JPH01208806A - Thin-film temperature sensor - Google Patents
Thin-film temperature sensorInfo
- Publication number
- JPH01208806A JPH01208806A JP3424788A JP3424788A JPH01208806A JP H01208806 A JPH01208806 A JP H01208806A JP 3424788 A JP3424788 A JP 3424788A JP 3424788 A JP3424788 A JP 3424788A JP H01208806 A JPH01208806 A JP H01208806A
- Authority
- JP
- Japan
- Prior art keywords
- film
- thin
- temperature
- temperature sensor
- foundation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 29
- 239000010408 film Substances 0.000 claims abstract description 32
- 239000000758 substrate Substances 0.000 claims abstract description 15
- 229910000510 noble metal Inorganic materials 0.000 claims abstract description 8
- 239000000919 ceramic Substances 0.000 claims abstract description 4
- 238000000151 deposition Methods 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 abstract description 18
- 239000002184 metal Substances 0.000 abstract description 18
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 abstract description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 5
- 229910052697 platinum Inorganic materials 0.000 abstract description 4
- 230000004043 responsiveness Effects 0.000 abstract 1
- 230000008021 deposition Effects 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000002772 conduction electron Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Thermistors And Varistors (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は温度変化と抵抗値変化の間に相関をもった薄膜
温度センサに関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a thin film temperature sensor that has a correlation between temperature change and resistance value change.
従来の技術
金属固有の抵抗温度特性(TCR)を利用して抵抗値変
量を温度変量に変換し、温度検知をするところの金属温
度センサには、金属線を利用したものと薄膜を利用した
ものの2種類がある。このうち金属線を利用したものは
金属細線をそのまま張り渡したり、絶縁基体上に金属線
をらせん状に巻きつける等の処置により固定されたもの
が温度センサとして用いられている。Conventional technology Metal temperature sensors that detect temperature by converting resistance variables into temperature variables using the temperature resistance characteristics (TCR) unique to metals include those that use metal wires and those that use thin films. There are two types. Among these, those that utilize metal wires are used as temperature sensors, such as by simply stretching thin metal wires or by winding the metal wires in a spiral shape onto an insulating substrate.
また金属温度センサの中で、測定精度の向上。Also improved measurement accuracy among metal temperature sensors.
長期安定性の向上等、信頼性を確保する目的としたもの
には特に貴金属が用いられている。Precious metals are particularly used in products intended to ensure reliability, such as improving long-term stability.
発明が解決しようとする課頭
上記のような温度センサにおいて、金属線を利用したも
のは、細線化にも限界があるので、数100Ω程度の抵
抗値を得ようさすると、金R線の長さを充分に増す必要
があシ、形状2寸法が大きくなるという欠点を有してい
た。そして、形状9寸法が大きくなると熱応答性が犬き
くなることから、温度センサとして支障の生ずる場合も
あ二た。−方、形状2寸法を小さくすると熱応答性は良
くなるが、金属線が短がくなるので得られる抵抗値が低
くなり、温度変化に対する抵抗値変化量が小さく、温度
センサとして使用するだめの信号量としては不充分なも
のであった。Problems to be Solved by the Invention In the above-mentioned temperature sensors that use metal wires, there is a limit to how thin the wires can be. However, it is necessary to sufficiently increase the thickness, which has the disadvantage that the two dimensions of the shape become large. Further, as the dimensions of the shape 9 become larger, the thermal response becomes poorer, which may cause problems as a temperature sensor. - On the other hand, if the two dimensions of the shape are made smaller, the thermal response improves, but since the metal wire becomes shorter, the resistance value obtained becomes lower, and the amount of change in resistance value with respect to temperature changes is small, making it difficult to use as a temperature sensor. The quantity was insufficient.
また、薄膜を利用して作ったものは、同じ抵抗値で比較
すると、金属線を利用して作ったものよシ、小さな形状
1寸法で作成することができるので熱応答性は小さくな
り、あるいは数XΩ程度までの比較的高い抵抗値を作る
ことも容易である等。Also, when comparing the same resistance value, products made using thin films can be made with a smaller shape and one dimension than those made using metal wires, so the thermal response is smaller, or It is also easy to create a relatively high resistance value of up to several XΩ.
多くの長所を有している。しかしながら、膜状であると
膜面における伝導電子の散乱が増大し、この散乱の温度
依存性が小さいことからTCRが金属固有の値よりも小
さくなるという傾向があった。It has many advantages. However, if the metal is in the form of a film, the scattering of conduction electrons on the film surface increases, and since the temperature dependence of this scattering is small, the TCR tends to be smaller than the value inherent to the metal.
この対策として、膜厚を厚くする等の処置が施されたが
、製品コストが高くなシ、安価な製品を提供することが
困矯であった。As a countermeasure to this problem, measures such as increasing the film thickness have been taken, but the product cost is high and it is difficult to provide an inexpensive product.
本発明は、上述した従来技術の問題点に鑑みて。The present invention has been made in view of the problems of the prior art described above.
安価で特性の優れた貴金属温度センサを提供することを
目的とするものである。The purpose of this invention is to provide a noble metal temperature sensor that is inexpensive and has excellent characteristics.
課題を解決するための手段
上記の問題点を解決するために本発明は、セラミックス
等の絶縁性基体上に着膜時基体温度750°C以上90
0℃未満で着膜した下地膜の上部に。Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a substrate temperature of 750°C or higher when depositing a film on an insulating substrate such as ceramics.
On top of the base film deposited at temperatures below 0°C.
その下地膜と同一の貴金属からなる薄膜を形成したもの
である。A thin film made of the same noble metal as the base film is formed.
作用
セラミックス等の絶縁性基体上K、基体温度750℃以
上900”C未満で着膜した下地膜は部分的に塊状とな
り、平面でみると島状構造をとり1部分的には不連続状
態となり電気的襦続は連続状態のものに比べて不充分で
ある。しかし塊状部分では膜面における伝導電子の散乱
の増大といった現象はないから、TCRは金属固有の値
とはソ同じ値が得られる。次にこの下地膜と同一の貴金
属からなる薄膜をこの下地膜上に作成することにより。The base film deposited on an insulating substrate such as functional ceramics at a substrate temperature of 750°C or more and less than 900"C becomes partially lumpy, and when viewed from above, it takes on an island-like structure and partially becomes discontinuous. The electrical continuity is insufficient compared to that in the continuous state. However, in the lumpy part, there is no phenomenon such as increased scattering of conduction electrons on the film surface, so the TCR value is the same as the value specific to the metal. .Next, by creating a thin film made of the same noble metal as this base film on this base film.
塊状、島状部分間の電気的接続を増やすことにより金属
固有とはソ同じ値のTCRを有し、かつ電気的接続も連
続状態となった良好な金属温度センサを容易に作成する
ことができる。また薄膜を利用したものであるから小さ
な形状1寸法で作ることができ、熱応答性が小さく、高
い抵抗値を作ることができる。By increasing the electrical connections between lumpy and island-like parts, it is possible to easily create a good metal temperature sensor that has the same TCR value as that unique to metals and has continuous electrical connections. . In addition, since it uses a thin film, it can be made in a small shape with one dimension, and has low thermal response and a high resistance value.
実施例 以下、本発明の詳細な説明する。Example The present invention will be explained in detail below.
薄膜の作成は抵抗加熱式真空蒸着法によって行なった。The thin film was created using a resistance heating vacuum evaporation method.
下地膜の厚みは各側とも4000オングストロームとし
厚みは水晶式厚みモニターにより着膜時監視によシ制御
した。下地膜、上部薄膜は同一の貴金属で、各側とも白
金とした。下地膜。The thickness of the base film was 4000 angstroms on each side, and the thickness was controlled by monitoring the film deposition using a crystal thickness monitor. The base film and upper thin film were made of the same noble metal, and platinum was used on each side. Base film.
上部薄膜の着膜時加熱はハロゲンヒータによる輻射加熱
とし、基板表面温度を測定し、加熱を制御した。上部薄
膜着膜時加熱は各側とも基板表面温度で300℃とした
0下地膜着膜時加熱はいづれも基板表面温度で、比較例
1で700℃、実施例1で750’C,実施例2で80
0°C1実施例3で880℃、比較例6で960℃とし
た。上部薄膜の厚みは各側とも1000オングストロー
ムとした。基体には平坦度0.2ミクロンRaであるア
ルミナ基板を使用した。なお、従来例として、上部薄膜
の存在を除いて実施例2と同じ条件で作成したものを示
す。各側による特性を表1に示す。また、第1図〜第4
図に各側によシ作られたセンサの模式図を示しており1
図中1はアルミナ基板。The heating during deposition of the upper thin film was performed by radiation heating using a halogen heater, and the heating was controlled by measuring the substrate surface temperature. Heating during the deposition of the upper thin film was at the substrate surface temperature of 300°C on each side. Heating during the deposition of the base film was at the substrate surface temperature of 700°C in Comparative Example 1, 750°C in Example 1, and 750°C in Example 1. 80 in 2
0°C1 In Example 3, the temperature was 880°C, and in Comparative Example 6, it was 960°C. The thickness of the upper thin film was 1000 angstroms on each side. An alumina substrate with a flatness of 0.2 micron Ra was used as the base. Note that, as a conventional example, one prepared under the same conditions as Example 2 except for the presence of the upper thin film is shown. Table 1 shows the characteristics of each side. Also, Figures 1 to 4
The figure shows a schematic diagram of the sensor made on each side.
1 in the figure is an alumina substrate.
2は下地膜、3は上部薄膜である。2 is a base film, and 3 is an upper thin film.
なお、実施例として貴金属に白金を用いたが、その他の
貴金属1例えばパラジウム等を使用することができる。Although platinum is used as the noble metal in the embodiment, other noble metals such as palladium can be used.
また、基体としてアルミナ基板を用いたが、その他の絶
縁性基体、例えば石英円筒を使用することができる。Further, although an alumina substrate was used as the base, other insulating bases, such as a quartz cylinder, may be used.
(以下余 白)
このように比較例1においては、第2図のように下地膜
2の着膜温度が低いため貴金属の塊状部分の存在が小さ
く、膜面における伝導電子の散乱が太き(TCRが小さ
くなっていると考えられる。(Left below) In Comparative Example 1, as shown in Figure 2, since the deposition temperature of the base film 2 is low, the presence of lumpy parts of the precious metal is small, and the scattering of conduction electrons on the film surface is large ( It is thought that TCR is becoming smaller.
また比較例2においては第3図のように塊状部分が大き
くなりすぎ、下地膜2の塊状部分間の電気的接続が上部
薄膜3に依存しているため、上部薄膜3のTOHの影響
が大きいと考えられる。Furthermore, in Comparative Example 2, the lumpy portions are too large as shown in FIG. 3, and the electrical connection between the lumpy portions of the base film 2 depends on the upper thin film 3, so the TOH effect of the upper thin film 3 is large. it is conceivable that.
実施例1〜3においては、第1図のように下地膜2の塊
状、島状部分の電気的接続が上部薄膜3により良好にな
されているため、金属固有のTCP約3.900 pp
m/’Cと近似した値が得られている。In Examples 1 to 3, as shown in FIG. 1, the electrical connection of the bulky and island-like portions of the base film 2 is well established by the upper thin film 3, so that the metal-specific TCP is approximately 3.900 pp.
A value close to m/'C is obtained.
従来例で示すように実施例2と同条件で作成した下地膜
2も、第4図のように上部薄膜による電気的接続が得ら
れないため、良好なTORに達しておらず、上部薄膜の
効果を示すものと考えられる。As shown in the conventional example, the base film 2 prepared under the same conditions as in Example 2 also did not reach a good TOR because electrical connection through the upper thin film could not be obtained as shown in FIG. This is considered to be effective.
発明の効果
以上のように本発明によれば、金属固有のTCRと近似
した値の薄膜を得ることができ、安価で特性の優れた薄
膜温度センサが実現できる。Effects of the Invention As described above, according to the present invention, it is possible to obtain a thin film having a value similar to the TCR specific to metals, and to realize a thin film temperature sensor with excellent characteristics at low cost.
第1図は本発明の実施例1〜3を示す断面模式図、第2
図は下地膜着膜温度が低い状態での断面模式図、第3図
は下地膜着膜温度が高い状態での断面模式図、第4図は
上部薄膜のない従来例を示す断面模式図である。
1・・・・・・アルミナ基板、2・・・・・・下地膜、
3・・・・・・上部薄膜。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
第2図
第4図FIG. 1 is a schematic cross-sectional view showing Examples 1 to 3 of the present invention, and FIG.
The figure is a schematic cross-sectional diagram when the base film deposition temperature is low, Figure 3 is a schematic cross-sectional diagram when the base film deposition temperature is high, and Figure 4 is a schematic cross-sectional diagram showing a conventional example without an upper thin film. be. 1... Alumina substrate, 2... Base film,
3...Top thin film. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 4
Claims (1)
℃以上900℃未満で着膜した下地膜の上部に、その下
地膜と同一の貴金属からなる薄膜を形成した薄膜温度セ
ンサ。Substrate temperature 750 when depositing a film on an insulating substrate such as ceramics
A thin film temperature sensor in which a thin film made of the same noble metal as the base film is formed on top of a base film deposited at a temperature of 0.degree. C. or more and less than 900.degree.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3424788A JPH01208806A (en) | 1988-02-17 | 1988-02-17 | Thin-film temperature sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3424788A JPH01208806A (en) | 1988-02-17 | 1988-02-17 | Thin-film temperature sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01208806A true JPH01208806A (en) | 1989-08-22 |
Family
ID=12408834
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3424788A Pending JPH01208806A (en) | 1988-02-17 | 1988-02-17 | Thin-film temperature sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01208806A (en) |
-
1988
- 1988-02-17 JP JP3424788A patent/JPH01208806A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5006421A (en) | Metalization systems for heater/sensor elements | |
JP2829416B2 (en) | Gas sensing element | |
US5147523A (en) | Thin film gas sensor | |
JP2000150204A (en) | Ntc thermistor and chip ntc thermistor | |
JPH0354841B2 (en) | ||
CN1007764B (en) | Film resistor temperature sensor and manufacturing method thereof | |
JPH01208806A (en) | Thin-film temperature sensor | |
JPS61181103A (en) | Platinum temperature measuring resistor | |
JPH01208809A (en) | Thin-film temperature sensor | |
JPS61155848A (en) | Thin film type sensor for combustible gas | |
JPH05307045A (en) | Flow speed sensor | |
JPS58100472A (en) | Temperature sensor and manufacture thereof | |
JPH04273050A (en) | Gas sensor | |
JPS61161701A (en) | Thermistor | |
JP2679811B2 (en) | Gas detector | |
JPH0154869B2 (en) | ||
JP2884791B2 (en) | Membrane resistor for flow sensor | |
JPS6057681B2 (en) | temperature detection element | |
JPH03124075A (en) | Superconducting element | |
JP2913793B2 (en) | Thermal flow sensor | |
JPH02263127A (en) | Thin film thermometer and its manufacture | |
JPH02216043A (en) | Driving of gas sensor | |
JPS62145702A (en) | Manufacture of temperature measuring platinum resistor | |
JPS62267629A (en) | Thermometer for cryogenic temperature | |
JP2003014517A (en) | Flow sensor |