JPS6140526A - Temperature sensor - Google Patents

Temperature sensor

Info

Publication number
JPS6140526A
JPS6140526A JP16272184A JP16272184A JPS6140526A JP S6140526 A JPS6140526 A JP S6140526A JP 16272184 A JP16272184 A JP 16272184A JP 16272184 A JP16272184 A JP 16272184A JP S6140526 A JPS6140526 A JP S6140526A
Authority
JP
Japan
Prior art keywords
layer
bridge
thermistor material
temperature sensor
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16272184A
Other languages
Japanese (ja)
Other versions
JPH0733979B2 (en
Inventor
Mitsuteru Kimura
光照 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP59162721A priority Critical patent/JPH0733979B2/en
Publication of JPS6140526A publication Critical patent/JPS6140526A/en
Publication of JPH0733979B2 publication Critical patent/JPH0733979B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • G01K7/223Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor characterised by the shape of the resistive element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/16Special arrangements for conducting heat from the object to the sensitive element
    • G01K1/18Special arrangements for conducting heat from the object to the sensitive element for reducing thermal inertia

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To improve sensitivity and response by reducing heat capacity, by providing a membrane like bridge part to a temp. sensitive part. CONSTITUTION:A thermistor material layer 5 is provided to the membrane like bridge part of a bridge structure and superposed to two conductor layers 4a, 4b so as to be held between the conductor layers 4a, 4b in the vicinity of the center of the bridge structure to detect electric resistance only in the thickness direction of the thermistor material layer 5 in the superposed region. By this constitution, the heat capacity of the bridge part can be reduced and, because the bridge part is a membrane like one, the contact area with gas in vacuum is largely taken as compared with a conventional Pt-wire and, therefore, a high speed and high sensitivity are obtained.

Description

【発明の詳細な説明】 本発明は、感温部を薄膜状の橋架部に設けたために熱容
量が小さくなり、微少熱量で昇温可能な高速応答の感温
部をもつサーミスタ形温度センサにおいて、感温部の熱
容量をできるだけ小さくさせるとともに、高抵抗部のサ
ーミスタ材料も使用できるように工夫した温度センサに
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a thermistor-type temperature sensor having a high-speed response temperature-sensing part that has a small heat capacity because the temperature-sensing part is provided in a thin film-like bridge part and can raise the temperature with a small amount of heat. The present invention relates to a temperature sensor devised so that the heat capacity of the temperature-sensing part is made as small as possible and thermistor material of the high-resistance part can also be used.

本出願人は、先に熱線風速計、ビラニー真空計、ガス検
出器などに応用できる局部加熱用小形の電熱器として本
発明と同様な嬌架槽造をもち、消費電力が小さく、高速
応答性の電熱器(たとえば、特願昭54−2755.9
)を提案した。また、同様のm架構造で、瀉架槽造材料
層にサーミスタ材料を用いた「光センサ」を提案し、橋
架部に電熱部とサーミスタ材料層及びガス感応物質層を
配した[ガス検出器J′をも提案している。
The present applicant has previously developed a small electric heater for local heating that can be applied to hot-wire anemometers, Villany vacuum gauges, gas detectors, etc., which has a similar structure to the present invention, and which has low power consumption and high-speed response. Electric heaters (for example, Japanese Patent Application No. 54-2755.9)
) was proposed. We also proposed an "optical sensor" with a similar m-frame structure, using a thermistor material in the diaphragm tank building material layer, and an electric heating part, a thermistor material layer, and a gas-sensitive material layer arranged in the bridge part [gas detector]. J' is also proposed.

本発明は、上述のような櫛架購造の薄膜状濁架部にサー
ミスタ材料層を設け、このサーミスタ材料層を感温部と
する温度センサで、電熱部とも組合せることも可能とし
、m架部の熱容量を特に小さくさせるために、wIA架
部領域内にサーミスタ材料層の配置を限定し、かつ、ア
モルファスシリコンのような高抵抗率のサーミスタ材料
も使用できるように電極となる導電体層により、1架部
中央付近のサーミスタ材料層をサンドイッチにし、その
導電体層の重なる領域のサーミスタ材料層の厚み方向の
抵抗のみを検出できるようにして、通電加熱や受光加熱
により、最も温度上昇する嬌架部中央付近の温度を有効
に検出できるように改良した温度センサに関するもので
ある。
The present invention provides a temperature sensor in which a thermistor material layer is provided on the thin film suspension part of the comb rack as described above, and this thermistor material layer serves as a temperature sensing part, which can also be combined with an electric heating part. In order to particularly reduce the heat capacity of the bridge, the arrangement of the thermistor material layer is limited within the wIA bridge region, and the conductor layer that serves as the electrode is designed to allow the use of high-resistivity thermistor materials such as amorphous silicon. By sandwiching the thermistor material layer near the center of one frame, it is possible to detect only the resistance in the thickness direction of the thermistor material layer in the area where the conductor layer overlaps, and the temperature rises the most due to current heating or light receiving heating. This invention relates to a temperature sensor that has been improved to be able to effectively detect the temperature near the center of the roof frame.

以下、図面を参照しながら詳細に説明する。第1図は、
本発明による温度センサを、たとえば、ビラニー真空ゲ
ージに好適な構造にした一実施例を説明するための平面
図、第2図は、第1図のI−I線における横断面図で、
図中、1は、ポリイミド板、2は、ポリイミド1に接着
剤11により張りつけた銅はくである。3は、電気絶縁
層で、たとえば、0.2f*厚程度の窒化けい素膜(S
 1s N4膜)であり、プラズマCVD技術とホトリ
ソグラフィー技術により、容易に作製できる。4a14
bは導電体層であり、櫛架部の領域内に残るようにホト
リソグラフィー技術によりパターン形成された約0.5
P飢厚のアモルファスシリコン(α下、a−5iとよぶ
)層である高抵抗率のサーミスタ材料層5を8!!架部
中央付近ではさんであるので、両県、電体層から取り出
したリード線9a19bからみた電気抵抗は、上部導電
体層4bと下部導電体層4aの重なり合う領域のa−5
i層5の上下厚み方向の電気抵抗とみなすことができる
。従って、感温部は、両導電体層4a、4bの重なり合
う領域とみなされる。a−3i55は、プラズマCVD
技術で容易に作製でき、たとえば、それぞれクロム(C
r)とアルミニウム(AI)の二重層の金属導体から成
る導電体Mlr t a + 4 bとオーム性接触が
得られやすいように、両電極側をリン(P)などをドー
プして低抵抗化した方がよい。尚、サーミスタ材料とし
ては、B定数が大きい方が望ましく、実験によれば、P
をドープしないa−5t材料の方が、B定数が大きいの
で、Pをドープするのは、a−3i層5のうち、導電体
W4a+4b側のほんの薄い層(たとえば、それぞれ5
00A厚程度の層)とすればよい。
A detailed description will be given below with reference to the drawings. Figure 1 shows
FIG. 2 is a plan view for explaining an embodiment of the temperature sensor according to the present invention having a structure suitable for, for example, a Villany vacuum gauge, and FIG. 2 is a cross-sectional view taken along the line I-I in FIG.
In the figure, 1 is a polyimide plate, and 2 is a copper foil attached to the polyimide 1 with an adhesive 11. 3 is an electrical insulating layer, for example, a silicon nitride film (S
1s N4 film) and can be easily produced using plasma CVD technology and photolithography technology. 4a14
b is a conductive layer, which is patterned by photolithography so as to remain within the area of the comb portion.
The high resistivity thermistor material layer 5, which is a P-thick amorphous silicon (α layer, referred to as a-5i) layer, is 8! ! Since they are sandwiched near the center of the frame, the electrical resistance seen from the lead wire 9a19b taken out from the conductor layer in both prefectures is a-5 in the overlapping area of the upper conductor layer 4b and lower conductor layer 4a.
It can be regarded as the electrical resistance in the vertical thickness direction of the i-layer 5. Therefore, the temperature sensing portion is considered to be the area where both conductive layers 4a and 4b overlap. a-3i55 is plasma CVD
For example, chromium (C
To make it easier to obtain ohmic contact with the conductor Mlr t a + 4 b, which is made of a double-layer metal conductor of r) and aluminum (AI), both electrode sides are doped with phosphorus (P) to lower the resistance. It's better to do so. In addition, as a thermistor material, it is desirable that the B constant is large, and according to experiments, P
Since the a-5t material that is not doped with P has a larger B constant, P is doped only in a thin layer (for example, 5
00A thick layer).

本実施例は、ビラニー真空ゲージへの応用例であるので
、m架部には、電流を通じることにより発熱する導電体
層6+ 6al 6bl 5cを電気絶縁層3の下に密
着し、かつ、飼はく2から電気的に分踵するための電気
絶縁層7の上に形成しである。導電体層6+ 6a+ 
6b+ 6cは、たとえば、白金(Pt)のスパッタ膜
やモリブデンシリサイドなどの金属シリサイドなどのC
VD膜のQ、37L%厚程度の膜厚で形成できる。6+
 6a+ 6b、ecは、一体層であるが、導電体層6
のうち、リード線lQa 、 10bを取り出す領域に
対応させて、左右の電極部をl□a、6bとし、発熱す
る橋架部領域を60としている。導電体層6として、金
属シリサイドを使用したときは、リード線10a 、 
10bの引き出しのため、左右電極部6a+6bには、
AI蒸着膜などを形成させる必要がある。8a+8bは
銅はく2をエッチにより除去した溝であり、8Cは、溝
8a、8bの形成の際、エッチ時間を長くし、サイドエ
ッチを積極的に利用して、上部の多層薄膜構造の嬌架部
を残し、鰐を除去し貫通させた空どう部である。この溝
8a+8bと空どう部8Cの作製は、リード線9’a 
+  9b  ; 10a + ]、Obの引き出し前
にホトリソグラフィー技術を用いて容易に形成できる。
Since this embodiment is an example of application to a Villany vacuum gauge, a conductor layer 6+ 6al 6bl 5c that generates heat when an electric current is passed is placed in close contact with the underside of the electrical insulating layer 3 on the m-frame part. It is formed on an electrically insulating layer 7 for electrical separation from the foil 2. Conductor layer 6+ 6a+
6b+6c is, for example, C such as a platinum (Pt) sputtered film or a metal silicide such as molybdenum silicide.
It can be formed with a film thickness of about 37L% of the Q of the VD film. 6+
6a+ 6b, ec are integral layers, but the conductor layer 6
Of these, the left and right electrode portions are designated as 1□a and 6b, and the bridge region that generates heat is designated as 60, corresponding to the area from which the lead wires 1Qa and 10b are taken out. When metal silicide is used as the conductor layer 6, the lead wire 10a,
10b, the left and right electrode parts 6a+6b are
It is necessary to form an AI vapor deposition film or the like. 8a+8b are grooves in which the copper foil 2 is removed by etching, and 8C is a groove in which the etching time is lengthened and side etching is actively utilized when forming the grooves 8a and 8b, to improve the strength of the upper multilayer thin film structure. This is the hollow part where the bridge was left and the crocodile was removed and penetrated. The grooves 8a+8b and the hollow portion 8C are created using the lead wire 9'a.
+ 9b; 10a + ], can be easily formed using photolithography technology before drawing out the Ob.

以上のように本発明をビラニー真空ゲージとして実施し
た場合、櫛架部の熱容量が小さくでき、かつ、薄膜状で
あるので、真空中のガスとの接触面積が、従来のpt線
などに比し非常に大きくとれるため高速・高感度となる
こと、B定数の大きなサーミスタ材料を発熱用導電体層
とは独立に採用できること、更に、サーミスタ材料が、
a−3iのように大きな光導電性を有していても、金属
などの上部導電体層を重ねているので、感温部には、光
が当らないようにでき温度によるサーミスタ抵抗の変化
のみを検出できるなどの利点がある。
As described above, when the present invention is implemented as a Villany vacuum gauge, the heat capacity of the comb part can be reduced, and since it is in the form of a thin film, the contact area with gas in vacuum is smaller than that of conventional PT wires. Thermistor material can be very large, resulting in high speed and high sensitivity, and a thermistor material with a large B constant can be used independently of the heating conductor layer.
Even if it has high photoconductivity like the a-3i, it has an upper conductor layer made of metal, etc., so the temperature sensing part can be prevented from being exposed to light, and only the thermistor resistance changes due to temperature. It has the advantage of being able to detect

本発明を赤外線などの光センサとして実施する場合は、
第1図および第2図における通電により発熱させる導電
体層6、電気絶縁層7およびリード線10a + 10
bを除去し、光の吸収層としての全黒などの層を櫛架部
の中央付近の上部導電体層4b上に配し1c構造にすれ
ばよい。受光部となるm架部の熱容量が小さくできるの
で、高速・高感度の熱形の光センサが実現できること、
高抵抗系のサーミスタ材料5を採用することにより高感
度化できること、更に、光導電性のサーミスタ材料5を
用い全黒層で充分吸収しきれない光があったとしても上
部導電体M4bでじゃ光されるので、受光によるサーミ
スタ材料5の温度変化に伴う抵抗変化のみ検出できるな
どの利点がある。
When implementing the present invention as an optical sensor such as infrared light,
The conductive layer 6, the electrical insulating layer 7, and the lead wires 10a+10 that generate heat when energized in FIGS. 1 and 2
b may be removed and a layer such as an all-black layer serving as a light absorbing layer may be placed on the upper conductor layer 4b near the center of the comb section to form a 1c structure. Since the heat capacity of the m-frame section that serves as the light receiving section can be reduced, a high-speed, high-sensitivity thermal optical sensor can be realized.
High sensitivity can be achieved by using a high-resistance thermistor material 5, and even if there is light that cannot be absorbed sufficiently by the entire black layer, it is blocked by the upper conductor M4b. Therefore, there are advantages such as being able to detect only the resistance change accompanying the temperature change of the thermistor material 5 due to light reception.

以上の規則から明らかなように、本発明によると櫛架部
の熱容量を極めて小さくできるので、通電による発熱を
利用する場合は、その消費電力が小さく、受光などの外
部加熱を利用する場合は、その受光量が少なくて済み、
高感度で高速応答性のある温度センサが提供できる。
As is clear from the above rules, according to the present invention, the heat capacity of the comb holder can be made extremely small, so when using heat generated by energization, the power consumption is small, and when using external heating such as light reception, The amount of light received is small,
A temperature sensor with high sensitivity and fast response can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第11Uは、本発明による温度センサを、ビラニー真空
ゲージへの応用を考えて実施した一実施例を説明するた
めの平面図、第2図は、第1図の■−■線における断面
図である。 ±・・・・ポリイミド板、 2・・・・銅はく、  3
・・・・電気絶縁層、 4a+4b・自・導電体層、 
5・・・・サーミスタ材料F7、61 6a+  6b
+ 6cm・・・通電により発熱させるための導電体層
、 7・・・・電気絶縁層、 8a18b・・・・溝、
 8c・・・・空どう部、  9a l  9b  ;
toa + 10b 、、、、リード線、 11・・・
・接首剤。
11U is a plan view for explaining an embodiment of the temperature sensor according to the present invention, which is applied to a Villany vacuum gauge, and FIG. 2 is a sectional view taken along the line ■-■ in FIG. 1. be. ±...Polyimide plate, 2...Copper foil, 3
...electrical insulating layer, 4a+4b self-conductor layer,
5...Thermistor material F7, 61 6a+ 6b
+ 6cm...Conductor layer for generating heat when energized, 7...Electrical insulating layer, 8a18b...Groove,
8c...Empty part, 9a l 9b;
toa + 10b, ,, lead wire, 11...
・Cuffix.

Claims (1)

【特許請求の範囲】 1、橋架部に感温部を設けた橋架構造の温度センサにお
いて、空どうを橋架する薄膜状の橋架構造材料層のうち
、少なくとも一層を電気絶縁層3で形成し、該電気絶縁
層3の橋架部領域内に感温材料であるサーミスタ材料層
5を配し、該サーミスタ材料層5を上部導電体層4bと
下部導電体層4aとで橋架部中央付近において、はさむ
ように重ね合せ、該重ね合せ領域におけるサーミスタ材
料層5の厚み方向の電気抵抗を検出するようにしたこと
を特徴とする温度センサ。 2、空どうを橋架する薄膜状の橋架構造材料層のうち、
一層を導電体層6とし、該導電体層6に電流を通じるこ
とにより、橋架部を発熱させるようにした特許請求の範
囲第1項記載の温度センサ。
[Claims] 1. In a temperature sensor with a bridge structure in which a temperature sensing part is provided in the bridge part, at least one layer of the thin film-like bridge structure material layer bridging the air gap is formed of an electrical insulating layer 3, A thermistor material layer 5, which is a temperature-sensitive material, is arranged in the bridge region of the electrical insulating layer 3, and the thermistor material layer 5 is sandwiched between the upper conductor layer 4b and the lower conductor layer 4a near the center of the bridge. A temperature sensor characterized in that the electrical resistance of the thermistor material layer 5 in the thickness direction in the overlapping region is detected. 2. Among the thin film-like bridging structure material layers that bridge the void,
2. The temperature sensor according to claim 1, wherein one layer is a conductor layer 6, and by passing a current through the conductor layer 6, the bridge portion generates heat.
JP59162721A 1984-07-31 1984-07-31 Temperature sensor Expired - Lifetime JPH0733979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59162721A JPH0733979B2 (en) 1984-07-31 1984-07-31 Temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59162721A JPH0733979B2 (en) 1984-07-31 1984-07-31 Temperature sensor

Publications (2)

Publication Number Publication Date
JPS6140526A true JPS6140526A (en) 1986-02-26
JPH0733979B2 JPH0733979B2 (en) 1995-04-12

Family

ID=15760013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59162721A Expired - Lifetime JPH0733979B2 (en) 1984-07-31 1984-07-31 Temperature sensor

Country Status (1)

Country Link
JP (1) JPH0733979B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62267629A (en) * 1986-05-16 1987-11-20 Japan Atom Energy Res Inst Thermometer for cryogenic temperature
JPS63277581A (en) * 1987-05-08 1988-11-15 Onoda:Kk Water-proofing treatment of light-weight aerated concrete
JPH0257302A (en) * 1988-08-23 1990-02-27 Daiken Trade & Ind Co Ltd Manufacture of inorganic decorative laminate with recessed and projecting pattern
JPH02206733A (en) * 1989-02-07 1990-08-16 Mitsuteru Kimura Infrared ray sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55119381A (en) * 1979-03-08 1980-09-13 Mitsuteru Kimura Electric heater
JPS5629130A (en) * 1979-08-16 1981-03-23 Matsushita Electric Ind Co Ltd Temperature sensor
JPS56108204U (en) * 1980-01-23 1981-08-22
JPS5870588A (en) * 1981-09-28 1983-04-27 シ−メンス・アクチエンゲゼルシヤフト Temperature sensor and method of producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55119381A (en) * 1979-03-08 1980-09-13 Mitsuteru Kimura Electric heater
JPS5629130A (en) * 1979-08-16 1981-03-23 Matsushita Electric Ind Co Ltd Temperature sensor
JPS56108204U (en) * 1980-01-23 1981-08-22
JPS5870588A (en) * 1981-09-28 1983-04-27 シ−メンス・アクチエンゲゼルシヤフト Temperature sensor and method of producing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62267629A (en) * 1986-05-16 1987-11-20 Japan Atom Energy Res Inst Thermometer for cryogenic temperature
JPH0584453B2 (en) * 1986-05-16 1993-12-02 Japan Atomic Energy Res Inst
JPS63277581A (en) * 1987-05-08 1988-11-15 Onoda:Kk Water-proofing treatment of light-weight aerated concrete
JPH0574553B2 (en) * 1987-05-08 1993-10-18 Onoda Kk
JPH0257302A (en) * 1988-08-23 1990-02-27 Daiken Trade & Ind Co Ltd Manufacture of inorganic decorative laminate with recessed and projecting pattern
JPH02206733A (en) * 1989-02-07 1990-08-16 Mitsuteru Kimura Infrared ray sensor

Also Published As

Publication number Publication date
JPH0733979B2 (en) 1995-04-12

Similar Documents

Publication Publication Date Title
US8097850B2 (en) Infrared sensor
RU2386934C2 (en) Method for manufacturing of device for detection of heat radiation comprising active microbolometre and passive microbolometre
US4384207A (en) Differential pyroelectric detector
US4469943A (en) Pyroelectric detector
JPS6140526A (en) Temperature sensor
JP3083901B2 (en) Atmosphere sensor
JP5224089B2 (en) Thermal sensor
EP3557203B1 (en) Light detector
JP3775830B2 (en) Infrared detector
TW201826511A (en) Light detector
KR100785738B1 (en) Bolometer
JPH08297052A (en) Bolometer type infrared sensor and image sensor
JPH0712658A (en) Combination sensor comprising silicon
JP2000002585A (en) Thermal infrared detecting element
JPH06103218B2 (en) Optical sensor
JP2000111396A (en) Infrared detecting element and its manufacture
JP2001215141A (en) Thermal flow-rate sensor
JP2753905B2 (en) Pyroelectric element
JPH03279826A (en) Temperature detector
JPH0445056B2 (en)
JPH04360588A (en) Composite infrared ray detector
JPH05307045A (en) Flow speed sensor
JPS6140523A (en) Thermocouple type infrared detection element
JPS6217697Y2 (en)
JPS6124929Y2 (en)