multi-chip package
JPH11135675A (en) Semiconductor device and manufacture thereof
US6734554B2 (en) Semiconductor wafer with bumps of uniform height
JPS62269350A (en) Semiconductor integrated circuit and manufacture thereof
JP2001168126A (en) Semiconductor device and method of fabrication
JPH11214448A (en) Semiconductor device and method for manufacturing semiconductor device
JP3173488B2 (en) Semiconductor integrated circuit device and method of manufacturing the same