JPS62268821A - Production of carbon fiber - Google Patents

Production of carbon fiber

Info

Publication number
JPS62268821A
JPS62268821A JP11417186A JP11417186A JPS62268821A JP S62268821 A JPS62268821 A JP S62268821A JP 11417186 A JP11417186 A JP 11417186A JP 11417186 A JP11417186 A JP 11417186A JP S62268821 A JPS62268821 A JP S62268821A
Authority
JP
Japan
Prior art keywords
fibers
heat treatment
carbonization
treatment
heating temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11417186A
Other languages
Japanese (ja)
Inventor
Hitoshi Hayashi
仁志 林
Hiroshi Watabe
浩史 渡部
Akira Takemura
武村 亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP11417186A priority Critical patent/JPS62268821A/en
Publication of JPS62268821A publication Critical patent/JPS62268821A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To obtain high-strength and high-modulus carbon fibers useful as fiber-reinforced composite materials, etc., with good productivity, by spinning raw material pitch, infusibilizing the resultant fibers and repeatedly heat-treating the infusibilized fibers plural times while successively increasing the heating temperature in a carbonization step. CONSTITUTION:Pitch raw material is spun and then infusibilized. The resultant infusibilized fibers are then repeatedly subjected to heat treatment in which the fibers are heated and cooled plural times (preferably twice) while successively increasing the heating temperature of each heat treatment in a carbonization step to afford the aimed carbon fibers. The heating temperature in the first heat treatment is preferably 300-600 deg.C and that of the final heat treatment is preferably 900-1,500 deg.C. The cooling temperature is preferably 100 deg.C lower than that in the previous heat-treating temperature. The heat treatment in the carbonization step can be carried out while applying tension to fibers to further improve the strength and elastic modulus.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は繊維強化複合材料等に用いられる炭素繊維、特
にピッチ系炭素繊維の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing carbon fibers, particularly pitch-based carbon fibers, used in fiber-reinforced composite materials and the like.

[従来技術] 炭素繊維は軽量で、耐摩耗性等においてすぐれた特性を
有するところより、炭素繊維と合成樹脂または金属との
複合材料が自動車や航空機等の構造材および機能材とし
て注目されている。
[Prior art] Carbon fiber is lightweight and has excellent properties such as wear resistance, so composite materials of carbon fiber and synthetic resin or metal are attracting attention as structural and functional materials for automobiles, aircraft, etc. .

現在、炭素繊維としてポリアクリロニトリル(PAN)
を原料とするPAN系のものが主流で、引張強W 20
0 Kg / u”以上、弾性率20t/mm”以上の
炭素繊維が得られている。しかしながらPAN系炭素炭
素繊維料で必るPANが高価であるために、価格的に大
幅に下げることは困難な実情にある。
Currently, polyacrylonitrile (PAN) is used as carbon fiber.
The mainstream is PAN-based products made from
Carbon fibers with an elasticity of 0 Kg/u" or more and an elastic modulus of 20 t/mm" or more have been obtained. However, since PAN, which is necessary for PAN-based carbon fiber materials, is expensive, it is difficult to significantly reduce the price.

これに対し、石炭おるいは石油ピッチを原料とするピッ
チ系炭素繊維は原料が安価でおる点て有利である。しか
しながら一般に市販されている繊維は引張強度60〜8
0Kff/mm” 、弾性率2〜3↑/ mm”程度の
もので、その性能の向上が望まれている。
On the other hand, pitch-based carbon fibers made from coal or petroleum pitch are advantageous in that the raw materials are inexpensive. However, commercially available fibers have a tensile strength of 60 to 8.
0 Kff/mm" and an elastic modulus of about 2 to 3↑/mm", and it is desired to improve its performance.

ピッチ系炭素繊維について、高強度品を得るために種々
の試みがなされている。例えば特定の縮合多環芳香族に
熱処理等を施してピッチ原料とする方法(特公昭49−
8634号)、ピッチ原料をルイス酸で処理して改質す
る方法(特公昭53−7533号)、ピッチ原料を溶剤
抽出して改質する方法(特開昭55−130809号)
、ピッチ原料に水素添加して改質する方法(特開昭58
−113289号)等が提案されている。しかしながら
これ等の方法によってもPAN系炭素炭素繊維い特性を
もつ炭素繊維を工業ベースで得ることができないのが実
情である。
Regarding pitch-based carbon fibers, various attempts have been made to obtain high-strength products. For example, a method of subjecting specific condensed polycyclic aromatics to heat treatment etc. to use them as pitch raw materials (Japanese Patent Publication No. 49-
8634), a method for modifying pitch raw materials by treating them with a Lewis acid (Japanese Patent Publication No. 7533-1983), a method for modifying pitch raw materials by extracting them with a solvent (Japanese Patent Publication No. 130809-1987)
, a method of modifying pitch raw materials by hydrogenating them (Japanese Unexamined Patent Publication No. 1983)
-113289) etc. have been proposed. However, the reality is that even with these methods, it is not possible to obtain carbon fibers with characteristics similar to those of PAN-based carbon fibers on an industrial basis.

[本発明が解決しようとする問題点] 本発明は上記の実情に鑑みてなされたもので、ピッチ系
炭素繊維の引張強度、弾性率を向上させること、そして
高強度、高弾性率のピッチ系炭素繊維を生産性良好に製
造する方法を提供し、もって従来の問題点を解決するこ
とを目的とするものである。
[Problems to be Solved by the Present Invention] The present invention was made in view of the above-mentioned circumstances, and aims to improve the tensile strength and elastic modulus of pitch-based carbon fibers, and to improve the pitch-based carbon fibers with high strength and high elastic modulus. The purpose of this invention is to provide a method for producing carbon fibers with good productivity, thereby solving the problems of the conventional methods.

[問題点を解決するための手段] ピッチ系炭素繊維の製造は一般に、ピッチ原料を窒素雰
囲気中で350℃〜450″C1数時間〜数10時間加
熱処理する原料調整工程、調整された原料を紡糸し、こ
れを巻取る紡糸工程、得られた原繊維を空気中で250
℃〜350℃に数時間保持して不融化する不融化工程、
不融化された繊維を不活性ガス中で900 ℃〜150
0℃、数10分〜数時間熱処理しt炭素化する炭素化工
程により製造される。また、炭素化工程の後、必要によ
り更に黒鉛化処理がなされる。
[Means for Solving the Problems] The production of pitch-based carbon fibers generally involves a raw material conditioning process in which pitch raw materials are heat-treated at 350°C to 450″C1 for several hours to several tens of hours in a nitrogen atmosphere, and the adjusted raw materials are heated to several tens of hours. The spinning process involves spinning and winding the resulting fibers in the air for 250 min.
An infusibility step of holding at a temperature of ℃ to 350 ℃ for several hours to make it infusible;
The infusible fibers are heated at 900°C to 150°C in an inert gas.
It is manufactured by a carbonization process in which carbonization is performed by heat treatment at 0° C. for several tens of minutes to several hours. Further, after the carbonization step, a graphitization treatment is further performed if necessary.

発明者らは種々の実験、研究を重ねた結果、従来のピッ
チ系炭素繊維において高強度品が得られない大きな理由
の一つは、組織中の側鎖やその酸化物等が炭素化処理中
に離脱することによるものであることを見出した。
As a result of various experiments and research, the inventors found that one of the major reasons why high strength products cannot be obtained with conventional pitch-based carbon fibers is that the side chains and their oxides in the structure are removed during the carbonization process. It was found that this was due to withdrawal from the group.

即ち、不融化処理後、繊維を直ちに1000℃程度に加
熱する従来の炭素化処理では、繊維中の側鎖やco、C
O2等が急激に飛び出して繊維に大きな欠陥孔と歪みが
発生し、これ等を残したまま高分子化していき、室温ま
で冷却したときには、孔路および歪みが製品の強度を低
下させるものと認めた。
In other words, in the conventional carbonization treatment in which the fiber is immediately heated to about 1000°C after the infusibility treatment, the side chains, co, and carbon in the fiber are
O2 etc. suddenly fly out, causing large defects and distortions in the fibers, which continue to polymerize with these defects remaining, and when cooled to room temperature, it is recognized that the pores and distortions reduce the strength of the product. Ta.

側鎖の変遷を決定する生成自由エネルギは一般に、側鎖
の環化よりも側鎖の脱離の方が大きい。
The free energy of formation that determines side chain transitions is generally larger for side chain elimination than for side chain cyclization.

然るに従来の炭素化処理で側鎖の脱離が生じるのは、1
000℃付近まで一気に加熱して炭素化を行なうためエ
ネルギが過剰に与えられ、これにより生成自由エネルギ
の順序をとび越えて側鎖が次々と遊離してしまうものと
認めた。
However, in conventional carbonization treatment, the elimination of side chains occurs in 1
It was recognized that excessive energy was given to carry out carbonization by heating to around 000° C. at once, and as a result, side chains were released one after another, exceeding the order of free energy of formation.

本発明は上記の知見に基づいてなされたもので、炭素化
工程において、繊維を加熱、冷却する熱処理を複数回繰
返し行ない、この場合、各熱処理の加熱温度を順次高く
することを特徴とする。熱処理の回数は実用的には2回
で充分である。3回以上に回数を増やすことで得られる
炭素繊維の特性に向上は認められるが効果は顕著でない
。熱処理における加熱温度は、第1回の処理が300℃
〜600℃,fi終の処理が900℃〜1500℃であ
ることが望ましい。冷却温度はそれに先立つ加熱処理の
加熱温度よりも100℃ないしそれ以上低くする。
The present invention has been made based on the above findings, and is characterized in that in the carbonization step, heat treatment of heating and cooling the fibers is repeated multiple times, and in this case, the heating temperature of each heat treatment is increased sequentially. Two heat treatments are practically sufficient. Although it is recognized that the properties of the carbon fiber obtained by increasing the number of times to three or more are improved, the effect is not significant. The heating temperature in the heat treatment was 300°C for the first treatment.
It is desirable that the final treatment is 900°C to 1500°C. The cooling temperature is set to be 100° C. or more lower than the heating temperature of the preceding heat treatment.

本発明では炭素化処理を繊維を緊張させた状態で行なう
ことができる。この場合は、熱処理の回数を多くするに
従って強度の向上がみられるが、実用上は数回程度でお
る。
In the present invention, the carbonization treatment can be performed with the fibers under tension. In this case, the strength is improved as the number of heat treatments increases, but in practice it only takes a few times.

[作用、効果] 、 炭素化工程において、従来のように1000℃程度に一
気に加熱せず、第1回の熱処理を300℃〜600℃程
度とすることにより、繊維の組織における側鎖には環化
反応ないしは架橋反応が優先的に生じ、側鎖の脱離が防
止される。続いて行なう冷却により繊維の分子間相互の
位置ずれて組織に極微小パスが生じる。この状態で次に
高温の炭素化処理を行なうと、側鎖やC01CO2等の
残留揮発分がこのパスを通って従来の炭素化処理におけ
るよりも容易に、即ち軽度の欠陥を残すだけで飛び出し
、また残留歪みも少ない状態で高分子化が進み、高強度
化が達成されるのである。
[Actions and Effects] In the carbonization process, by heating the first heat treatment to about 300°C to 600°C instead of heating to about 1000°C as in the conventional method, the side chains in the fiber structure are free from rings. oxidation reaction or crosslinking reaction occurs preferentially, and elimination of side chains is prevented. Subsequent cooling causes the molecules of the fibers to be misaligned with each other, creating microscopic paths in the tissue. When the next high-temperature carbonization treatment is performed in this state, residual volatile components such as side chains and CO1CO2 pass through this path and fly out more easily than in conventional carbonization treatment, leaving only minor defects. In addition, polymerization progresses with little residual strain, and high strength is achieved.

また本発明では従来法におけるよりも不融化工程で繊維
に取込む酸素量を低減することができる不融化工程にお
ける酸素の取込みは、次いで行なう炭素化工程で繊維の
溶融を防ぐためになされるものである。従って溶融防止
に必要な取込み量が必要である。しかしながら一方にお
いて、酸素原子は次の炭素化工程でCO2等として繊維
外へ脱離するものであるから、その量が少ない程高強度
の炭素繊維が得られる。かかる状況下において、本発明
の炭素化処理では、従来のような一方的昇温によって起
る過度の反応熱による自己融解が緩和されるので、不融
化工程における必要取込み酸素量を少なくすることがで
きる。なお、不融化工程における酸素取込み量の低減は
、処理温度を下げたり処理時間を短くすることにより容
易に行ない得る。
In addition, in the present invention, the amount of oxygen taken into the fibers in the infusibility process can be reduced compared to the conventional method.The incorporation of oxygen in the infusibility process is done to prevent the fibers from melting in the subsequent carbonization process. be. Therefore, a sufficient amount of uptake is required to prevent melting. However, on the other hand, since oxygen atoms are released from the fiber as CO2 etc. in the next carbonization step, the smaller the amount of oxygen atoms, the higher the strength of the carbon fiber can be obtained. Under such circumstances, in the carbonization treatment of the present invention, self-melting due to excessive reaction heat caused by conventional unilateral temperature rise is alleviated, so it is possible to reduce the amount of oxygen required to be taken in in the infusibility step. can. Note that the amount of oxygen taken in in the infusibility step can be easily reduced by lowering the treatment temperature or shortening the treatment time.

更に本発明では繊維を緊張せしめた状態で炭素化処理を
行なうことができる。
Furthermore, in the present invention, the carbonization treatment can be performed while the fibers are under tension.

PAN系炭素炭素繊高強度量が得られる理由の一つは、
原料自体の分子量が数万以上と高分子化しているため紡
糸後の生繊維がある程度の強度を有しており、不融化、
炭素化の工程を緊張下で処理していることが挙げられる
。緊張による延伸作用で構成分子が繊維長ざ方向に配向
し、引張強度、弾性率が向上されるのである。これに対
し、ピッチ系の生繊維では分子量が数百ないし数千と小
さい炭化水素分子であるため極めて脆弱で、延伸するこ
とは不可能であった。
One of the reasons why PAN-based carbon fibers can achieve high strength is
Because the molecular weight of the raw material itself is high, with a molecular weight of tens of thousands or more, the raw fiber after spinning has a certain degree of strength, making it infusible,
One example is that the carbonization process is carried out under stress. The stretching action caused by tension orients the constituent molecules in the longitudinal direction of the fibers, improving tensile strength and elastic modulus. On the other hand, pitch-based raw fibers are extremely fragile and cannot be drawn because they are hydrocarbon molecules with a small molecular weight of several hundred to several thousand.

しかしながら本発明では、炭素化工程の第1回の熱処理
で、ある程度の繊維強度が付与されるので、以後の熱処
理を繊維に緊張を加えて延伸しつつ行なうことができる
。繊維強度の向上は上記熱処理で400℃程度ないしそ
れ以上に加熱することにより現われる。緊張力はその段
階での繊維強度に応じ、繊維が切れない限度で、できる
だけ高緊張力とすることが望ましい。炭素化工程で繊維
に緊張力を加えることにより強度、弾性率ともに更に向
上する。
However, in the present invention, since a certain degree of fiber strength is imparted during the first heat treatment in the carbonization step, the subsequent heat treatment can be performed while applying tension to the fibers and stretching them. The fiber strength is improved by heating the fiber to about 400° C. or higher in the above-mentioned heat treatment. The tension is preferably as high as possible, depending on the fiber strength at that stage, without breaking the fibers. By applying tension to the fibers during the carbonization process, both strength and elastic modulus are further improved.

[実施例1] 石油ピッチを加熱処理して軟化点260℃のピッチ原料
を得た。これを常法により溶融紡糸し、繊維径10μの
原繊維となし、更に空気中で30O′C13時間処理で
酸素取込み量10重量%の不融化を行なった。
[Example 1] Petroleum pitch was heat-treated to obtain a pitch raw material with a softening point of 260°C. This was melt-spun using a conventional method to obtain a fibril having a fiber diameter of 10 μm, and was further treated in air at 30 O'C for 13 hours to make it infusible with an oxygen uptake of 10% by weight.

続いて、この不融化繊維について二段階の炭素化処理を
行なった。前段処理では、複数の試料につき窒素雰囲気
中でそれぞれ300′Cから900°Cまでの範囲で1
00°Cづつ高くした温度で1時間保持後、室温まで冷
却した。そして上記各温度で前段処理した試料につき窒
素雰囲気中で900°Cから1300′Cの範囲で10
0℃づつ高くした温度で1時間保持後、室温まで冷却の
後段処理を行なった。昇降温速度はすべて3°C7m1
n一定とした。そして得られた各炭素繊維の引張強度と
弾性率を測定した。
Subsequently, this infusible fiber was subjected to a two-step carbonization treatment. In the pre-treatment, multiple samples were each treated in a nitrogen atmosphere at temperatures ranging from 300'C to 900°C.
The temperature was increased by 00°C for 1 hour, and then cooled to room temperature. The samples pre-treated at each of the above temperatures were heated for 10 minutes at temperatures ranging from 900°C to 1300'C in a nitrogen atmosphere.
After holding the temperature for 1 hour at a temperature that was increased by 0° C., a subsequent treatment of cooling to room temperature was performed. Temperature increase/decrease rate is all 3°C7m1
n was set constant. The tensile strength and elastic modulus of each carbon fiber obtained were measured.

一方、比較のために、上記と同様にして得た不融化繊維
を従来法により900 ℃〜1300℃の範囲の一段階
の炭素化処理を行ない、上記と同様に引張強度と弾性率
を測定した。
On the other hand, for comparison, the infusible fibers obtained in the same manner as above were subjected to one-step carbonization treatment in the range of 900 °C to 1300 °C by the conventional method, and the tensile strength and elastic modulus were measured in the same manner as above. .

以上の結果を第1図および第2図に示す。なあ、図では
前段処理を300′C1400℃1600℃で行なった
典型例のみを示した。また図においてO1△、X印は本
発明により炭素化処理を二段階に分けて行なった結果で
おり、・印は従来法の結果でおる。
The above results are shown in FIGS. 1 and 2. The figure shows only a typical example in which the pre-treatment was carried out at 300'C, 1400°C and 1600°C. Further, in the figure, O1△ and X marks are the results of the carbonization treatment performed in two stages according to the present invention, and * marks are the results of the conventional method.

図より知られるように本発明により得られた炭素繊維は
引張強度、弾性率ともに従来法により得られたものより
もすぐれている。前段処理を400′Cで行ない、後段
処理を1000℃〜1100°Cで行なったものが特に
すぐれており、引張強度10ONg/mm2〜11 O
Ng/mm” 、弾性率7.5t/mm2〜8t/mm
2の値を示す。また本発明により炭素化収率が3%向上
した。
As can be seen from the figure, the carbon fiber obtained by the present invention has both tensile strength and elastic modulus superior to those obtained by the conventional method. Those in which the first stage treatment was performed at 400'C and the second stage treatment at 1000°C to 1100°C are particularly excellent, with a tensile strength of 10ONg/mm2 to 11O
Ng/mm", elastic modulus 7.5t/mm2~8t/mm
Indicates the value of 2. Furthermore, the present invention improved the carbonization yield by 3%.

なあ、700℃〜900℃で前段処理をした場合には後
段処理の温度によっては従来法のものよりも若干特性の
向上が認められたか、顕著な効果が現われなかった。
Incidentally, when the first stage treatment was carried out at 700° C. to 900° C., depending on the temperature of the second stage treatment, either a slight improvement in properties was observed compared to the conventional method, or no significant effect appeared.

[実施例2] 実施例1と同様にして1qだ原繊維を空気中で250℃
12時間処理し、酸素取込みヱ8重2%の不融化処理を
行なった。続いて不融化処理した繊維を窒素雰囲気中で
、400 ℃11時間加熱、苗温まで冷却の前段処理と
1000℃、1時間の俊段処理の二段階炭素化処理を行
なった。得られた炭素繊維は、引張強度125Nff/
mm2、弾性率10t/mm”であった。
[Example 2] In the same manner as in Example 1, 1 q of fibrils were heated in air at 250°C.
The mixture was treated for 12 hours, and an infusible treatment was carried out at an oxygen uptake of 8% by weight. Subsequently, the infusible fibers were subjected to a two-step carbonization treatment in a nitrogen atmosphere, including heating at 400°C for 11 hours and cooling to seedling temperature, followed by rapid treatment at 1000°C for 1 hour. The obtained carbon fiber has a tensile strength of 125 Nff/
mm2, and the elastic modulus was 10t/mm''.

一方、上記と同様にして不融化処理した繊維に従来法に
より窒素雰囲気中で1000℃、1時間の炭素化処理を
施した。得られたものは一部溶融あるいは融着しており
、繊維の形態とはならなかった。
On the other hand, the fibers treated to be infusible in the same manner as above were subjected to carbonization treatment at 1000° C. for 1 hour in a nitrogen atmosphere using a conventional method. The obtained material was partially melted or fused and did not take the form of fibers.

この結果より、本発明では不融化処理時の酸素取込み量
を低くできることが確認された。
From this result, it was confirmed that the present invention can reduce the amount of oxygen taken in during the infusibility treatment.

[実施例3] 実施例2と同様にして得た不融化繊維を窒素雰囲気中で
400℃、1時間加熱、室温まで冷却の第1段階処理を
行なった。続いて繊維に15mg/dの荷重をかけた延
伸状態で窒素雰囲気中で600℃1時間加熱、室温まで
冷却の第2段階処理を行なった。次に繊維に30IIt
g/dの荷重をかけた延伸状態で1000℃、1時間の
第3段階処理を行なった。このようにして緊張下の多段
階炭素化処理で得られた炭素繊維は引張強度180に9
/mm2弾性率20t/mm2であった。
[Example 3] Infusible fibers obtained in the same manner as in Example 2 were subjected to a first stage treatment of heating at 400° C. for 1 hour in a nitrogen atmosphere and cooling to room temperature. Subsequently, the fiber was subjected to a second step of heating at 600° C. for 1 hour in a nitrogen atmosphere while being stretched under a load of 15 mg/d, and then cooled to room temperature. Next, add 30IIt to the fiber.
A third stage treatment was performed at 1000° C. for 1 hour in a stretched state with a load of g/d applied. The carbon fiber obtained in this way through multi-stage carbonization treatment under tension has a tensile strength of 180 to 9.
/mm2 The elastic modulus was 20t/mm2.

これに対し、上記と同様の多段階炭素化処理を荷重をか
けない状態で行なって得た炭素繊維は引張強度130K
g/mm2、弾性率12t/1m2であった。
On the other hand, carbon fiber obtained by performing the same multi-stage carbonization treatment as above without applying any load has a tensile strength of 130K.
g/mm2, and the elastic modulus was 12t/1m2.

このように本発明により多段階炭素化処理を行なう場合
でも、これを繊維の緊張下で行なうと、強度および弾性
率ともに更に向上する。
Even when carrying out the multi-stage carbonization treatment according to the present invention as described above, if this is carried out under tension of the fibers, both the strength and the elastic modulus are further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明および従来法の処理条件と得られた炭素繊維
の特性についての実験結果を示すもので、第1図は引張
強度、第2図は弾性率に関するものである。
The figures show experimental results regarding the processing conditions of the present invention and the conventional method and the properties of the obtained carbon fibers, with Figure 1 relating to tensile strength and Figure 2 relating to elastic modulus.

Claims (3)

【特許請求の範囲】[Claims] (1)原料ピッチを紡糸する紡糸工程と、紡糸された繊
維を不融化する不融化工程と、不融化された繊維を炭素
化する炭素化工程を含み、炭素化工程において繊維を加
熱して冷却する熱処理を複数回繰返し行ない、かつ各熱
処理の加熱温度を順次高くすることを特徴とする炭素繊
維の製造方法。
(1) Includes a spinning process to spin raw material pitch, an infusible process to make the spun fibers infusible, and a carbonization process to carbonize the infusible fibers, and in the carbonization process, the fibers are heated and cooled. 1. A method for producing carbon fibers, which comprises repeating heat treatment a plurality of times and increasing the heating temperature of each heat treatment in sequence.
(2)炭素化工程における上記熱処理を、繊維を緊張せ
しめた状態で行なう特許請求の範囲第1項記載の炭素繊
維の製造方法。
(2) The method for producing carbon fibers according to claim 1, wherein the heat treatment in the carbonization step is carried out in a state where the fibers are stretched.
(3)炭素化工程における第1回の熱処理の加熱温度を
300℃〜600℃とし、最終回の熱処理の加熱温度を
900℃〜1500℃とした特許請求の範囲第1項記載
の炭素繊維の製造方法。
(3) The carbon fiber according to claim 1, wherein the heating temperature of the first heat treatment in the carbonization step is 300°C to 600°C, and the heating temperature of the final heat treatment is 900°C to 1500°C. Production method.
JP11417186A 1986-05-19 1986-05-19 Production of carbon fiber Pending JPS62268821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11417186A JPS62268821A (en) 1986-05-19 1986-05-19 Production of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11417186A JPS62268821A (en) 1986-05-19 1986-05-19 Production of carbon fiber

Publications (1)

Publication Number Publication Date
JPS62268821A true JPS62268821A (en) 1987-11-21

Family

ID=14630951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11417186A Pending JPS62268821A (en) 1986-05-19 1986-05-19 Production of carbon fiber

Country Status (1)

Country Link
JP (1) JPS62268821A (en)

Similar Documents

Publication Publication Date Title
US3716607A (en) Heat treatment of molten carbonaceous material prior to its conversion to carbon fibers and other shapes
EP2233616B1 (en) Processes for producing flameproof fiber and carbon fiber
KR101372012B1 (en) Pitch-based isotropy carbon fibers of high strength and high elasticity and a fabrication process thereof
US3533743A (en) Process for the manufacture of continuous high modulus carbon yarns and monofilaments
US3528774A (en) Formation of high modulus,high strength graphite yarns
JPS58220805A (en) Production of precursor pitch for carbon fiber
KR930000564B1 (en) Method for the preparation of carbon fibers
US3532466A (en) Production of carbon fibres
KR910008192A (en) High-strength high-strength pitch carbon fiber and its manufacturing method
JPS62268821A (en) Production of carbon fiber
JPS60259629A (en) Production of graphitized pitch fiber
US3959448A (en) Process for the manufacture of carbon fibers
JPS6127487B2 (en)
JPS61119719A (en) Production of carbon fiber of high strength
JPS63309620A (en) Production of mesophase pitch carbon fiber having high strength and elastic modulus
JPS6269826A (en) Production of high-strength and high-modulus carbon fiber
JPS59168123A (en) Preparation of pitch carbon yarn
JPS6278220A (en) Production of ribbon-like carbon fiber
JPH0146608B2 (en)
JPH04209830A (en) Production of carbon fiber
JPH0144750B2 (en)
JPS6253422A (en) Production of carbon fiber
JPS61162586A (en) Production of precursor pitch for carbon fiber
JPH03279422A (en) Production of hollow carbon fiber
JPS6134225A (en) Carbon fiber having high specific surface area and production thereof