JPH01208806A - Thin-film temperature sensor - Google Patents

Thin-film temperature sensor

Info

Publication number
JPH01208806A
JPH01208806A JP3424788A JP3424788A JPH01208806A JP H01208806 A JPH01208806 A JP H01208806A JP 3424788 A JP3424788 A JP 3424788A JP 3424788 A JP3424788 A JP 3424788A JP H01208806 A JPH01208806 A JP H01208806A
Authority
JP
Japan
Prior art keywords
film
thin
temperature
temperature sensor
foundation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3424788A
Other languages
Japanese (ja)
Inventor
Kazuo Ogata
一雄 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3424788A priority Critical patent/JPH01208806A/en
Publication of JPH01208806A publication Critical patent/JPH01208806A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To realize a low-cost thin-film temperature sensor having excellent characteristics by forming a thin-film composed of the same noble metal as a foundation film onto the foundation film attached onto an insulating base body consisting of ceramics, etc. CONSTITUTION:A foundation film 2 attached onto an alumina substrate 1 at a base-body temperature from 750 deg.C to 900 deg.C and consisting of platinum takes a partially massive shape and is formed in insular structure in a plane, but an upper thin-film 3 made up of the same platinum as the foundation film is prepared onto the foundation film 2, thus easily preparing an excellent thin- film temperature sensor, which has resistance temperature characteristics (TCR) at approximately the same value as a value peculiar to a metal and electrical connection of which is also brought to a continuous state. Since the sensor is composed of the thin-film, geometry can be scaled down, thermal responsiveness is reduced and a high resistance value can be shaped.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は温度変化と抵抗値変化の間に相関をもった薄膜
温度センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a thin film temperature sensor that has a correlation between temperature change and resistance value change.

従来の技術 金属固有の抵抗温度特性(TCR)を利用して抵抗値変
量を温度変量に変換し、温度検知をするところの金属温
度センサには、金属線を利用したものと薄膜を利用した
ものの2種類がある。このうち金属線を利用したものは
金属細線をそのまま張り渡したり、絶縁基体上に金属線
をらせん状に巻きつける等の処置により固定されたもの
が温度センサとして用いられている。
Conventional technology Metal temperature sensors that detect temperature by converting resistance variables into temperature variables using the temperature resistance characteristics (TCR) unique to metals include those that use metal wires and those that use thin films. There are two types. Among these, those that utilize metal wires are used as temperature sensors, such as by simply stretching thin metal wires or by winding the metal wires in a spiral shape onto an insulating substrate.

また金属温度センサの中で、測定精度の向上。Also improved measurement accuracy among metal temperature sensors.

長期安定性の向上等、信頼性を確保する目的としたもの
には特に貴金属が用いられている。
Precious metals are particularly used in products intended to ensure reliability, such as improving long-term stability.

発明が解決しようとする課頭 上記のような温度センサにおいて、金属線を利用したも
のは、細線化にも限界があるので、数100Ω程度の抵
抗値を得ようさすると、金R線の長さを充分に増す必要
があシ、形状2寸法が大きくなるという欠点を有してい
た。そして、形状9寸法が大きくなると熱応答性が犬き
くなることから、温度センサとして支障の生ずる場合も
あ二た。−方、形状2寸法を小さくすると熱応答性は良
くなるが、金属線が短がくなるので得られる抵抗値が低
くなり、温度変化に対する抵抗値変化量が小さく、温度
センサとして使用するだめの信号量としては不充分なも
のであった。
Problems to be Solved by the Invention In the above-mentioned temperature sensors that use metal wires, there is a limit to how thin the wires can be. However, it is necessary to sufficiently increase the thickness, which has the disadvantage that the two dimensions of the shape become large. Further, as the dimensions of the shape 9 become larger, the thermal response becomes poorer, which may cause problems as a temperature sensor. - On the other hand, if the two dimensions of the shape are made smaller, the thermal response improves, but since the metal wire becomes shorter, the resistance value obtained becomes lower, and the amount of change in resistance value with respect to temperature changes is small, making it difficult to use as a temperature sensor. The quantity was insufficient.

また、薄膜を利用して作ったものは、同じ抵抗値で比較
すると、金属線を利用して作ったものよシ、小さな形状
1寸法で作成することができるので熱応答性は小さくな
り、あるいは数XΩ程度までの比較的高い抵抗値を作る
ことも容易である等。
Also, when comparing the same resistance value, products made using thin films can be made with a smaller shape and one dimension than those made using metal wires, so the thermal response is smaller, or It is also easy to create a relatively high resistance value of up to several XΩ.

多くの長所を有している。しかしながら、膜状であると
膜面における伝導電子の散乱が増大し、この散乱の温度
依存性が小さいことからTCRが金属固有の値よりも小
さくなるという傾向があった。
It has many advantages. However, if the metal is in the form of a film, the scattering of conduction electrons on the film surface increases, and since the temperature dependence of this scattering is small, the TCR tends to be smaller than the value inherent to the metal.

この対策として、膜厚を厚くする等の処置が施されたが
、製品コストが高くなシ、安価な製品を提供することが
困矯であった。
As a countermeasure to this problem, measures such as increasing the film thickness have been taken, but the product cost is high and it is difficult to provide an inexpensive product.

本発明は、上述した従来技術の問題点に鑑みて。The present invention has been made in view of the problems of the prior art described above.

安価で特性の優れた貴金属温度センサを提供することを
目的とするものである。
The purpose of this invention is to provide a noble metal temperature sensor that is inexpensive and has excellent characteristics.

課題を解決するための手段 上記の問題点を解決するために本発明は、セラミックス
等の絶縁性基体上に着膜時基体温度750°C以上90
0℃未満で着膜した下地膜の上部に。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a substrate temperature of 750°C or higher when depositing a film on an insulating substrate such as ceramics.
On top of the base film deposited at temperatures below 0°C.

その下地膜と同一の貴金属からなる薄膜を形成したもの
である。
A thin film made of the same noble metal as the base film is formed.

作用 セラミックス等の絶縁性基体上K、基体温度750℃以
上900”C未満で着膜した下地膜は部分的に塊状とな
り、平面でみると島状構造をとり1部分的には不連続状
態となり電気的襦続は連続状態のものに比べて不充分で
ある。しかし塊状部分では膜面における伝導電子の散乱
の増大といった現象はないから、TCRは金属固有の値
とはソ同じ値が得られる。次にこの下地膜と同一の貴金
属からなる薄膜をこの下地膜上に作成することにより。
The base film deposited on an insulating substrate such as functional ceramics at a substrate temperature of 750°C or more and less than 900"C becomes partially lumpy, and when viewed from above, it takes on an island-like structure and partially becomes discontinuous. The electrical continuity is insufficient compared to that in the continuous state. However, in the lumpy part, there is no phenomenon such as increased scattering of conduction electrons on the film surface, so the TCR value is the same as the value specific to the metal. .Next, by creating a thin film made of the same noble metal as this base film on this base film.

塊状、島状部分間の電気的接続を増やすことにより金属
固有とはソ同じ値のTCRを有し、かつ電気的接続も連
続状態となった良好な金属温度センサを容易に作成する
ことができる。また薄膜を利用したものであるから小さ
な形状1寸法で作ることができ、熱応答性が小さく、高
い抵抗値を作ることができる。
By increasing the electrical connections between lumpy and island-like parts, it is possible to easily create a good metal temperature sensor that has the same TCR value as that unique to metals and has continuous electrical connections. . In addition, since it uses a thin film, it can be made in a small shape with one dimension, and has low thermal response and a high resistance value.

実施例 以下、本発明の詳細な説明する。Example The present invention will be explained in detail below.

薄膜の作成は抵抗加熱式真空蒸着法によって行なった。The thin film was created using a resistance heating vacuum evaporation method.

下地膜の厚みは各側とも4000オングストロームとし
厚みは水晶式厚みモニターにより着膜時監視によシ制御
した。下地膜、上部薄膜は同一の貴金属で、各側とも白
金とした。下地膜。
The thickness of the base film was 4000 angstroms on each side, and the thickness was controlled by monitoring the film deposition using a crystal thickness monitor. The base film and upper thin film were made of the same noble metal, and platinum was used on each side. Base film.

上部薄膜の着膜時加熱はハロゲンヒータによる輻射加熱
とし、基板表面温度を測定し、加熱を制御した。上部薄
膜着膜時加熱は各側とも基板表面温度で300℃とした
0下地膜着膜時加熱はいづれも基板表面温度で、比較例
1で700℃、実施例1で750’C,実施例2で80
0°C1実施例3で880℃、比較例6で960℃とし
た。上部薄膜の厚みは各側とも1000オングストロー
ムとした。基体には平坦度0.2ミクロンRaであるア
ルミナ基板を使用した。なお、従来例として、上部薄膜
の存在を除いて実施例2と同じ条件で作成したものを示
す。各側による特性を表1に示す。また、第1図〜第4
図に各側によシ作られたセンサの模式図を示しており1
図中1はアルミナ基板。
The heating during deposition of the upper thin film was performed by radiation heating using a halogen heater, and the heating was controlled by measuring the substrate surface temperature. Heating during the deposition of the upper thin film was at the substrate surface temperature of 300°C on each side. Heating during the deposition of the base film was at the substrate surface temperature of 700°C in Comparative Example 1, 750°C in Example 1, and 750°C in Example 1. 80 in 2
0°C1 In Example 3, the temperature was 880°C, and in Comparative Example 6, it was 960°C. The thickness of the upper thin film was 1000 angstroms on each side. An alumina substrate with a flatness of 0.2 micron Ra was used as the base. Note that, as a conventional example, one prepared under the same conditions as Example 2 except for the presence of the upper thin film is shown. Table 1 shows the characteristics of each side. Also, Figures 1 to 4
The figure shows a schematic diagram of the sensor made on each side.
1 in the figure is an alumina substrate.

2は下地膜、3は上部薄膜である。2 is a base film, and 3 is an upper thin film.

なお、実施例として貴金属に白金を用いたが、その他の
貴金属1例えばパラジウム等を使用することができる。
Although platinum is used as the noble metal in the embodiment, other noble metals such as palladium can be used.

また、基体としてアルミナ基板を用いたが、その他の絶
縁性基体、例えば石英円筒を使用することができる。
Further, although an alumina substrate was used as the base, other insulating bases, such as a quartz cylinder, may be used.

(以下余 白) このように比較例1においては、第2図のように下地膜
2の着膜温度が低いため貴金属の塊状部分の存在が小さ
く、膜面における伝導電子の散乱が太き(TCRが小さ
くなっていると考えられる。
(Left below) In Comparative Example 1, as shown in Figure 2, since the deposition temperature of the base film 2 is low, the presence of lumpy parts of the precious metal is small, and the scattering of conduction electrons on the film surface is large ( It is thought that TCR is becoming smaller.

また比較例2においては第3図のように塊状部分が大き
くなりすぎ、下地膜2の塊状部分間の電気的接続が上部
薄膜3に依存しているため、上部薄膜3のTOHの影響
が大きいと考えられる。
Furthermore, in Comparative Example 2, the lumpy portions are too large as shown in FIG. 3, and the electrical connection between the lumpy portions of the base film 2 depends on the upper thin film 3, so the TOH effect of the upper thin film 3 is large. it is conceivable that.

実施例1〜3においては、第1図のように下地膜2の塊
状、島状部分の電気的接続が上部薄膜3により良好にな
されているため、金属固有のTCP約3.900 pp
m/’Cと近似した値が得られている。
In Examples 1 to 3, as shown in FIG. 1, the electrical connection of the bulky and island-like portions of the base film 2 is well established by the upper thin film 3, so that the metal-specific TCP is approximately 3.900 pp.
A value close to m/'C is obtained.

従来例で示すように実施例2と同条件で作成した下地膜
2も、第4図のように上部薄膜による電気的接続が得ら
れないため、良好なTORに達しておらず、上部薄膜の
効果を示すものと考えられる。
As shown in the conventional example, the base film 2 prepared under the same conditions as in Example 2 also did not reach a good TOR because electrical connection through the upper thin film could not be obtained as shown in FIG. This is considered to be effective.

発明の効果 以上のように本発明によれば、金属固有のTCRと近似
した値の薄膜を得ることができ、安価で特性の優れた薄
膜温度センサが実現できる。
Effects of the Invention As described above, according to the present invention, it is possible to obtain a thin film having a value similar to the TCR specific to metals, and to realize a thin film temperature sensor with excellent characteristics at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1〜3を示す断面模式図、第2
図は下地膜着膜温度が低い状態での断面模式図、第3図
は下地膜着膜温度が高い状態での断面模式図、第4図は
上部薄膜のない従来例を示す断面模式図である。 1・・・・・・アルミナ基板、2・・・・・・下地膜、
3・・・・・・上部薄膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第4図
FIG. 1 is a schematic cross-sectional view showing Examples 1 to 3 of the present invention, and FIG.
The figure is a schematic cross-sectional diagram when the base film deposition temperature is low, Figure 3 is a schematic cross-sectional diagram when the base film deposition temperature is high, and Figure 4 is a schematic cross-sectional diagram showing a conventional example without an upper thin film. be. 1... Alumina substrate, 2... Base film,
3...Top thin film. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 4

Claims (1)

【特許請求の範囲】[Claims] セラミックス等の絶縁性基体上に着膜時基体温度750
℃以上900℃未満で着膜した下地膜の上部に、その下
地膜と同一の貴金属からなる薄膜を形成した薄膜温度セ
ンサ。
Substrate temperature 750 when depositing a film on an insulating substrate such as ceramics
A thin film temperature sensor in which a thin film made of the same noble metal as the base film is formed on top of a base film deposited at a temperature of 0.degree. C. or more and less than 900.degree.
JP3424788A 1988-02-17 1988-02-17 Thin-film temperature sensor Pending JPH01208806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3424788A JPH01208806A (en) 1988-02-17 1988-02-17 Thin-film temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3424788A JPH01208806A (en) 1988-02-17 1988-02-17 Thin-film temperature sensor

Publications (1)

Publication Number Publication Date
JPH01208806A true JPH01208806A (en) 1989-08-22

Family

ID=12408834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3424788A Pending JPH01208806A (en) 1988-02-17 1988-02-17 Thin-film temperature sensor

Country Status (1)

Country Link
JP (1) JPH01208806A (en)

Similar Documents

Publication Publication Date Title
US5006421A (en) Metalization systems for heater/sensor elements
JP2829416B2 (en) Gas sensing element
US5147523A (en) Thin film gas sensor
JP2000150204A (en) Ntc thermistor and chip ntc thermistor
JPH0354841B2 (en)
CN1007764B (en) Film resistor temperature sensor and manufacturing method thereof
JPH01208806A (en) Thin-film temperature sensor
JPS61181103A (en) Platinum temperature measuring resistor
JPH01208809A (en) Thin-film temperature sensor
JPS61155848A (en) Thin film type sensor for combustible gas
JPH05307045A (en) Flow speed sensor
JPS58100472A (en) Temperature sensor and manufacture thereof
JPH04273050A (en) Gas sensor
JPS61161701A (en) Thermistor
JP2679811B2 (en) Gas detector
JPH0154869B2 (en)
JP2884791B2 (en) Membrane resistor for flow sensor
JPS6057681B2 (en) temperature detection element
JPH03124075A (en) Superconducting element
JP2913793B2 (en) Thermal flow sensor
JPH02263127A (en) Thin film thermometer and its manufacture
JPH02216043A (en) Driving of gas sensor
JPS62145702A (en) Manufacture of temperature measuring platinum resistor
JPS62267629A (en) Thermometer for cryogenic temperature
JP2003014517A (en) Flow sensor