JPS6226707B2 - - Google Patents

Info

Publication number
JPS6226707B2
JPS6226707B2 JP55154442A JP15444280A JPS6226707B2 JP S6226707 B2 JPS6226707 B2 JP S6226707B2 JP 55154442 A JP55154442 A JP 55154442A JP 15444280 A JP15444280 A JP 15444280A JP S6226707 B2 JPS6226707 B2 JP S6226707B2
Authority
JP
Japan
Prior art keywords
gate
waveform
component
time
gas chromatograph
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55154442A
Other languages
Japanese (ja)
Other versions
JPS5777961A (en
Inventor
Tokifumi Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOKOKAWA DENKI KK
Original Assignee
YOKOKAWA DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOKOKAWA DENKI KK filed Critical YOKOKAWA DENKI KK
Priority to JP15444280A priority Critical patent/JPS5777961A/en
Publication of JPS5777961A publication Critical patent/JPS5777961A/en
Publication of JPS6226707B2 publication Critical patent/JPS6226707B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8603Signal analysis with integration or differentiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8603Signal analysis with integration or differentiation
    • G01N30/8606Integration

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

【発明の詳細な説明】 この発明はプロセスガスクロマトグラフのデー
タ処理装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to improvements in data processing devices for process gas chromatographs.

通常のガスクロマトグラフではカラムを切換え
ることなく試料の分析を行なつている。従つてカ
ラムによつて時間的に分離されて流出される各成
分に対応した波形は第1図に示すようにピーク値
が大きい順に出力される。つまり濃度が高い順に
出力され試料投入時点T0からの時間が長くなる
に従つて波形のピーク値は漸次小さくなり、その
立上り立下りの傾斜も緩い特性のものとなる。
In a typical gas chromatograph, samples can be analyzed without changing columns. Therefore, the waveforms corresponding to the components temporally separated and discharged by the column are output in descending order of peak value as shown in FIG. In other words, the signals are output in descending order of concentration, and as the time from the sample input time T 0 becomes longer, the peak value of the waveform gradually becomes smaller, and the slope of its rise and fall also becomes gentler.

時間的に分離された各成分の量は各波形A,
B,Cの面積を積分することにより得られる。こ
の面積の積分開始点と終了点の検出は例えば波形
A,B,Cを一定時間間隔で微分し、前回の微分
値と次回微分値の差を求め、その差の値が所定値
以上になつた状態と所定値以下となつた状態によ
つて検出するようにしている。積分開始点と終了
点を検出するための検出感度を一定値に設定する
と先に説明したように後から出力される波形の特
性が漸次緩い特性となつていくためその積分開始
点及び終了点の検出が適正に行なわれなくなる。
例えば第2図に斜線を附して示すように積分して
しまい、分析精度が悪くなる欠点がある。
The amount of each component separated in time is shown in each waveform A,
It is obtained by integrating the areas of B and C. To detect the start and end points of this area integration, for example, differentiate the waveforms A, B, and C at regular time intervals, find the difference between the previous differential value and the next differential value, and find the difference between the previous differential value and the next differential value. Detection is performed based on the state in which the temperature is lower than a predetermined value and the state in which it is below a predetermined value. If the detection sensitivity for detecting the integration start and end points is set to a constant value, as explained earlier, the characteristics of the waveform output later will gradually become looser, so the integration start and end points will be Detection will not be performed properly.
For example, integration is performed as shown with diagonal lines in FIG. 2, which has the drawback of deteriorating analysis accuracy.

このため従来は第3図に示すように時間の経過
と共に微分検出感度を上昇させ、これにより分析
精度の向上をはかるようにしている。
For this reason, conventionally, as shown in FIG. 3, the differential detection sensitivity is increased with the passage of time, thereby improving the analysis accuracy.

ところでプロセスガスクロマトグラフでは分析
時間を短縮させるためにカラムを切換えて成分の
分離を行なうことが行なわれる。このため分離波
形A,B,Cは例えば第4図に示すようにA,
C,Bのようにその順序が通常のガスクロマトグ
ラフの場合と異なつてくるのが普通である。従つ
てプロセスガスクロマトグラフの場合は積分開始
点及び終了点の検出のための検出感度を時間の経
過と共に一義的に上昇させることはできない。
By the way, in process gas chromatographs, components are separated by switching columns in order to shorten analysis time. For this reason, the separated waveforms A, B, and C are, for example, A, B, and C as shown in FIG.
The order of C and B is usually different from that of a normal gas chromatograph. Therefore, in the case of a process gas chromatograph, it is not possible to uniquely increase the detection sensitivity for detecting the integration start and end points over time.

この発明の目的はプロセスガスクロマトグラフ
の分離波形の積分開始点及び終了点を適正位置で
検出することができるデータ処理装置を提供する
にある。
An object of the present invention is to provide a data processing device that can detect the integration start and end points of a separated waveform of a process gas chromatograph at appropriate positions.

この発明ではプロセスガスクロマトグラフから
出力される分離波形は予め決められた時間巾を持
つゲート信号によつて取出される点に着目し、こ
のゲート信号の時間巾に比例して検出感度を設定
するようにしたものである。
This invention focuses on the fact that the separated waveform output from the process gas chromatograph is extracted by a gate signal with a predetermined time width, and the detection sensitivity is set in proportion to the time width of this gate signal. This is what I did.

即ち、プロセスガスクロマトグラフでは第4図
に示すようにカラム等を切換えるため各分離波形
A,C,Bの各間に雑音信号N1,N2が発生す
る。従つてプロセスクロマトグラフの分離波形を
そのまま積分手段に供給するとデータ処理装置は
この雑音信号N1,N2も積分してしまい、成分量
と間違い易いデータを出力する不都合が起きる。
このため従来より各分離波形A,C,Bが試料投
入から予め決められた時刻に出力される点及び各
成分の出力順序も予め決まつている点に着目し、
各分離波形A,C,Bを取出すためにゲートを設
け、このゲートを予め決められた時刻に予め決め
られた時間ta,tc,tbずつ開に制御し、その
結果分離波形A,C,Bだけを取出すようにして
いる。ゲート時間幅は分離波形の底部の拡がりに
比例して設定され、波形が緩い特性になる程その
ゲート時間は長くなるように設定される。
That is, in the process gas chromatograph, as shown in FIG. 4, noise signals N 1 and N 2 are generated between the separated waveforms A, C, and B because columns and the like are switched. Therefore, if the separated waveform of the process chromatograph is supplied as is to the integrating means, the data processing device will also integrate the noise signals N 1 and N 2 , resulting in the inconvenience of outputting data that can easily be mistaken for component quantities.
For this reason, we focused on the fact that conventionally each separated waveform A, C, B is output at a predetermined time from sample input, and the output order of each component is also predetermined.
Gates are provided to take out the separated waveforms A, C, and B, and the gates are controlled to open at predetermined times ta , tc , and tb , and as a result, the separated waveforms A, I try to extract only C and B. The gate time width is set in proportion to the spread of the bottom of the separated waveform, and the gate time is set to become longer as the waveform has a gentler characteristic.

従つてこの発明ではゲート時間巾に比例して検
出感度を設定するものであり、以下にこの発明の
一実施例を図面を用いて詳細に説明する。
Therefore, in the present invention, the detection sensitivity is set in proportion to the gate time width, and one embodiment of the present invention will be described in detail below with reference to the drawings.

第5図にこの発明の一実施例を示す。図中51
1はデータ処理装置の全体を示す。512はこの
データ処理装置511の入力端子であり、この入
力端子512に例えば第4図に示すような各成分
の分離波形A,C,Bがガスクロマトグラフ(特
に図示しない)から入力されるものとする。入力
端子512に供給された各成分の分離波形A,
C,Bはゲート手段513に供給される。このゲ
ート手段513にはゲート信号源514からゲー
ト信号が供給される。このゲート信号源514は
ゲート時間幅記憶器515から読出されるデータ
によりそのゲート信号の時間巾が規定される。ゲ
ート時間巾記憶器515はゲート開始時刻記憶手
段516からのゲート開始信号によつて読出動作
が行なわれる。尚517は記憶器515,516
に適当値を設定する設定器を示す。
FIG. 5 shows an embodiment of the present invention. 51 in the diagram
1 shows the entire data processing device. 512 is an input terminal of this data processing device 511, and to this input terminal 512, for example, separated waveforms A, C, and B of each component as shown in FIG. 4 are inputted from a gas chromatograph (not particularly shown). do. Separated waveform A of each component supplied to input terminal 512,
C and B are supplied to gate means 513. A gate signal is supplied to this gate means 513 from a gate signal source 514 . The time width of the gate signal source 514 is defined by data read from the gate time width memory 515. A read operation of gate time width storage 515 is performed in response to a gate start signal from gate start time storage means 516. Note that 517 is a memory device 515, 516
A setting device for setting an appropriate value is shown below.

ゲート手段513でゲートされて取出された各
分離波形A,C,Bは積分手段518と、積分開
始点検出手段519、積分終了点検出手段521
に供給する。
The separated waveforms A, C, and B gated and extracted by the gate means 513 are sent to the integrating means 518, the integration start point detection means 519, and the integration end point detection means 521.
supply to.

この発明ではゲート時間巾記憶器515からス
ロープ検出感度設定手段522にゲート時間巾デ
ータを与えそのゲート時間巾に比例した検出感度
を設定する。このスロープ検出感度設定手段52
2で設定された検出感度が検出感度積分開始点検
出手段519と積分終了点検出手段521に与え
られ、その検出感度をゲート時間巾に比例して変
化させるように構成したものである。
In this invention, gate time width data is provided from the gate time width memory 515 to the slope detection sensitivity setting means 522, and a detection sensitivity proportional to the gate time width is set. This slope detection sensitivity setting means 52
The detection sensitivity set in step 2 is applied to the detection sensitivity integration start point detection means 519 and the integration end point detection means 521, and the detection sensitivity is changed in proportion to the gate time width.

ゲート時刻開始記憶器516には計時装置52
3から試料投入時点からの時間データを与え、そ
の時間データが例えば第1成分のゲート開始時刻
と一致すると、ゲート時間巾記憶器515に読出
信号を与える。この読出信号によりゲート時間巾
記憶器515は予め設定された第1成分の時間巾
データを出力する。この時間巾データによりゲー
ト信号発生器514から第1成分のゲート開始時
刻から所定の時間巾を持つゲート信号が出力され
ゲート手段513を開き、その間第1成分の分離
波形Aを通過させ、積分手段518、及び積分開
始点検出手段519、終了点検出手段521に分
離波形Aを与える。
The gate time start memory 516 includes a clock device 52.
3 provides time data from the time of sample input, and when the time data matches, for example, the gate start time of the first component, a read signal is provided to the gate time width memory 515. In response to this read signal, the gate time width memory 515 outputs the preset time width data of the first component. Based on this time width data, the gate signal generator 514 outputs a gate signal having a predetermined time width from the gate start time of the first component to open the gate means 513, during which time the separated waveform A of the first component is passed through, and the integration means The separated waveform A is given to 518, integration start point detection means 519, and end point detection means 521.

積分開始点検出手段519と終了点検出手段5
21には感度設定器522に設定された検出感度
データが与えられ、ゲート手段513のゲート時
間巾に比例した検出感度に設定される。このよう
にして各分離波形C及びBに対しても積分開始点
及び終了点の検出感度がゲート時間巾に比例して
設定される。
Integration start point detection means 519 and end point detection means 5
21 is given the detection sensitivity data set in the sensitivity setting device 522, and is set to a detection sensitivity proportional to the gate time width of the gate means 513. In this way, the detection sensitivities of the integration start and end points for each of the separated waveforms C and B are set in proportion to the gate time width.

従つて分離波形Cのようにゲート時間tcが長
い場合にはこれに比例して検出感度が高く設定さ
れるから、その立上り及び立下りが緩い特性であ
つてもその立上りと立下りの適正点で積分開始及
び終了を検出できる。
Therefore, when the gate time t c is long as in separated waveform C, the detection sensitivity is set proportionally higher, so even if the rise and fall characteristics are slow, the rise and fall are appropriate. The start and end of integration can be detected at points.

よつてこの発明によれば分離波形の順序が第4
図に示すように時間の経過と共にその立上り及び
立下り特性が漸次緩くなるような一義的な傾向に
無い場合でも、各分離波形に対し適正な検出感度
に設定することができる。よつてプロセスガスク
ロマトグラフの分析精度を大巾に向上させること
ができ、その効果は実用に供して頗る大である。
Therefore, according to the present invention, the order of separated waveforms is
As shown in the figure, even if there is no unambiguous tendency in which the rise and fall characteristics gradually become looser with the passage of time, it is possible to set an appropriate detection sensitivity for each separated waveform. Therefore, the analysis accuracy of process gas chromatographs can be greatly improved, and the effect is great in practical use.

尚、第5図において524は積分終了検出信号
によつてゲート時刻開始記憶器516を待期状態
に設定する次成分ゲート監視器である。
In FIG. 5, reference numeral 524 denotes a next component gate monitor which sets the gate time start memory 516 to a standby state based on the integration end detection signal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は通常のガスクロマトグラフの分離波形
を示す波形図、第2図はその波形の積分開始感度
を一定値に設定した場合の積分状況を説明するた
めの波形図、第3図は通常のガスクロマトグラフ
における積分開始点及び終了点の感度制御特性を
説明するためのグラフ、第4図はプロセスガスク
ロマトグラフの分離波形の一例を示す波形図、第
5図はこの発明の一実施例を示す系統図である。 513:ゲート手段、514:ゲート信号発生
器、515:ゲート時間巾記憶器、516:ゲー
ト時刻開始記憶器、518:積分手段、519:
積分開始点検出手段、521:積分終了点検出手
段、522:計時手段。
Figure 1 is a waveform diagram showing the separation waveform of a normal gas chromatograph, Figure 2 is a waveform diagram to explain the integration situation when the integration start sensitivity of that waveform is set to a constant value, and Figure 3 is a waveform diagram of the normal gas chromatograph. A graph for explaining the sensitivity control characteristics of the integration start point and end point in a gas chromatograph, FIG. 4 is a waveform diagram showing an example of a separation waveform of a process gas chromatograph, and FIG. 5 is a system showing an example of the present invention. It is a diagram. 513: Gate means, 514: Gate signal generator, 515: Gate time width memory, 516: Gate time start memory, 518: Integrating means, 519:
Integration start point detection means, 521: Integration end point detection means, 522: Time measurement means.

Claims (1)

【特許請求の範囲】[Claims] 1 プロセスガスクロマトグラフの各流出成分波
形の各開始点から終了点までを面積積分するプロ
セスガスクロマトグラフのデータ処理装置におい
て、各成分毎のゲート開始時刻とゲート幅を記憶
する手段と、各成分毎にそのゲート幅により決ま
るスロープ検出感度を設定する手段と、上記各ゲ
ート開始時刻において、上記ゲート幅に対応して
上記スロープ検出感度設定手段に設定された設定
値により対応する各成分毎の波形の開始点及び終
了点を検出する開始点検出手段及び終了点検出手
段と、上記開始点検出手段及び上記終了点検出手
段で検出された波形の開始点と終了点間の面積を
それぞれの成分毎に積分する積分手段とにより構
成されるプロセスガスクロマトグラフのデータ処
理装置。
1. In a process gas chromatograph data processing device that performs area integration from each start point to end point of each outflow component waveform of a process gas chromatograph, means for storing gate start time and gate width for each component, and means for storing gate start time and gate width for each component. means for setting a slope detection sensitivity determined by the gate width, and a waveform start for each component corresponding to a setting value set in the slope detection sensitivity setting means corresponding to the gate width at each gate start time; A start point detection means and an end point detection means for detecting points and end points, and integrating the area between the start point and the end point of the waveform detected by the start point detection means and the end point detection means for each component. A process gas chromatograph data processing device comprising:
JP15444280A 1980-10-31 1980-10-31 Data-processing device for process-gas chromatograph Granted JPS5777961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15444280A JPS5777961A (en) 1980-10-31 1980-10-31 Data-processing device for process-gas chromatograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15444280A JPS5777961A (en) 1980-10-31 1980-10-31 Data-processing device for process-gas chromatograph

Publications (2)

Publication Number Publication Date
JPS5777961A JPS5777961A (en) 1982-05-15
JPS6226707B2 true JPS6226707B2 (en) 1987-06-10

Family

ID=15584284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15444280A Granted JPS5777961A (en) 1980-10-31 1980-10-31 Data-processing device for process-gas chromatograph

Country Status (1)

Country Link
JP (1) JPS5777961A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58193928A (en) * 1982-05-07 1983-11-11 Mitsubishi Electric Corp Multispindle cooler

Also Published As

Publication number Publication date
JPS5777961A (en) 1982-05-15

Similar Documents

Publication Publication Date Title
US3898837A (en) Method of and device for the identification and reduction of peaks in chromatograms
US3717028A (en) Chromatographic peak selector
JPH10260209A (en) Pulse signal classifying device
US3711779A (en) Apparatus for determining and characterizing the slopes of time-varying signals
US3532980A (en) Peak voltage reader
JP3675047B2 (en) Data processing device
JPS6226707B2 (en)
JPS6141227A (en) Improved detector and integrator circuit and method of usingsame
GB1154331A (en) Improvements in or relating to methods of Operating and apparatus for Chromatography Systems
US3375701A (en) Methods and apparatus for interpreting overlapping signals
JPH0835960A (en) Data processor for chromatograph mass analyzer
JP2953053B2 (en) Liquid chromatograph spectrum measurement device
US6106782A (en) Chromatograph
SU1399776A2 (en) Device for measuring the area of chromatography peak
SU1501096A2 (en) Device for determining chromatography peak area
JPS5841352A (en) Automatic fraction collector
JPH04274761A (en) Data processor for chromatograph
SU1509727A1 (en) Apparatus for recording chromatograms
JPH0721838B2 (en) Measuring device
SU984028A1 (en) Extremum searching device
US3614409A (en) Timing device, particularly for chromatographs
SU151862A1 (en) Method frontal gas chromatographic analysis of substances
SU1744623A1 (en) Portable gas analyzer
JPS5815061B2 (en) Intermediary device between mass spectrometer and computer
JPS5460855A (en) Measurement device for deep level of semiconductor device