JPS62267463A - Method for depositing film - Google Patents

Method for depositing film

Info

Publication number
JPS62267463A
JPS62267463A JP10910186A JP10910186A JPS62267463A JP S62267463 A JPS62267463 A JP S62267463A JP 10910186 A JP10910186 A JP 10910186A JP 10910186 A JP10910186 A JP 10910186A JP S62267463 A JPS62267463 A JP S62267463A
Authority
JP
Japan
Prior art keywords
film
substrate
chromium
deposited
depositing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10910186A
Other languages
Japanese (ja)
Inventor
Masuzo Hattori
服部 益三
Hideo Koseki
小関 秀夫
Akihiro Ashida
芦田 晶弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10910186A priority Critical patent/JPS62267463A/en
Publication of JPS62267463A publication Critical patent/JPS62267463A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the bonding strength of an amorphous or metallic film to a substrate by depositing a base film of Cr on the surface of the substrate by ion plating and by forming the amorphous or metallic film on the base film. CONSTITUTION:A base film of Cr is formed on the surface of a ceramic or glass substrate by ion plating. An amorphous or metallic film is then formed on the base film. Thus, the bonding strength of the amorphous or metallic film to the substrate is increased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、基板表面上に膜、とくに厚nりを形成してデ
バイスを作成する場合、膜が基板により強固に付着し、
安定な膜とすることを目的とした膜の形成方法で、特に
形成する膜の厚みを増して使用する磁気ヘッドの製法な
どに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides a method for forming a film, particularly a thick film, on the surface of a substrate to form a device, in which the film adheres more firmly to the substrate.
This is a method of forming a film with the aim of making it a stable film, and particularly relates to a method of manufacturing a magnetic head in which the thickness of the film is increased.

従来の技術 近年、各産業において、種々の基板表面上に、使用目的
にあった材料を真空蒸着技術、たとえば抵抗加熱蒸着法
、電子線蒸着法、スバ・ツタ蒸着法などで膜として使用
することが多い。エレクトロニクス分野においても膜の
形成法は作成するデバイスに応じ適切に選択して用いら
れている。たとえば磁気記録に用いる磁気ヘッドは、記
録の高密度化にともない、従来のバルクタイプから膜を
用いたタイプを使用する傾向にある。これは高周波にお
けるコア堝失を減するためである。磁気ヘッドに用いる
材料、たとえばコバルト(CO)系のアモルファス磁性
材は、容易にアモルファスできるスパッタ蒸着が多く利
用され膜形成がされている。またセンダスト材は、スパ
ッタ蒸着、電子線蒸着、抵抗加熱蒸着などを利用して膜
形成されている。
Conventional technology In recent years, in various industries, materials suitable for the purpose of use are used as films on the surfaces of various substrates using vacuum evaporation techniques such as resistance heating evaporation, electron beam evaporation, and sorrel/vine evaporation. There are many. In the field of electronics as well, film formation methods are appropriately selected and used depending on the device to be created. For example, as magnetic heads used for magnetic recording become higher density recording, there is a tendency to use a film-based type instead of the conventional bulk type. This is to reduce core erosion at high frequencies. Materials used in magnetic heads, such as cobalt (CO)-based amorphous magnetic materials, are often formed into films by sputter deposition, which can easily make them amorphous. Further, the sendust material is formed into a film using sputter deposition, electron beam deposition, resistance heating deposition, or the like.

発明が解決しようとする問題点 基板表面に膜を析出する場合、基板と膜の熱膨張係数を
できるだけ合致させ、析出した膜に発生する内部応力を
少なくすることが必要である。膜が磁性体の場合は、内
部応力が発生するとけ歪効果により膜の磁気特性が変化
して目的の膜とならなくなるが磁歪常数をできるだけ小
さくすることにより特性の劣化は防げうる。しかし膜を
より厚くして使用する場合などは、内部応力が増加し、
基板への付着力より増して、はく離してしまう。
Problems to be Solved by the Invention When a film is deposited on the surface of a substrate, it is necessary to match the thermal expansion coefficients of the substrate and the film as much as possible to reduce internal stress generated in the deposited film. If the film is a magnetic material, the magnetic properties of the film will change due to the strain effect when internal stress is generated, and the film will no longer be the desired film, but deterioration of the properties can be prevented by reducing the magnetostriction constant as much as possible. However, when using a thicker membrane, the internal stress increases.
The adhesion force to the substrate becomes stronger and it peels off.

前述の色々な蒸着法により形成した膜の構造は複雑で、
熱膨張係数を合致させても内部応力をなくすことは困難
であり、はく離を全くなくすことはできない。
The structures of films formed by the various vapor deposition methods mentioned above are complex;
Even if the thermal expansion coefficients are matched, it is difficult to eliminate internal stress, and peeling cannot be completely eliminated.

従来、この様なはく離する問題を解決する手段として、
抵抗加熱蒸着、電子線蒸着、スパッタ蒸着などにより、
下地膜としてクロム(Cr)を析出し、その上に目的の
膜を析出していた。すなわちクロム(Cr)の基板への
付着力が比較的強固であることを利用していた。しかし
これも基板とクロム(Cr)膜が界面で付着しているに
すぎず、目的の膜を厚くすると付着強度が問題となり、
はく離が生ずる。
Conventionally, as a means to solve this kind of peeling problem,
By resistance heating evaporation, electron beam evaporation, sputter evaporation, etc.
Chromium (Cr) was deposited as a base film, and the target film was deposited on top of it. That is, the relatively strong adhesion of chromium (Cr) to the substrate was utilized. However, in this case, the substrate and chromium (Cr) film are only attached at the interface, and if the desired film is made thicker, the adhesion strength becomes a problem.
Peeling occurs.

問題点を解決するだめの手段 本発明は、かかる付着をより強力にすることを目的とし
たもので、基板の表面に析出する下地膜のクロム(Cr
)膜をイオンプレーティング法により析出し、基板面内
に下地膜のクロム(Cr)を一部埋め込み、基板とクム
ロ(Cr)膜との付着強度をより高めることを特徴とす
る。
Means for Solving the Problems The present invention aims to make such adhesion stronger, and is aimed at increasing the strength of such adhesion by reducing the amount of chromium (Cr) in the underlying film deposited on the surface of the substrate.
) A film is deposited by an ion plating method, and a portion of the chromium (Cr) base film is embedded within the surface of the substrate, thereby further increasing the adhesion strength between the substrate and the Cr film.

作用 高真空中にて、たてえばイオンビームによりクロム(C
r)を蒸発させる。この蒸発したクロム(Cr)を放電
にてイオン化する。これに高電圧を印加してクロム(C
r)イオンを加速させて基板に衝突させて表面に析出さ
せることにより基板にクロムの一部を埋め込ませ、付着
強度をより強くする。基板は、セラミック、ガラスなど
を用いる。セラミックとしては、アルミナ、フェライト
、他の複合酸化物、チノ化物、炭化物などいずれのもの
でもよい。ガラスとしては、ホーケイ酸系ガラス、鉛系
ガラス、バリウム−ボロン系ガラスのいずれでもよい。
Chromium (C) is removed by an ion beam in a high vacuum.
evaporate r). This evaporated chromium (Cr) is ionized by electric discharge. By applying a high voltage to this, chromium (C
r) By accelerating ions to collide with the substrate and precipitate it on the surface, a portion of the chromium is embedded in the substrate to further strengthen the adhesion strength. The substrate is made of ceramic, glass, or the like. The ceramic may be any one such as alumina, ferrite, other composite oxides, tinides, and carbides. The glass may be any of borosilicate glass, lead glass, and barium-boron glass.

ただ両者とも、これらの表面に析出する膜と熱膨張係数
が比較的合致していることが望ましい。
However, it is desirable that the coefficient of thermal expansion of both of them be relatively matched to that of the film deposited on these surfaces.

実施例 以下に本発明の一実施例を図面を用いて具体的に説明す
る。
EXAMPLE An example of the present invention will be specifically described below with reference to the drawings.

(1)第1図において、真空槽1内に蒸発源であるクロ
ム(Cr)2を設け、電子ビーム3で蒸発させた。蒸発
したクロム蒸気4を電場5内でイオン化したのち、フェ
ライト基板6との間に設けた直流高電圧7で加速してフ
ェライト基板6に入射し、フェライト基板6の表面にク
ロム(Cr)膜8を1000人析出した。次に、第2図
に示した真空槽9内にコバルト(co)を主成分とする
磁性材のターゲット10と、クロム(Cr)膜8を析出
したフェライト基板6を設置したのち、5 x 1O−
3Torrのアルゴン(Ar)ガス中でスパッタし、1
20ミクロン厚のコバルト(Co)を主成分とするアモ
ルファス磁性膜11を析出した。
(1) In FIG. 1, chromium (Cr) 2 as an evaporation source was provided in a vacuum chamber 1 and evaporated with an electron beam 3. After ionizing the evaporated chromium vapor 4 in an electric field 5, it is accelerated by a DC high voltage 7 provided between it and the ferrite substrate 6 and enters the ferrite substrate 6, forming a chromium (Cr) film 8 on the surface of the ferrite substrate 6. 1000 people were deposited. Next, a target 10 made of a magnetic material mainly composed of cobalt (co) and a ferrite substrate 6 on which a chromium (Cr) film 8 was deposited were placed in a vacuum chamber 9 shown in FIG. −
Sputtered in argon (Ar) gas at 3 Torr,
An amorphous magnetic film 11 mainly composed of cobalt (Co) with a thickness of 20 microns was deposited.

(2)実施例(1)の基板6をガラスにし、同様の方法
でクロム(Cr)膜を500人析出したのち、鉄(F 
e)を主成分とするセンダスト磁性膜を100ミクロン
析出した。
(2) The substrate 6 of Example (1) was made of glass, and 500 chromium (Cr) films were deposited in the same manner.
A 100 micron thick Sendust magnetic film containing e) as the main component was deposited.

上記実施例により基板6の表面に、クロム(Cr)膜8
を介して析出したコバルト(CO)を主成分とするアモ
ルファス磁性膜およびセンダスト磁性膜性膜11の、基
板6への付着強度を調べるため、コハル) (Co)を
主成分とするアモルファス磁性膜およびセンダスト磁性
膜11の表面に再度実施例(11と同様な方法でクロム
(Cr)膜を1000人の厚さに析出したのち実施例で
使用した同質の基板6をガラスを用いて接合し、次に2
1角のチップに切断して上記界面の付着強度をはく離テ
ストをおこなった。その結果、界面からのはく離はなく
気はが破かいされていた。
In the above embodiment, a chromium (Cr) film 8 is formed on the surface of the substrate 6.
In order to investigate the adhesion strength to the substrate 6 of the amorphous magnetic film mainly composed of cobalt (CO) and the Sendust magnetic film 11 precipitated through the amorphous magnetic film mainly composed of cobalt (CO) and A chromium (Cr) film was deposited on the surface of the Sendust magnetic film 11 again to a thickness of 1000 mm using the same method as in Example (11), and then the same substrate 6 used in the example was bonded using glass, and then to 2
A peel test was performed on the adhesion strength of the interface by cutting into one square chip. As a result, there was no separation from the interface and the gas was broken.

なお、従来の方法でクロム(Cr)を析出したのち実施
位に示した磁性膜11を60ミクロン析出し、同様なテ
ストをおこなった結果、クロム(Cr)膜と基板との界
面ではく離し、基板の破かいはなかった。
Incidentally, after depositing chromium (Cr) using a conventional method, the magnetic film 11 shown in the example was deposited to a thickness of 60 micrometers, and a similar test was conducted. There was no damage to the board.

発明の効果 本発明の方法により、基板表面にクロム(Cr)膜を下
地膜を析出したのち目的とする膜を厚く析出すると付着
強度はより強くなり、たとえば厚膜構成で磁気ヘッドな
どを製作する場合など大変有効である。
Effects of the Invention By the method of the present invention, if a chromium (Cr) film is deposited as a base film on the substrate surface and then the desired film is deposited thickly, the adhesion strength becomes stronger, and for example, magnetic heads etc. can be manufactured with a thick film structure. It is very effective in some cases.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の基板表面上にクロム(Cr)膜を析
出する方法の一実施例を示す装置の概略図、第2図は、
本発明の方法で析出したクロム(Cr)膜の上に目的の
膜を析出する方法の一実施例を示す装置の概略図である
。 ■・・・・・・真空槽、2・・・・・・蒸発#(クロム
)、3・・・・・・電子ビーム、4・・・・・・クロム
蒸気、5・・・・・・イオン化源、6・・・・・・基板
、7・・・・・・クロム(Cr)イオン加速電圧、8・
・・・・・クロム(Cr)膜、9・・・・・・真空槽、
10・・・・・・目的の膜の原料(ターゲット)11・
・・・・・目的の膜。 第2図
FIG. 1 is a schematic diagram of an apparatus showing an embodiment of the method of depositing a chromium (Cr) film on a substrate surface according to the present invention, and FIG.
1 is a schematic diagram of an apparatus showing an example of a method for depositing a target film on a chromium (Cr) film deposited by the method of the present invention. ■...Vacuum chamber, 2...Evaporation # (chromium), 3...Electron beam, 4...Chromium vapor, 5... Ionization source, 6...Substrate, 7...Chromium (Cr) ion acceleration voltage, 8.
...Chromium (Cr) film, 9 ... Vacuum chamber,
10... Raw material (target) for the desired film 11.
...Target membrane. Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)基板表面上に、イオンプレーティング法にて地膜
を形成したのち、その表面に膜を重ねて形成して基板と
前記膜との付着強度を増すことを特徴とする膜の析出方
法。
(1) A method for depositing a film, which comprises forming a ground film on the surface of a substrate by an ion plating method, and then forming a film overlying the surface to increase the adhesion strength between the substrate and the film.
(2)下地膜の上に析出する膜は、アモルファスまたは
金属からなることを特徴とする特許請求の範囲第(1)
項に記載の膜の析出方法。
(2) Claim (1) characterized in that the film deposited on the base film is made of amorphous or metal.
The method for depositing the film described in section.
(3)基板がセラミックまたはガラスであることを特徴
とする特許請求の範囲第(1)項に記載の膜の析出方法
(3) The method for depositing a film according to claim (1), wherein the substrate is ceramic or glass.
(4)下地膜はクロム(Cr)であることを特徴とする
特許請求の範囲第(1)項に記載の膜の析出方法。
(4) The method for depositing a film according to claim (1), wherein the base film is chromium (Cr).
JP10910186A 1986-05-13 1986-05-13 Method for depositing film Pending JPS62267463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10910186A JPS62267463A (en) 1986-05-13 1986-05-13 Method for depositing film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10910186A JPS62267463A (en) 1986-05-13 1986-05-13 Method for depositing film

Publications (1)

Publication Number Publication Date
JPS62267463A true JPS62267463A (en) 1987-11-20

Family

ID=14501601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10910186A Pending JPS62267463A (en) 1986-05-13 1986-05-13 Method for depositing film

Country Status (1)

Country Link
JP (1) JPS62267463A (en)

Similar Documents

Publication Publication Date Title
WO2016186103A1 (en) High frequency module
JPH0268992A (en) Multilayered interconnection board
KR20140015367A (en) Diffusion-bonded sputtering target assembly and method of manufacturing
US3620957A (en) Targets for radio frequency sputtering apparatus
JPS62267463A (en) Method for depositing film
US7250220B1 (en) Bond strength of coatings to ceramic components
EP0273195B1 (en) A method of making a thin magnetic pole piece
US4588654A (en) Magnetic recording medium
JPS5917222A (en) Manufacture of multilayer magnetic thin-film
JPH02288209A (en) Multilayer magnetic thin-film
JP3515966B2 (en) Method for manufacturing magneto-optical recording element
JPS63270452A (en) Method for coating of thin film
JPS6187866A (en) Method for vapor-depositing aluminum
JPS6270563A (en) Coating method for ceramic
JP3318380B2 (en) Magneto-optical recording element and method of manufacturing the same
JP2000516013A (en) Method for manufacturing substrate having layer structure
JPS61233409A (en) Production of laminated magnetic core for high frequency and magnetic head core
JPH0554166B2 (en)
JPH0438707A (en) Thin-film magnetic head
JPH05287503A (en) Film coated material and its production
JPH04305081A (en) Metallizing treatment device for ceramic material
JPH035918A (en) Substrate for magnetic recording medium
JPS6394424A (en) Production of thin film magnetic head
JPH0389506A (en) Manufacture of ferromagnetic metallic thin-film
JPH0259604B2 (en)