JPS6226807A - Ceramic composition for reducing/reoxidizing type semiconductor ceramic capacitor - Google Patents

Ceramic composition for reducing/reoxidizing type semiconductor ceramic capacitor

Info

Publication number
JPS6226807A
JPS6226807A JP16615685A JP16615685A JPS6226807A JP S6226807 A JPS6226807 A JP S6226807A JP 16615685 A JP16615685 A JP 16615685A JP 16615685 A JP16615685 A JP 16615685A JP S6226807 A JPS6226807 A JP S6226807A
Authority
JP
Japan
Prior art keywords
type semiconductor
reoxidizing
ceramic
reducing
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16615685A
Other languages
Japanese (ja)
Inventor
康信 米田
治文 万代
道夫 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP16615685A priority Critical patent/JPS6226807A/en
Publication of JPS6226807A publication Critical patent/JPS6226807A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野1 この発明は、半導体磁器の外周に再酸化により絶縁層を
形成してなる還元再酸化型半導体セラミックコンデンサ
のための磁器組成物の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field 1) This invention relates to an improvement of a ceramic composition for a reduction-reoxidation type semiconductor ceramic capacitor, which is formed by forming an insulating layer on the outer periphery of a semiconductor ceramic by reoxidation.

[従来の技術] 従来より、チタン酸バリウム系またはチタン酸ストロン
チウム系磁器組成物を用いた還元再酸化型半導体コンデ
ンサが知られている。還元再酸化型半導体コンデンサは
、還元雰囲気中で磁器組成物を焼成し半導体化し、次に
表面を再酸化することにより表面に絶縁層を形成し、さ
らに容量取出用の電極を付与することにより得られる。
[Prior Art] Reduction and reoxidation semiconductor capacitors using barium titanate-based or strontium titanate-based ceramic compositions have been known. Reduction-reoxidation semiconductor capacitors are obtained by firing a ceramic composition in a reducing atmosphere to make it a semiconductor, then reoxidizing the surface to form an insulating layer on the surface, and then adding electrodes for taking out the capacitance. It will be done.

この場合、キューり点シックとして、La、Ce、Nd
In this case, as cue point chic, La, Ce, Nd
.

8111などの希土類元素が用いられている。Rare earth elements such as 8111 are used.

たとえばチタン酸バリウム系磁器組成物では、粒径が2
〜3μll1g、下と小さく、かつ誘電率ε2゜が12
000以上と大きく、したがって大容量の半導体コンデ
ンサが実現されている。
For example, in barium titanate-based porcelain compositions, the particle size is 2.
~3 μl 1 g, as small as the bottom, and the dielectric constant ε2° is 12
000 or more, and thus a large capacity semiconductor capacitor has been realized.

[発明が解決しようする問題点] しかしながら、上記したチタン酸バリウム系半導体セラ
ミックコンデンサでは、仮焼温度および焼結温度により
、得られた半導体コンデンサの温度特性が大きく変動す
るという問題があった。たとえば、破壊電圧あるいは絶
縁抵抗を改善するために焼結温度を上げ、高密度化を図
った場合、あるいは仮焼温度が低すぎた場合など、誘電
率の温度変化率が大きく変動しがちであった。たとえば
85℃における誘電率ε8sが、20℃における誘電率
ε2oの一80%を越えてしなまい、安定な温度特性が
得られないという問題があった。
[Problems to be Solved by the Invention] However, the barium titanate semiconductor ceramic capacitor described above has a problem in that the temperature characteristics of the obtained semiconductor capacitor vary greatly depending on the calcination temperature and sintering temperature. For example, when the sintering temperature is increased to increase density to improve breakdown voltage or insulation resistance, or when the calcination temperature is too low, the temperature change rate of the dielectric constant tends to fluctuate greatly. Ta. For example, there is a problem in that the dielectric constant ε8s at 85° C. does not exceed -80% of the dielectric constant ε2o at 20° C., making it impossible to obtain stable temperature characteristics.

それゆえに、この発明の目的は、温度特性の安定な還元
再酸化型半導体コンデンサを(qることを可能とする!
!磁器組成物提供することにある。
Therefore, an object of the present invention is to make it possible to create a reduction-reoxidation semiconductor capacitor with stable temperature characteristics.
! The purpose is to provide a porcelain composition.

r問題点を解決するための手段] この発明の磁器組成物は、(Ba +−%Ax)(Ti
 I−7Zry)、0.を主成分とし、(式中、x、y
および亀は次の範囲から選ばれる数値であり、また△は
La、Ce、Pr、Nd、Pl、S彌、およびEuのう
ち少なくとも1種から選択されたものである:0.01
≦X≦0.07、O≦y≦0.10.0.95≦−≦1
.05゜)、該主成分に対して、0.05〜5.0重量
%の51o2@添加してなる、還元再酸化型半導体セラ
ミックコンデンサ用磁器組成物である。
Means for Solving Problems] The ceramic composition of the present invention has (Ba + - %Ax) (Ti
I-7Zry), 0. are the main components, (where x, y
and turtle are numerical values selected from the following range, and △ is selected from at least one of La, Ce, Pr, Nd, Pl, Sya, and Eu: 0.01
≦X≦0.07, O≦y≦0.10.0.95≦−≦1
.. This is a ceramic composition for a reduction and reoxidation type semiconductor ceramic capacitor, in which 51o2@ is added in an amount of 0.05 to 5.0% by weight based on the main component.

本願発明者達は、チタン酸バリウム系磁器組成物の組成
を種々検討した結果、上記した主成分に0.05〜5.
O,mFm%のSi 02を添加すれば、温度特性の安
定な半導体コンデンサが(9られることを兇い出した。
As a result of various studies on the composition of barium titanate-based porcelain compositions, the inventors of the present application found that the above-mentioned main components have a content of 0.05 to 5.
It has been shown that by adding O, mFm% of SiO2, a semiconductor capacitor with stable temperature characteristics can be obtained (9).

 なお、上記した主成分の式において、△としては、希
土類元素のうちLa、Ce 、 Pr 、 Nd 、 
Pm 、 S1mおよびElのうち少なくとも1種が選
ばれるが、これらの元素は、キューり点を移動させ常温
付近に設定する役υjを果たすものである。また、併ぽ
て、酸素を欠陥構造にして酸素の拡散を容易とする機能
も果たす。すなわち、還元再酸化を容易とする役割を担
う。
In the above formula of the main components, △ represents rare earth elements such as La, Ce, Pr, Nd,
At least one of Pm, S1m, and El is selected, and these elements play the role υj of moving the cue point and setting it near room temperature. It also functions to make oxygen into a defective structure and facilitate the diffusion of oxygen. That is, it plays the role of facilitating reduction and reoxidation.

これらの元素の他に、Caあるいは3rで置換すること
も考えられる。しかしながら、Caはキューり点をあま
り移動させず、また3r G、teaと原子価が同じで
あることに起因して、半導体化のための酸素欠陥に寄与
しないことなどから、これらの元素による置換は好まし
くない。
In addition to these elements, substitution with Ca or 3r is also considered. However, Ca does not move the cue point very much, and because it has the same valence as 3rG and tea, it does not contribute to oxygen vacancies for semiconductor formation, so substitution with these elements is difficult. is not desirable.

なお、上記した各元素のE換量を0.01〜0゜07と
したのは、0.01未満では、キューり点を動かすシフ
タとしての効果があまりなく、他方、0.07を越える
とキューり点が低温側にシフトしづぎ、誘電率が低下す
るからである。
The reason why the E conversion amount of each element mentioned above was set to 0.01 to 0°07 is that if it is less than 0.01, it will not be very effective as a shifter to move the cue point, whereas if it exceeds 0.07, it will not be effective as a shifter. This is because the cue point continues to shift to the low temperature side and the dielectric constant decreases.

またyfl、すなわちZr!!tにつきO〜0.10ど
したのは、Tiの一部をZrで置換せずとも十分な電気
的特性が得られる一方、0.10までの2「でTiの一
部を置換することにより電気的特性を損なわずに焼結度
合の改善効果が見られるからである。なお、T1の一部
を7rで置換するほか、Sn″c置換することも考えら
れる。しかしながら、還元工程において金属化するため
好ましくない。
Also yfl, that is Zr! ! The reason why t is O ~ 0.10 is that while sufficient electrical characteristics can be obtained without replacing part of Ti with Zr, by replacing part of Ti with 2' up to 0.10. This is because the effect of improving the degree of sintering can be seen without impairing the electrical properties.In addition to replacing a portion of T1 with 7r, it is also possible to replace a portion of T1 with Sn″c. However, it is not preferable because it becomes metallized in the reduction step.

さらにII量につき、0.95〜1.05としたが、こ
の範囲でモル比を変化させても電気特性を損なわずに焼
結磁器を得ることができるからである。
Furthermore, the amount of II is set to 0.95 to 1.05, because even if the molar ratio is changed within this range, sintered porcelain can be obtained without impairing the electrical properties.

S i O2ヲti 加t ル割合ヲ0 、05〜5 
、 Oiim%としたのは、0.05tffi%未満で
は、焼成温度による誘電率の変動が大きく、添加による
効果が十分でなく、他方、5重量%を越えると誘電率が
低下するばかりでなく、磁器のM肴が生じ、歩留りが低
下するからである。さらに、接述する実施例が裏付けら
れるように、5iOzの添加量は0.05〜5.0重量
%の範囲では、仮焼温度の変化による誘電率の温度変化
率の変動も小さいことがわかる。
S i O2 ratio 0, 05~5
The reason for setting Oiim% is that if it is less than 0.05 tffi%, the dielectric constant will fluctuate greatly depending on the firing temperature, and the effect of addition will not be sufficient.On the other hand, if it exceeds 5 wt%, not only will the dielectric constant decrease, This is because porcelain M-dish occurs and the yield decreases. Furthermore, as evidenced by the examples mentioned above, it can be seen that when the amount of 5iOz added is in the range of 0.05 to 5.0% by weight, the variation in the temperature change rate of the dielectric constant due to changes in the calcination temperature is small. .

よって、この発明では、5i02は、上記割合で添加さ
れねばならないことがわかる。
Therefore, it can be seen that in this invention, 5i02 must be added in the above ratio.

[実施例の説明] 炭酸バリウムと、酸化チタンとを所定量秤量し、混合し
て得られた混合粉末を、1050’C〜1200℃の温
度で2時間仮焼し、次に粉砕した。粉砕して得られたチ
タン酸バリウムに対し、La2():+、Ce0z、P
rzOa、Nd2O5、pm20s N SIN 20
s 、EIJ 20aおよびZr○。
[Description of Examples] A predetermined amount of barium carbonate and titanium oxide were weighed and mixed, and the resulting mixed powder was calcined for 2 hours at a temperature of 1050'C to 1200C, and then pulverized. For barium titanate obtained by pulverization, La2():+, Ce0z, P
rzOa, Nd2O5, pm20s N SIN 20
s, EIJ 20a and Zr○.

D各原科を用い、第1表に示す組成となるようにig1
合・混合した。この際、第1表に示すように、主成分に
対し、0,0.01,0.05.0.3、5.0あるい
は6.0重量%の5iOzを混合し試料1・・・63を
得た。次に、各試料に対しバインダを添加し、ベレット
状に成形した。
D Using each original family, ig1 to have the composition shown in Table 1.
Combined and mixed. At this time, as shown in Table 1, 0, 0.01, 0.05, 0.3, 5.0 or 6.0% by weight of 5iOz was mixed with the main component to prepare samples 1...63. I got it. Next, a binder was added to each sample and formed into a pellet shape.

成形したベレットを、1350℃〜1400℃の範囲の
種々の温度で2時間焼成し、次に還元雰囲気中で1時間
熱処理を行なった。さらに、空気雰囲気中で熱処理を行
なった後、AC+電極を塗布・焼付けし、半導体セラミ
ックコンデンサを作成した。
The formed pellets were fired at various temperatures ranging from 1350°C to 1400°C for 2 hours, and then heat treated in a reducing atmosphere for 1 hour. Furthermore, after performing heat treatment in an air atmosphere, an AC+ electrode was applied and baked to produce a semiconductor ceramic capacitor.

得られた半導体セラミックコンデンサのM電率εの温度
変化重下C(%)を、第1表に併せて示す。なお、T 
Cは、誘電率(85℃)/誘電率(20℃)xloo(
%)で表わしたものである第1表のTCの値ゐうち、実
施例である試料7・・・15と、比較例である試料1・
・・6との比較により、この発明によれば、焼成温度を
変えてもTOの変動が極めて小さくなることがわかる。
Table 1 also shows the temperature change C (%) of the M electrical constant ε of the obtained semiconductor ceramic capacitor. In addition, T
C is dielectric constant (85℃)/dielectric constant (20℃)xloo(
TC values in Table 1, which are expressed as
Comparison with .

また、試料16・・・18では、s+ 02の添加量が
多いため、誘電率ε(20℃)が低くなり過ぎることが
わかる。
In addition, it can be seen that in samples 16 to 18, the dielectric constant ε (20° C.) becomes too low because the amount of s+02 added is large.

さらに、比較例たる試料19.20と、実施例たる試料
21.22の比較により、仮焼温度を変えた場合でも、
この発明によればTCの変動がかなり小さくなることが
わかる。
Furthermore, by comparing sample 19.20, which is a comparative example, and sample 21.22, which is an example, it was found that even when the calcination temperature was changed,
It can be seen that according to this invention, the variation in TC is considerably reduced.

また、t−ル比調整のためのZr 02を加えない場合
の試料23・・・27の結果から、同様に3i02を0
.05〜5.0重量%添加された試料24・・・26で
は、T Cの変動がやはり小さくなることがわかる。
Also, from the results of samples 23...27 when Zr02 was not added to adjust the torque ratio, 3i02 was similarly added to 0.
.. It can be seen that in Samples 24...26 in which 05 to 5.0% by weight was added, the fluctuations in TC were also small.

また、試料30は、Ti側のモル比が大きく、磁器の融
着が見られるため発明範囲外とした。試料31はTi側
のeル比が小さくなり、誘電率の。 低下ととムに焼結
性が悪くなるため発明範囲外とした。試料32は、Ce
を含有しておらず、試料33はCe mtfi多い場合
であり、いずれもM電率が小さくなるため発明範囲外と
した。試料34はZrff1が多い場合であり、誘電率
が小さくなるとともに焼結性が悪くなるため発明範囲外
とした。
In addition, sample 30 had a large molar ratio on the Ti side and fusion of the porcelain was observed, so it was excluded from the scope of the invention. In sample 31, the e ratio on the Ti side is small, and the dielectric constant is. Since the sinterability deteriorates as the temperature decreases, it is excluded from the scope of the invention. Sample 32 is Ce
Sample 33 contained a large amount of Ce mtfi, and both had low M electric rates and were therefore outside the scope of the invention. Sample 34 has a large amount of Zrff1, and as the dielectric constant decreases and the sinterability deteriorates, it was excluded from the scope of the invention.

ざらに、希土類元素として、Ceに代え、1−a。Roughly, as a rare earth element, instead of Ce, 1-a.

Pr 、Nd 、Pm 、SsおよびEIJを用いた試
料35・・・63においても同様の結果が得られること
がわかる。
It can be seen that similar results are obtained for Samples 35...63 using Pr, Nd, Pm, Ss and EIJ.

なお、磁器組成物中に絶縁抵抗および焼結性の改善のた
めに、酸化マンガンをMll 02に換算して0.05
〜1モル%含有させてもよい。
In addition, in order to improve insulation resistance and sinterability, manganese oxide is added to the porcelain composition by 0.05 in terms of Mll 02.
It may be contained in an amount of up to 1 mol%.

(以下余白 〉 [発明の効果] この発明て゛は、(f3a + −% Av )  (
TI + −y Zr、)、0.からなる主成分に対し
、0.05〜5.0重量%のsr 02が添加される。
(Margins below) [Effect of the invention] This invention has the following advantages: (f3a + -% Av) (
TI + −y Zr, ), 0. 0.05 to 5.0% by weight of sr 02 is added to the main component consisting of.

したがって、仮焼温度、焼成温度あるいはロフトの変動
などによる、温度特性の変動が極めて小さな再酸化型半
導体磁器コンデンサを1qることが可能となる。
Therefore, it is possible to produce 1q of re-oxidized semiconductor ceramic capacitors whose temperature characteristics are subject to extremely small fluctuations due to fluctuations in calcination temperature, firing temperature, or loft.

したがって、半導体磁器コンデンサの製造に際し歩留り
を向上することができ、均一な品質の製品を安定に生産
することができる。
Therefore, the yield can be improved in manufacturing semiconductor ceramic capacitors, and products of uniform quality can be stably produced.

なお、5102を、この発明の組成範囲内で添加したど
しても、破壊電圧、絶縁抵抗およびCVfa(容量X破
壊電圧)への影響はほとんどないことを指摘しておく。
It should be noted that even if 5102 is added within the composition range of the present invention, there is almost no effect on breakdown voltage, insulation resistance, and CVfa (capacity x breakdown voltage).

Claims (1)

【特許請求の範囲】  下記に示す一般式で表わされる材料を主成分とし、 (Ba_1_−_xA_x)(Ti_1_−_yZr_
y)_mO_3但し、0.01≦x≦0.07 0≦y≦0.10 0.95≦m≦1.05 AはLa、Ce、Pr、Nd、Pm、 Sm、Euのうち少なくとも1種 前記主成分に対し、0.05〜5.0重間%のSiO_
2を添加してなる、還元再酸化型半導体セラミックコン
デンサ用磁器組成物。
[Claims] The main component is a material represented by the general formula shown below, (Ba_1_-_xA_x)(Ti_1_-_yZr_
y)_mO_3 However, 0.01≦x≦0.07 0≦y≦0.10 0.95≦m≦1.05 A is at least one of La, Ce, Pr, Nd, Pm, Sm, and Eu 0.05 to 5.0% by weight of SiO_ with respect to the main component
A ceramic composition for a reduction and reoxidation type semiconductor ceramic capacitor, which is made by adding 2.
JP16615685A 1985-07-26 1985-07-26 Ceramic composition for reducing/reoxidizing type semiconductor ceramic capacitor Pending JPS6226807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16615685A JPS6226807A (en) 1985-07-26 1985-07-26 Ceramic composition for reducing/reoxidizing type semiconductor ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16615685A JPS6226807A (en) 1985-07-26 1985-07-26 Ceramic composition for reducing/reoxidizing type semiconductor ceramic capacitor

Publications (1)

Publication Number Publication Date
JPS6226807A true JPS6226807A (en) 1987-02-04

Family

ID=15826102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16615685A Pending JPS6226807A (en) 1985-07-26 1985-07-26 Ceramic composition for reducing/reoxidizing type semiconductor ceramic capacitor

Country Status (1)

Country Link
JP (1) JPS6226807A (en)

Similar Documents

Publication Publication Date Title
JPH0283256A (en) Dielectric material porcelain composition
JP2000026160A (en) Dielectric ceramic composition
JPH058524B2 (en)
JPS60500496A (en) Low temperature firing ceramic dielectric for temperature compensation capacitors
JPS6226807A (en) Ceramic composition for reducing/reoxidizing type semiconductor ceramic capacitor
JP3321823B2 (en) Non-reducing dielectric porcelain composition
JP2626620B2 (en) Porcelain composition
JPS6116131B2 (en)
JPH03109256A (en) Dielectric porcelain composition
JPS6117087B2 (en)
JPS61251563A (en) High permittivity ceramic composition
JP3368599B2 (en) Non-reducing dielectric porcelain composition
JPH0283257A (en) Porcelain composition of high permittivity for temperature compensation and production thereof
JPS61203506A (en) High dielectric ceramic composition
JP2621478B2 (en) High dielectric constant porcelain composition
JPS6226705A (en) High permeability ceramic composition
JPH0522667B2 (en)
JP3469911B2 (en) Dielectric porcelain composition
JPS6111404B2 (en)
JPH04363012A (en) Ceramic capacitor
JPH0249307A (en) Dielectric porcelain compound
JPH0478577B2 (en)
JPS61101460A (en) High permittivity ceramic composition
JPS6126207B2 (en)
JPH0460943B2 (en)