JPS62267629A - Thermometer for cryogenic temperature - Google Patents

Thermometer for cryogenic temperature

Info

Publication number
JPS62267629A
JPS62267629A JP61110532A JP11053286A JPS62267629A JP S62267629 A JPS62267629 A JP S62267629A JP 61110532 A JP61110532 A JP 61110532A JP 11053286 A JP11053286 A JP 11053286A JP S62267629 A JPS62267629 A JP S62267629A
Authority
JP
Japan
Prior art keywords
cryogenic
amorphous silicon
thermometer
silicon film
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61110532A
Other languages
Japanese (ja)
Other versions
JPH0584453B2 (en
Inventor
Kiyoshi Yoshida
清 吉田
Susumu Shimamoto
進 島本
Yoshiro Yamaura
義郎 山浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyowa Electronic Instruments Co Ltd
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Kyowa Electronic Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute, Kyowa Electronic Instruments Co Ltd filed Critical Japan Atomic Energy Research Institute
Priority to JP61110532A priority Critical patent/JPS62267629A/en
Publication of JPS62267629A publication Critical patent/JPS62267629A/en
Publication of JPH0584453B2 publication Critical patent/JPH0584453B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To realize a thermometer for cryogenic temp. which has a large change characteristic of resistance/temp. and decreases resistance change by a magnetic field by utilizing the resistance characteristic of an amorphous silicon film. CONSTITUTION:The amorphous silicon film 2 is formed on an insulating substrate. An electrode 3 having a comb tooth-shaped part 3b and an electrode 4 having a comb tooth-shaped part 4b existing in the position where said part is relatively fitted into the comb tooth-shaped part 3b are formed. The thermometer 200 for cryogenic temp. formed in such a manner decreases the resistance change with the magnetic field and has the large resistance/temp. change characteristic and therefore, said thermometer is suitable for temp. detection in a super conductive electromagnet, MHD generator, etc.

Description

【発明の詳細な説明】 (a)  技術分野 本発明は、極低温用温度計に関し、より詳細には、電気
抵抗値が極低温領域の温度によって変化することを利用
した温度計に関するものである。
Detailed Description of the Invention (a) Technical Field The present invention relates to a thermometer for cryogenic temperatures, and more particularly to a thermometer that utilizes the fact that electrical resistance changes depending on the temperature in the cryogenic region. .

(b)  従来技術 一般に、極低温用温度計は、極低温状態下で稼動される
MHD発電、核融合炉用超電導磁石、超電導送電、超高
速磁気浮上列車等における極低温の計測に用いられてい
る。
(b) Prior Art In general, cryogenic thermometers are used to measure cryogenic temperatures in MHD power generation, superconducting magnets for nuclear fusion reactors, superconducting power transmission, ultrahigh-speed magnetic levitation trains, etc. that operate under cryogenic conditions. There is.

この種の極低温用温度計としては、ゲルマニラムやシリ
コン等の単結晶あるいはカーボンの薄膜の電気抵抗が温
度によって変化することを利用したものがある。その−
例を第6図および第7図を用いて説明する・ 即ち、銅の基板上に焼結アルミナでなる絶縁性基板51
を板状に形成してクリーニングし、[第6図(A)参照
]、第6図(B)に示すように抵抗体としてのカーボン
被膜52を電子ビームで蒸着し、しかる後第6図(C)
に示すようにカーボン被膜52の両端部に接触し、絶縁
基板51の表面に沿い、かつ抵抗値測定用リード線を接
続するためのランド部53a、54aが形成された導体
パターン53.54が形成される。
This type of cryogenic thermometer utilizes the fact that the electrical resistance of a single crystal such as gelmanilam or silicon or a thin film of carbon changes with temperature. That-
An example will be explained using FIGS. 6 and 7. In other words, an insulating substrate 51 made of sintered alumina on a copper substrate
is formed into a plate shape and cleaned [see FIG. 6(A)]. As shown in FIG. 6(B), a carbon film 52 as a resistor is deposited with an electron beam, and then as shown in FIG. C)
As shown in FIG. 2, conductive patterns 53 and 54 are formed which are in contact with both ends of the carbon coating 52, along the surface of the insulating substrate 51, and have land portions 53a and 54a for connecting lead wires for resistance value measurement. be done.

さらに、その上面に第6図CD)に示すようなガラス保
護膜55を形成し、第6図(E)に示すようにリード線
接続用のランド部53a。
Further, a glass protective film 55 as shown in FIG. 6CD) is formed on the upper surface thereof, and a land portion 53a for connecting lead wires is formed as shown in FIG. 6(E).

54aのみが露出する極低温用温度計100が完成する
A cryogenic thermometer 100 in which only 54a is exposed is completed.

しかしながら、このようなカーボン薄膜極低温用温度計
100は、第4図中、曲線(イ)に示すようしこ磁場の
強さに対して抵抗値があまり変化しないため、上述の超
電導磁石等の強磁場中における温度測定に1よ好適であ
るが、抵抗/温度の変化特性が第5図中曲線(イ)に示
すように温度変化に対する抵抗変化が若干少ないという
欠点がある。
However, in such a carbon thin film cryogenic thermometer 100, the resistance value does not change much with respect to the strength of the magnetic field as shown by the curve (A) in FIG. Although it is more suitable than 1 for temperature measurement in a strong magnetic field, it has the disadvantage that the resistance change with respect to temperature change is somewhat small, as shown in the resistance/temperature change characteristic as shown by curve (a) in FIG.

一方、カーボン被膜52の抵抗/温度の変化特性を向上
させるためのカーボン被膜52の代りにゲルマニウムの
単結晶を用いた温度計もあるが、この後者の従来例は、
第5図中、曲線(ロ)に示されるように抵抗/温度の変
化特性は非常に大きくなるものの、磁場に対する影響が
第4図の曲線(ロ)に示すように非常に大きくなってし
まい上述のような超電導磁石等の高磁場中では、使用が
困難になってしまうという問題点がある。
On the other hand, there is also a thermometer that uses germanium single crystal instead of the carbon film 52 to improve the resistance/temperature change characteristics of the carbon film 52, but this latter conventional example is
Although the resistance/temperature change characteristics become very large as shown by the curve (b) in Fig. 5, the influence on the magnetic field becomes very large as shown by the curve (b) in Fig. 4, which is explained above. There is a problem in that it becomes difficult to use superconducting magnets such as those in high magnetic fields.

また、ゲルマニウムの代りにシリコンの単結晶を用いた
ものも同様の問題が生じてしまう。
Further, a similar problem occurs when silicon single crystal is used instead of germanium.

(c)  目的 上述の事情に鑑み本発明がなされたもので、その目的は
、抵抗/温度の変化特性が大きく、かつ磁場による抵抗
変化の少ない極低温用温度計を提供することにある。
(c) Purpose The present invention has been made in view of the above-mentioned circumstances, and its purpose is to provide a cryogenic thermometer that has large resistance/temperature change characteristics and little resistance change due to magnetic fields.

(d)  構成 上述の目的を達成するために本発明に係る極低温用温度
計は、絶縁基板上に非晶質シリコン膜を形成し、この非
晶質シリコン膜の表面↓こ互いに短絡しない2つの金属
導体でなる電極を近接して形成し、この2つの電極間の
抵抗値をもとに極低温領域における温度を計測し得るよ
うに構成したことを特徴とするものである。
(d) Structure In order to achieve the above-mentioned object, the cryogenic thermometer according to the present invention forms an amorphous silicon film on an insulating substrate, and prevents short-circuiting between the surfaces of this amorphous silicon film. The device is characterized in that two electrodes made of metal conductors are formed close to each other, and the temperature in the cryogenic region can be measured based on the resistance value between the two electrodes.

以下5本発明の実施例を添付図面に基づいて説明する。Hereinafter, five embodiments of the present invention will be described based on the accompanying drawings.

本実施例に係る極低温用温度計は、次のような工程でも
って作られる。即ち、 ■ 第2図(A)に示すようなガラスまたはセラミック
等からなる0、5mm程度の板厚を有する絶縁基板1を
形成し、その表面をクリーニングする。
The cryogenic thermometer according to this embodiment is manufactured through the following steps. That is, (1) An insulating substrate 1 made of glass or ceramic and having a thickness of about 0.5 mm is formed as shown in FIG. 2(A), and its surface is cleaned.

■ 第2図(B)に示すように、絶縁基板1上に非晶質
シリコン被膜2を100オングストローム〜1000オ
ングストローム程度、形成(堆積)する。この形成方法
は、いわゆる化学気相成長法(一般にrCVDJと称さ
れている)によるが、具体的し;1ま、絶縁基板1をサ
ブストレイトとして真空槽(例えば石英ベルジャ)内に
配置し、この真空槽内を約0.5〜1.0X10−aト
ールの真空度に排気し、シランSiH4のガスとリンを
いわゆる不純物のドーピング材として導入し、この真空
槽内でグロー放電させてN型の非晶質シリコンを絶縁基
板1上に上述した所定の膜厚となるまで蒸着堆積させる
ことによって非晶質シリコン被膜2を形成する。
(2) As shown in FIG. 2(B), an amorphous silicon film 2 having a thickness of about 100 angstroms to 1000 angstroms is formed (deposited) on an insulating substrate 1. This formation method is based on the so-called chemical vapor deposition method (generally referred to as rCVDJ). The inside of the vacuum chamber was evacuated to a degree of vacuum of approximately 0.5 to 1.0 x 10-a torr, silane SiH4 gas and phosphorus were introduced as so-called impurity doping materials, and glow discharge was performed in the vacuum chamber to form an N-type The amorphous silicon film 2 is formed by depositing amorphous silicon on the insulating substrate 1 by vapor deposition until it reaches the above-mentioned predetermined film thickness.

■ しかる後、第1図および第2図(C)に示すように
、<シ歯状のff1i (以下「<シ歯状部」という)
3bとこのくし歯状部3bの基端から延出したランド部
3aを有する電極3と、この電極3のくし歯状部3bの
くし歯と相対的に嵌入の位置にあるくし歯状部4bを有
し、その基端から延出したランド部4aを有する電極4
を形成する。この電極3,4を形成するには、電極3,
4を膜形成すべき形状以外の部位をステンレス薄板また
はポリエステルテープでマスキングし、アルゴンガス雰
囲気中でA2等を1μm〜5μm程度の膜厚となるまで
スパッタリングする。
■ After that, as shown in Fig. 1 and Fig. 2 (C),
3b, an electrode 3 having a land portion 3a extending from the base end of the comb-teeth-like portion 3b, and a comb-teeth-like portion 4b in a fitted position relative to the comb-teeth of the comb-teeth-like portion 3b of the electrode 3. An electrode 4 having a land portion 4a extending from its base end.
form. In order to form the electrodes 3 and 4, the electrodes 3,
4 is masked with a thin stainless steel plate or polyester tape, and A2 or the like is sputtered to a film thickness of about 1 μm to 5 μm in an argon gas atmosphere.

■ 第2図(D)に示すように、電極3,4のランド部
3a 、4a以外の部位を耐湿、耐水性をもたせるため
にガラス被膜5で被覆する。
(2) As shown in FIG. 2(D), portions of the electrodes 3 and 4 other than the land portions 3a and 4a are coated with a glass coating 5 to provide moisture and water resistance.

■ 第1図に示すようにランド部3a 、 4aに抵抗
値副室用のリードvA6,7を溶着、超音波ボンディン
グ等の手段を用いて連結固定する。
(2) As shown in FIG. 1, the leads vA6 and 7 for the resistance sub-chamber are connected and fixed to the land portions 3a and 4a by means of welding, ultrasonic bonding, etc.

このようにして、作られた極低温用温度計200を用い
て超電導磁石あるいはMHD発電装置等における極低温
を検出すべき部位に配設し、温度検出を行なうと、第4
図の曲線(ハ)をもって示すように、磁場に対する影響
は、従来のカーボン温度計に比して略同等の優れた特性
を有すると共に従来のゲルマニウム湿度計の場合に比し
て約1/10に低減される。
When the cryogenic thermometer 200 made in this manner is placed at the part of a superconducting magnet or MHD power generation device where extremely low temperatures are to be detected and temperature is detected, the fourth
As shown by the curve (c) in the figure, the effect on the magnetic field has approximately the same excellent characteristics as the conventional carbon thermometer, and is about 1/10 of that of the conventional germanium hygrometer. reduced.

しかも、抵抗/温度変化特性は、第5図の曲線(ハ)を
もって示すように温度が従来のゲルマニウム温度計に比
して約1/2に低下するものの従来のカーボン温度計の
場合に比して大幅に向上したものになる。
Furthermore, the resistance/temperature change characteristics are lower than those of conventional carbon thermometers, although the temperature decreases to about 1/2 compared to conventional germanium thermometers, as shown by curve (c) in Figure 5. This will result in a significant improvement.

また、上述した非晶質シリコン被膜2は、等方性があり
、真空槽から引き上げる際やカッティングする際、その
方向性を考慮しなくてすむので、囃結晶シリコン被膜や
カーボン被膜による場合に比べて、製作し易いという利
点がある。
In addition, the amorphous silicon film 2 described above is isotropic, and there is no need to consider its direction when pulling it out of the vacuum chamber or cutting it, compared to the case of using a crystalline silicon film or a carbon film. It has the advantage of being easy to manufacture.

尚、本発明は、上述の実施例に限定されることなく、そ
の要旨を逸脱しない範囲内で種々変形実施することがで
きる。
It should be noted that the present invention is not limited to the above-described embodiments, and can be modified in various ways without departing from the spirit thereof.

例えば、計測用のリード線の取付けは、上述の実施例に
示すように電極3.4のランド部3a 、4aに直接に
接続する代りに第3図に示すように絶縁基板11の上表
面に形成された非晶質シリコン被膜12上に形成された
電極13゜14の基部にランド部13a、14aを形成
する。その近傍に端子部20.22を膜形成し。
For example, the lead wires for measurement may be attached to the upper surface of the insulating substrate 11 as shown in FIG. Land portions 13a and 14a are formed at the bases of the electrodes 13 and 14 formed on the formed amorphous silicon film 12. Terminal portions 20 and 22 are formed in the vicinity thereof.

同端子部20.22のランド部20a、22aと上述の
ランド部14a、13aの間をたるみを有した状態で3
0〜50μm程度の直径を有する金線21.23でボン
ディングにより接続し、さらに端子部20.22のそれ
ぞれのランド部20b、22bに計測用のリード線16
゜17をそれぞれ接続するようにしても良い。
3 with slack between the land parts 20a, 22a of the same terminal part 20.22 and the above-mentioned land parts 14a, 13a.
A gold wire 21.23 having a diameter of approximately 0 to 50 μm is connected by bonding, and a lead wire 16 for measurement is connected to each land portion 20b, 22b of the terminal portion 20.22.
17 may be connected to each other.

この場合には、極低温用温度計に対するリード線16.
17の引っ張り等による悪影響を防止することができる
In this case, lead wire 16. for the cryogenic thermometer.
17 can be prevented from being adversely affected by the pulling or the like.

また、上述の各実施例においては、電極かくし歯状に形
成されているが単なる帯状であっても良い。さらに非晶
質シリコンの表面側に形成される保護被膜の有無はその
使用状態に応じて省略することができる。
Further, in each of the above-described embodiments, the electrodes are formed in the shape of comb teeth, but they may be simply formed in the shape of a band. Further, the presence or absence of a protective film formed on the surface side of the amorphous silicon can be omitted depending on the usage condition.

(e)  効果 以上詳しく説明したところより既に明らかなように1本
発明によれば、抵抗/温度変化特性が大きくかつ磁場に
よる抵抗変化が少ないので。
(e) Effects As is already clear from the detailed explanation above, according to the present invention, the resistance/temperature change characteristic is large and the resistance change due to a magnetic field is small.

高磁場中における極低温度の検出を極めて正確に行なう
ことができる極低温用温度計を提供することができる。
A cryogenic thermometer that can extremely accurately detect extremely low temperatures in a high magnetic field can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る極低温用温度計の一実施例の構
成を示す平面図、第2図(A)〜(D)のそれぞれは、
第1図に示す極低温用温度計の製造工程を示す断面図、
第3図は、本発明に係る極低温用湿度計の他の実施例の
構成を示す平面図、第4図は、磁場強度と抵抗変化率と
の関係を示す特性図、第5図は、温度と抵抗値との関係
を示す特性図、第6図(A)〜第6図(E)゛のそれぞ
れは、従来の極低温用温度計の製造工程を示す平面図、
第7図は、第6図(A)〜第6図(E)に示す従来の極
低温用温度計の構成を示す断面図である。 1.11・・・・・・絶縁基板、 2.12・・・・・・非晶質シリコン被膜。 3.4,13,14・・・・・・電極。 3a、4a、13af  14a、20a120b 、
 22a 、 22b ・・・・・・ランド部。 5・・・・・・ガラス被膜、 6.7・・・・・・リード線。 20.22・・・・・・端子部。 21.23・・・・・・金線。
FIG. 1 is a plan view showing the configuration of an embodiment of a cryogenic thermometer according to the present invention, and FIGS. 2(A) to 2(D) each show the following:
A cross-sectional view showing the manufacturing process of the cryogenic thermometer shown in FIG.
FIG. 3 is a plan view showing the configuration of another embodiment of the cryogenic hygrometer according to the present invention, FIG. 4 is a characteristic diagram showing the relationship between magnetic field strength and resistance change rate, and FIG. Characteristic diagrams showing the relationship between temperature and resistance value, FIGS. 6(A) to 6(E) are respectively plan views showing the manufacturing process of a conventional cryogenic thermometer;
FIG. 7 is a sectional view showing the structure of the conventional cryogenic thermometer shown in FIGS. 6(A) to 6(E). 1.11...Insulating substrate, 2.12...Amorphous silicon coating. 3.4, 13, 14... electrode. 3a, 4a, 13af 14a, 20a120b,
22a, 22b... Land portion. 5...Glass coating, 6.7...Lead wire. 20.22...Terminal section. 21.23...Gold wire.

Claims (7)

【特許請求の範囲】[Claims] (1)絶縁基板上に非晶質シリコン膜を形成し、この非
晶質シリコン膜の表面に互いに短絡しない2つの金属導
体でなる電極を近接して形成し、この2つの電極間の抵
抗値をもとに極低温領域における温度を計測し得るよう
に構成したことを特徴とする極低温用温度計。
(1) An amorphous silicon film is formed on an insulating substrate, and electrodes made of two metal conductors that do not short-circuit each other are formed close to each other on the surface of this amorphous silicon film, and the resistance value between these two electrodes is A cryogenic thermometer characterized in that it is configured to be able to measure temperature in a cryogenic region based on.
(2)上記非晶質シリコン膜は、n型半導体である特許
請求の範囲第1項記載の極低温用温度計。
(2) The cryogenic thermometer according to claim 1, wherein the amorphous silicon film is an n-type semiconductor.
(3)上記非晶質シリコン膜は、化学気相成長法により
シラン中に不純物としてのリンをドーピングして得られ
たアモルファスシリコン膜である特許請求の範囲第2項
記載の極低温用温度計。
(3) The cryogenic thermometer according to claim 2, wherein the amorphous silicon film is an amorphous silicon film obtained by doping phosphorus as an impurity into silane by chemical vapor deposition. .
(4)上記電極は、アルミニウム等の薄膜金属でなる特
許請求の範囲第1項記載の極低温用温度計。
(4) The cryogenic thermometer according to claim 1, wherein the electrode is made of a thin film metal such as aluminum.
(5)上記2つの電極は、平面状に相対して一定の間隙
を存して配設されている特許請求の範囲第4項記載の極
低温用温度計。
(5) The cryogenic thermometer according to claim 4, wherein the two electrodes are disposed facing each other in a plane with a constant gap.
(6)上記絶縁基板は、板状のセラミックである特許請
求の範囲第1項記載の極低温用温度計。
(6) The cryogenic thermometer according to claim 1, wherein the insulating substrate is a plate-shaped ceramic.
(7)上記絶縁基板は、ガラスである特許請求の範囲第
1項記載の極低温用温度計。
(7) The cryogenic thermometer according to claim 1, wherein the insulating substrate is glass.
JP61110532A 1986-05-16 1986-05-16 Thermometer for cryogenic temperature Granted JPS62267629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61110532A JPS62267629A (en) 1986-05-16 1986-05-16 Thermometer for cryogenic temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61110532A JPS62267629A (en) 1986-05-16 1986-05-16 Thermometer for cryogenic temperature

Publications (2)

Publication Number Publication Date
JPS62267629A true JPS62267629A (en) 1987-11-20
JPH0584453B2 JPH0584453B2 (en) 1993-12-02

Family

ID=14538193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61110532A Granted JPS62267629A (en) 1986-05-16 1986-05-16 Thermometer for cryogenic temperature

Country Status (1)

Country Link
JP (1) JPS62267629A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004264157A (en) * 2003-02-28 2004-09-24 Kenji Sumiyama Transition metal cluster assembly having low-magnetic resistance and manufacturing method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5580023A (en) * 1978-12-12 1980-06-16 Matsushita Electric Ind Co Ltd Thermistor
JPS55117934A (en) * 1979-03-05 1980-09-10 Matsushita Electric Ind Co Ltd Thermosensitive element
JPS5870588A (en) * 1981-09-28 1983-04-27 シ−メンス・アクチエンゲゼルシヤフト Temperature sensor and method of producing same
JPS58170001A (en) * 1982-03-31 1983-10-06 アンリツ株式会社 Temperature sensitive device
JPS6140526A (en) * 1984-07-31 1986-02-26 Mitsuteru Kimura Temperature sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5580023A (en) * 1978-12-12 1980-06-16 Matsushita Electric Ind Co Ltd Thermistor
JPS55117934A (en) * 1979-03-05 1980-09-10 Matsushita Electric Ind Co Ltd Thermosensitive element
JPS5870588A (en) * 1981-09-28 1983-04-27 シ−メンス・アクチエンゲゼルシヤフト Temperature sensor and method of producing same
JPS58170001A (en) * 1982-03-31 1983-10-06 アンリツ株式会社 Temperature sensitive device
JPS6140526A (en) * 1984-07-31 1986-02-26 Mitsuteru Kimura Temperature sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004264157A (en) * 2003-02-28 2004-09-24 Kenji Sumiyama Transition metal cluster assembly having low-magnetic resistance and manufacturing method therefor
JP4500988B2 (en) * 2003-02-28 2010-07-14 国立大学法人 名古屋工業大学 Low magnetoresistance transition metal cluster aggregate and method for producing the same

Also Published As

Publication number Publication date
JPH0584453B2 (en) 1993-12-02

Similar Documents

Publication Publication Date Title
US5404125A (en) Infrared radiation sensor
KR970705012A (en) Temperature sensor element and method of manufacturing temperature sensor and temperature sensor element having same
JPH0426172A (en) Hall element
JPH0590011A (en) Thermosensitive resistor and its manufacture
KR940002511B1 (en) Gas sensor element of tin oxide film
JPS62267629A (en) Thermometer for cryogenic temperature
CN110926604A (en) Photo-thermal detection unit based on chromium-niobium co-doped vanadium dioxide epitaxial film
JPH01268121A (en) Formation of ohmic electrode for silicon semiconductor element
US5592081A (en) Magnetic Sensor
EP0392461B1 (en) Thermistor made of diamond
JPH10318830A (en) Infrared sensor
JPS6073448A (en) Atmosphere sensor
CN115623858B (en) Hall sensor and manufacturing method thereof
JP3372384B2 (en) Plasma CVD equipment
KR900005861B1 (en) Method and apparatus for measuring temperature of substrate
JPH07146187A (en) Thermal element and its manufacturing method
JPS60146145A (en) Oxygen electrode
US20050069457A1 (en) Gas sensor with zinc oxide layer and method for forming the same
JP3015857B2 (en) Cryogenic temperature measuring device
JPH0495721A (en) Heat type flow rate sensor
CN118175913A (en) Zinc oxide film piezoelectric sensor and preparation method thereof
JPS6333284B2 (en)
JPH01122105A (en) Magnetic thin film element and manufacture thereof
Freller et al. Galvanomagnetic thin film devices
JPH01208806A (en) Thin-film temperature sensor