JPS62268959A - Heat pump hot-water supply machine - Google Patents

Heat pump hot-water supply machine

Info

Publication number
JPS62268959A
JPS62268959A JP11179986A JP11179986A JPS62268959A JP S62268959 A JPS62268959 A JP S62268959A JP 11179986 A JP11179986 A JP 11179986A JP 11179986 A JP11179986 A JP 11179986A JP S62268959 A JPS62268959 A JP S62268959A
Authority
JP
Japan
Prior art keywords
refrigerant
hot water
temperature
compressor
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11179986A
Other languages
Japanese (ja)
Inventor
和夫 森
正樹 高松
持原 浩行
健 金井
茂木 聖行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP11179986A priority Critical patent/JPS62268959A/en
Publication of JPS62268959A publication Critical patent/JPS62268959A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Landscapes

  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はヒートポンプ給湯機、詳しくは冷凍サイクルを
利用したヒートポンプ式給湯機に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a heat pump water heater, and more particularly to a heat pump water heater using a refrigeration cycle.

(−)従来の技術および問題点 従来、高温水を得るヒートポンプ給湯機として特公昭5
8−48824号公報に開示されているものが知られて
いる。このものでは2台の圧縮機が直列に接続されてい
るので高段側の圧a機の吐出冷媒温度が上が9過ぎて冷
媒や冷媒に含まれるオイルの劣化な招くことがあった。
(-) Conventional technology and problems Traditionally, heat pump water heaters for obtaining high-temperature water were
The one disclosed in Japanese Patent No. 8-48824 is known. In this system, two compressors are connected in series, so the temperature of the refrigerant discharged from the high-pressure A-compressor rises above 9°C, which can lead to deterioration of the refrigerant and the oil contained in the refrigerant.

また、負荷側の湯温やljl′la冷媒温度と無関係に
二段圧縮運転が行なわれているため、負荷側の湯温や凝
縮冷媒温度が抵いときは能力が十分に発揮されない欠点
があった。
In addition, because two-stage compression operation is performed regardless of the load-side hot water temperature or ljl'la refrigerant temperature, there is a drawback that the capacity is not fully demonstrated when the load-side hot water temperature or condensed refrigerant temperature is low. Ta.

(ハ)問題点を解決するための手段 本発明は上述した事実に鑑みてなされたものであり、吐
出冷媒温度の上昇を抑制しつつ高温水が得られるように
するとともに、十分な能力が得られ且つ効率の良い給湯
運転が行なえるようにすることを目的とし、その目的を
達成するために本発明によるヒートポンプ給湯機は、圧
@機2台を用い、湯温か比較的低い段階、例えば50℃
までi−1並列で2台運転することとして、第1圧縮機
と第2圧縮機の並列回路、給湯用熱交換器、第1減圧装
置、気液分離器、第2減圧装置、室外側熱交換器および
上記両圧縮機の並列回路の順に冷媒を流す単段圧縮冷凍
サイクル運転ができるように、また湯温か比較的高い段
階、例えば50 ’Cを越えて85℃程度までは二段圧
8運転することとして、第1圧縮機、気液分離器、第2
減圧装置、室外惧り熱交換器および第1圧縮磯の順に冷
媒を流すとともに、第2圧a機、給湯用熱交換器、第1
減圧装置、気液分離器および第2圧縮機の順に冷媒を流
す二段圧縮冷凍サイクル運転ができるように、負荷筒[
の湯温または凝縮冷媒温度が低いとき単段圧縮冷凍サイ
クルに切換え、負荷側の湯温または凝縮冷媒温度が高い
とき二段圧縮冷1iサイクルに切換えろようにしたもの
である。
(c) Means for Solving the Problems The present invention has been made in view of the above-mentioned facts, and it is possible to obtain high-temperature water while suppressing the rise in discharge refrigerant temperature, and to obtain sufficient capacity. The purpose of the heat pump water heater according to the present invention is to enable hot water supply operation to be carried out efficiently and efficiently, and to achieve this purpose, the heat pump water heater according to the present invention uses two pressure machines and adjusts the hot water temperature to a relatively low stage, e.g. ℃
Up to i-1, two units are operated in parallel, including a parallel circuit of the first compressor and second compressor, a heat exchanger for hot water supply, a first pressure reducing device, a gas-liquid separator, a second pressure reducing device, and an outdoor heat source. In order to enable single-stage compression refrigeration cycle operation in which the refrigerant flows through the exchanger and the parallel circuit of both compressors, the two-stage pressure 8 is used when the hot water temperature is relatively high, for example, from over 50'C to about 85°C. The operations include a first compressor, a gas-liquid separator, and a second compressor.
The refrigerant is passed through the pressure reducing device, the outdoor heat exchanger, and the first compression tank in this order, and the second pressure A machine, the hot water supply heat exchanger, and the first
The load cylinder [
When the hot water temperature or condensed refrigerant temperature on the load side is low, the cycle is switched to a single-stage compression refrigeration cycle, and when the load-side hot water temperature or condensed refrigerant temperature is high, the cycle is switched to a two-stage compression refrigeration cycle.

(ニ)実施例 以下本発明によるヒートポンプ給湯機の実施例について
図面を参照して説明する。
(D) Examples Examples of the heat pump water heater according to the present invention will be described below with reference to the drawings.

第1図は、給湯モードで、貯湯タンク5内の水温が比較
的低い場合の単段圧縮冷凍サイクルの冷媒の流れを示す
。第1圧縮機1および第2圧@機2の高温・高圧の冷媒
は三方弁7、四方弁9を経て貯湯タンク5内の給湯用熱
交換器11で凝縮し、貯湯タンク5内の湯を昇温する。
FIG. 1 shows the flow of refrigerant in the single-stage compression refrigeration cycle when the water temperature in the hot water storage tank 5 is relatively low in the hot water supply mode. The high-temperature, high-pressure refrigerant in the first compressor 1 and the second pressure unit 2 passes through the three-way valve 7 and the four-way valve 9, and is condensed in the hot water supply heat exchanger 11 in the hot water storage tank 5. Increase temperature.

給湯用熱交換器11を出た液冷媒は四方弁10、四方弁
9、室外側1交換器乙のバイパス用電磁弁14、第1減
圧装置即ち膨張弁16、気液分離器6、第2減圧装置即
ちW張弁12を経て室外側1熱交換器4で蒸発し、第1
および第2圧縮機1,2に戻る。
The liquid refrigerant that has exited the hot water supply heat exchanger 11 is transferred to a four-way valve 10, a four-way valve 9, a bypass solenoid valve 14 for the outdoor side 1 exchanger B, a first pressure reducing device, that is, an expansion valve 16, a gas-liquid separator 6, and a second It passes through the pressure reducing device, that is, the W tension valve 12, and is evaporated in the outdoor side 1 heat exchanger 4.
and returns to the second compressors 1 and 2.

第2図は、給湯モードで、貯湯タンク5内の水温が比較
的高い場合の二段圧縮冷凍サイクルの冷媒の流れを示す
。第1圧縮機1は低段側、第2圧縮磯2は高段側である
。冷媒の流れは大きく分けて低段側サイクルと高段側サ
イクルに区別される。
FIG. 2 shows the flow of refrigerant in the two-stage compression refrigeration cycle when the water temperature in the hot water storage tank 5 is relatively high in the hot water supply mode. The first compressor 1 is on the low stage side, and the second compressor 2 is on the high stage side. The flow of refrigerant is roughly divided into a low-stage cycle and a high-stage cycle.

まず低段側サイクルを説明する。第1圧縮栽1の吐出冷
媒ガスは三方弁7を経て気液分離器6内に入り、高段側
サイクルから気液分離器6内に入る液冷媒の蒸発潜熱に
よV凝縮液化する。凝縮液化した冷媒は第2減圧装置即
ち膨張弁12を姪て室外側熱交換器4で蒸発し、四方弁
10を経て第1圧縮機1に戻る。
First, the low stage cycle will be explained. The refrigerant gas discharged from the first compression plant 1 enters the gas-liquid separator 6 through the three-way valve 7, and is condensed and liquefied by the latent heat of evaporation of the liquid refrigerant entering the gas-liquid separator 6 from the higher stage cycle. The condensed and liquefied refrigerant passes through the second pressure reducing device, that is, the expansion valve 12, is evaporated in the outdoor heat exchanger 4, and returns to the first compressor 1 through the four-way valve 10.

次に高段側サイクルを説明する。第2圧縮機2の吐出冷
媒ガスは四方弁9を経て貯湯夕/り5内の給湯用熱交換
器11で凝縮し、貯湯夕/り5内の湯を昇はする。給湯
用熱交換器11を出た液冷媒は四方弁10.9、室内側
j熱交換器6のバイパス用電磁弁14、第1減圧装置即
ち膨張弁16を経て気液分離器6に入る。気液分離器6
内に入った液冷媒は低段側サイクルから気液分離器6内
に入った高温ガスにて蒸発する。気液分離器6内で分離
されたガスは第2圧縮礪2に戻る。
Next, the high stage side cycle will be explained. The refrigerant gas discharged from the second compressor 2 passes through the four-way valve 9 and is condensed in the hot water supply heat exchanger 11 in the hot water tank 5, causing the hot water in the hot water tank 5 to rise. The liquid refrigerant leaving the hot water supply heat exchanger 11 enters the gas-liquid separator 6 through the four-way valve 10.9, the bypass solenoid valve 14 of the indoor J heat exchanger 6, and the first pressure reducing device, that is, the expansion valve 16. Gas-liquid separator 6
The liquid refrigerant that has entered the chamber is evaporated by high-temperature gas that has entered the gas-liquid separator 6 from the lower stage cycle. The gas separated in the gas-liquid separator 6 returns to the second compression tank 2.

第1図および第2因に示されたヒートポンプ給湯機は給
湯モードの他冷房+給湯又は暖房モードにも適用できろ
The heat pump water heater shown in FIG. 1 and the second factor can be applied not only to the hot water supply mode but also to the cooling + hot water supply or heating mode.

第6図は、冷房あるいは冷房士給湯の場合の冷凍サイク
ルの冷媒の流れを示す。第1圧縮!1および第2圧縮機
2の高温・高圧ガス冷媒は三方切換弁7、四方弁9を経
て貯湯タンク5内に設げられた給湯用熱交換器11に行
き、貯湯タンク5内の湯温が低い場合には、ここで冷媒
は凝縮して加温する。給湯用熱交換器11を出た末凝稲
の冷媒は室外側熱交換器4で凝縮する。室外側熱交換器
4を出た冷媒は第2減圧装置即ち膨張弁12を経て気液
分離器6に入る。気液分離器6を出た液冷媒は第1減圧
装置即ち膨張弁16を経て室内側熱交換器6で蒸発して
室内を冷房し、第1および第2圧縮機に戻る。この場合
WJ1圧縮機1、第2圧縮機2は冷房負荷に応じてそれ
ぞれ1台あるいは2台の運転を行なうことができる。
FIG. 6 shows the flow of refrigerant in the refrigeration cycle in the case of air conditioning or cooler hot water supply. First compression! The high-temperature, high-pressure gas refrigerant of the first and second compressors 2 passes through the three-way switching valve 7 and the four-way valve 9 to the hot water supply heat exchanger 11 installed in the hot water storage tank 5, and the temperature of the hot water in the hot water storage tank 5 increases. If it is low, the refrigerant now condenses and warms up. The refrigerant in the condensed rice that has exited the hot water supply heat exchanger 11 is condensed in the outdoor heat exchanger 4. The refrigerant exiting the outdoor heat exchanger 4 passes through the second pressure reducing device, ie, the expansion valve 12, and enters the gas-liquid separator 6. The liquid refrigerant that has exited the gas-liquid separator 6 passes through the first pressure reducing device, that is, the expansion valve 16, evaporates in the indoor heat exchanger 6, cools the room, and returns to the first and second compressors. In this case, one or two of the WJ1 compressor 1 and the second compressor 2 can be operated depending on the cooling load.

第4図は、暖房の場合の冷凍サイクルの冷媒の流れを示
す。第1王権機1および第2圧縮機2の高温高圧の冷媒
は三方弁7、四方弁9を経て室内側熱交換器6で凝縮し
て室内を暖房する。室内側熱交換器6で凝縮した液冷媒
は膨張弁16、気液分離器6、第2減圧装置即ち膨張弁
12を経て室外側熱交換器4で蒸発し、圧縮機に戻る。
FIG. 4 shows the flow of refrigerant in the refrigeration cycle for heating. The high-temperature, high-pressure refrigerant in the first kingship machine 1 and the second compressor 2 passes through the three-way valve 7 and the four-way valve 9, and is condensed in the indoor heat exchanger 6 to heat the room. The liquid refrigerant condensed in the indoor heat exchanger 6 passes through the expansion valve 16, the gas-liquid separator 6, the second pressure reducing device, or expansion valve 12, evaporates in the outdoor heat exchanger 4, and returns to the compressor.

次に第2図に示したような二段圧縮冷凍サイクル運転の
特性について述べる。
Next, the characteristics of the two-stage compression refrigeration cycle operation as shown in FIG. 2 will be described.

第5図および第6図は、フロン12を用いた二段圧縮二
段膨張方式における中間温度の変化に対する能力・CO
P・吐出量比を算出した一例のグラフであって、中間温
度は気液分離器の冷媒の飽和温度であり、第5図は凝縮
温度が46℃と比較的低い場合、第6図は凝縮温度が9
0℃と比較的高い場合の例である。図示の能力比とは圧
縮機を2台並列で単段圧縮したときの凝縮(又は蒸発)
能力に対する二段圧縮したときの能力をいう。
Figures 5 and 6 show the ability and CO for changes in intermediate temperature in the two-stage compression and two-stage expansion method using Freon 12.
These graphs are an example of calculating the P/discharge ratio, where the intermediate temperature is the saturation temperature of the refrigerant in the gas-liquid separator, Figure 5 shows the condensation temperature when it is relatively low at 46°C, and Figure 6 shows the condensation temperature. temperature is 9
This is an example of a relatively high temperature of 0°C. The capacity ratio shown is the condensation (or evaporation) when two compressors are connected in parallel and single-stage compression is performed.
It refers to the capacity when two-stage compression is applied to the capacity.

まず#縮冷媒@度(又は湯温)が低いときに二段圧縮を
行なう場合は、第5図に示されるように、cop (冷
凍サイクルの成績係数)が多少上がる( max 1.
1 )ものの、能力比は合計吐出量比よりも低くなり、
二段圧縮の長所が生かされていない。
First, when two-stage compression is performed when the condensed refrigerant @ degree (or hot water temperature) is low, the cop (coefficient of performance of the refrigeration cycle) increases somewhat (max. 1.
1) However, the capacity ratio is lower than the total discharge ratio,
The advantages of two-stage compression are not being utilized.

これに対して凝縮冷媒温度(又は湯温)が高いときに二
段圧縮を行なう場合は、第6図に示されるように、成績
係数COPが高く、能力比も合計吐出量比を上回り、二
段圧縮の長所が生かされる。
On the other hand, when two-stage compression is performed when the condensed refrigerant temperature (or hot water temperature) is high, the coefficient of performance COP is high and the capacity ratio exceeds the total discharge ratio, as shown in Figure 6. The advantages of stage compression are utilized.

また圧縮機を直列に接続する場合、第6図に破線で示す
ように吐出冷媒温iが高くなるが、本発明による二段圧
縮では吐出冷媒温度も低く抑えられる。そして第6図か
ら明らかなように合計吐出量比が1.5〜1.7、即ち
2台の圧縮機の容量比が1 : 0.5〜0.7で成績
係数COPが最高値を示すが、実用的には2台の圧縮機
の容量比が1 : 0.3〜0.9であれば充分に二段
圧縮の特長を生かすことができる。
Furthermore, when compressors are connected in series, the discharge refrigerant temperature i increases as shown by the broken line in FIG. 6, but in the two-stage compression according to the present invention, the discharge refrigerant temperature can also be kept low. As is clear from Fig. 6, the coefficient of performance COP shows the highest value when the total discharge ratio is 1.5 to 1.7, that is, the capacity ratio of the two compressors is 1:0.5 to 0.7. However, in practice, if the capacity ratio of the two compressors is 1:0.3 to 0.9, the advantages of two-stage compression can be fully utilized.

(ホ)発明の効果 本発明によるヒートポンプ給湯機は、上述のように構成
されているので、凝縮冷媒温度が高いときに二段圧縮を
行なう場合COPが高く能力−比も合計吐出量比を上回
り二段圧縮の長所が生かされ、吐出冷媒温度の上昇を抑
制しつつ高温水ケ得ることができる。
(e) Effects of the invention Since the heat pump water heater according to the invention is configured as described above, when performing two-stage compression when the condensed refrigerant temperature is high, the COP is high and the capacity-ratio exceeds the total discharge ratio. By taking advantage of the advantages of two-stage compression, high-temperature water can be obtained while suppressing a rise in discharged refrigerant temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は本発明によるヒートポンプ給湯機の実
施例の運転のモード毎の回路の構成を示す説明図でろり
工、 第1図はタンク内の水温が低い場合の給湯モードにおけ
るもの、 第2図はタンク内の水温が高い場合の給湯モードにおけ
るもの、 第6図は冷房+給湯モードにシげるもの、第4図は暖房
モードにおけるものを示し、第5図および第6因はフロ
ン12を用いた二股圧縮二段膨張方式における中間温度
の変化に対する能力・COP・吐出量比のグラフであっ
て、第5図は暖房、給湯(46°)モードにおけるもの
、第6図は給湯(90°)モードにおけるものを示す。 1 ・・・ 第1圧縮機(二段時低段側)2 ・・・ 
第2圧縮機(二段時高段額)6 ・・・ 室内側熱交F
!8器 4 ・・・ 室外側熱交換器 5 ・・・ 貯湯タンク 6 ・・・ 気液分離器 7.8  ・・・ 三方弁 9.10 ・・・ 四方弁 11 ・・・ 給湯用熱交換器 12 ・・・ 第2減圧装置&taち膨張弁16 ・・
・ 第1減圧装置即ち膨張弁14 ・・・ バイパス用
電磁弁 第1図 第2図 第3図 第4図 第5図 第6図 〒間S/l(a
Figures 1 to 4 are explanatory diagrams showing the circuit configuration for each mode of operation of an embodiment of the heat pump water heater according to the present invention. Figure 1 shows the hot water supply mode when the water temperature in the tank is low. , Figure 2 shows the hot water supply mode when the water temperature in the tank is high, Figure 6 shows the cooling + hot water supply mode, Figure 4 shows the heating mode, and Figures 5 and 6 show the hot water supply mode. Figure 5 is a graph of capacity, COP, and discharge rate ratio with respect to changes in intermediate temperature in a two-pronged compression two-stage expansion method using Freon 12, and Figure 5 is for heating and hot water supply (46°) modes, and Figure 6 is for Shown is hot water supply (90°) mode. 1... 1st compressor (low stage side at 2nd stage) 2...
2nd compressor (high stage at 2nd stage) 6...Indoor heat exchanger F
! 8 units 4 ... Outdoor heat exchanger 5 ... Hot water storage tank 6 ... Gas-liquid separator 7.8 ... Three-way valve 9.10 ... Four-way valve 11 ... Heat exchanger for hot water supply 12... Second pressure reducing device & tachi expansion valve 16...
- The first pressure reducing device, that is, the expansion valve 14 ... Solenoid valve for bypass Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6

Claims (1)

【特許請求の範囲】[Claims] 第1圧縮機と第2圧縮機の並列回路、給湯用熱交換器、
第1減圧装置、気液分離器、第2減圧装置、室外側熱交
換器および上記両圧縮機の並列回路の順に冷媒を流す単
段圧縮冷凍サイクルと、第1圧縮機、気液分離器、第2
減圧装置、室外側熱交換器および第1圧縮機の順に冷媒
を流すとともに、第2圧縮機、給湯用熱交換器、第1減
圧装置、気液分離器および第2圧縮機の順に冷媒を流す
二段圧縮冷凍サイクルとを切換自在に備え、負荷側の湯
温または凝縮冷媒温度が低いとき単段圧縮冷凍サイクル
に切換え、負荷側の湯温または凝縮冷媒温度が高いとき
二段圧縮冷凍サイクルに切換えることを特徴としたヒー
トポンプ給湯機。
A parallel circuit of the first compressor and the second compressor, a heat exchanger for hot water supply,
a single-stage compression refrigeration cycle in which a refrigerant is passed through a first pressure reduction device, a gas-liquid separator, a second pressure reduction device, an outdoor heat exchanger, and a parallel circuit of both compressors; a first compressor; a gas-liquid separator; Second
The refrigerant is passed in the order of the pressure reduction device, the outdoor heat exchanger, and the first compressor, and the refrigerant is made to flow in the order of the second compressor, the hot water supply heat exchanger, the first pressure reduction device, the gas-liquid separator, and the second compressor. Equipped with a two-stage compression refrigeration cycle that can be switched freely, switching to the single-stage compression refrigeration cycle when the load-side water temperature or condensed refrigerant temperature is low, and switching to the two-stage compression refrigeration cycle when the load-side water temperature or condensed refrigerant temperature is high. A heat pump water heater that features switching.
JP11179986A 1986-05-17 1986-05-17 Heat pump hot-water supply machine Pending JPS62268959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11179986A JPS62268959A (en) 1986-05-17 1986-05-17 Heat pump hot-water supply machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11179986A JPS62268959A (en) 1986-05-17 1986-05-17 Heat pump hot-water supply machine

Publications (1)

Publication Number Publication Date
JPS62268959A true JPS62268959A (en) 1987-11-21

Family

ID=14570446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11179986A Pending JPS62268959A (en) 1986-05-17 1986-05-17 Heat pump hot-water supply machine

Country Status (1)

Country Link
JP (1) JPS62268959A (en)

Similar Documents

Publication Publication Date Title
JP2554208B2 (en) Heat pump water heater
AU2001286333B2 (en) Method and arrangement for defrosting a vapor compression system
JP5121922B2 (en) Air conditioning and hot water supply complex system
JP4321095B2 (en) Refrigeration cycle equipment
JP5084903B2 (en) Air conditioning and hot water supply complex system
US6698234B2 (en) Method for increasing efficiency of a vapor compression system by evaporator heating
US6658888B2 (en) Method for increasing efficiency of a vapor compression system by compressor cooling
AU2001286333A1 (en) Method and arrangement for defrosting a vapor compression system
JP4317793B2 (en) Cooling system
JP6598882B2 (en) Refrigeration cycle equipment
JP2019158308A (en) Refrigeration cycle device
JP4902585B2 (en) Air conditioner
JP4084915B2 (en) Refrigeration system
JP7375167B2 (en) heat pump
JPH04103571U (en) Heat pump water heater
JPH062966A (en) Two-stage compression heat pump system
JP2006003023A (en) Refrigerating unit
JP2004061023A (en) Heat pump device
JP2503660B2 (en) Heat storage type air conditioner
JP2006234321A (en) Outdoor unit and air conditioner
JPS62268959A (en) Heat pump hot-water supply machine
JP2698179B2 (en) Air conditioning
JPH062965A (en) Two-stage compression refrigerating cycle apparatus
JP3084918B2 (en) Heat pump water heater
JPH10141798A (en) Heat pump apparatus