JPS62266878A - Semiconductor photodetector - Google Patents

Semiconductor photodetector

Info

Publication number
JPS62266878A
JPS62266878A JP61111008A JP11100886A JPS62266878A JP S62266878 A JPS62266878 A JP S62266878A JP 61111008 A JP61111008 A JP 61111008A JP 11100886 A JP11100886 A JP 11100886A JP S62266878 A JPS62266878 A JP S62266878A
Authority
JP
Japan
Prior art keywords
light receiving
light
diameter
package
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61111008A
Other languages
Japanese (ja)
Other versions
JP2568506B2 (en
Inventor
Shigeru Nagao
長尾 茂
Susumu Furuike
進 古池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61111008A priority Critical patent/JP2568506B2/en
Publication of JPS62266878A publication Critical patent/JPS62266878A/en
Application granted granted Critical
Publication of JP2568506B2 publication Critical patent/JP2568506B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02325Optical elements or arrangements associated with the device the optical elements not being integrated nor being directly associated with the device

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Light Receiving Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To implement a light receiving device characterized by high coupling property with optical fiber and excellent light receiving sensitivity, without using a flat lens package, by arranging a double-convex microlens system, which can narrow the diameter of an incident light beam to 100mum or less, in front of a photodetector. CONSTITUTION:The package of a photodetector for optical communications is provided with an optical fiber 1, a double-convex lens system 2, a photodetector 3, a sub-mount 4 and a system 5. A distance V, at which the optimum light receiving sensitivity is obtained, is empirically obtained by using the angular aperture of the fiber used and the diameter of a light receiving hole phiD. When the diameter of the received light is 100mum or less, especially conspicuous effect is obtained. When the diameter of the received light is about 300mum, sufficient coupling efficiency is obtained even if an interval is made considerably large through a flat lens. Therefore, the light converging effect of the double-convex lens is not required.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光通信用受光素子のパッケージ構造に関する
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a package structure of a light receiving element for optical communication.

従来の技術 光L A Nなどに代表されるニューメディア分野の急
激な展開期を迎え、光通信分野が大きな注目をあびてい
る。この光通信システムにとって重要な点は、次の2点
に集約される。その一つは、伝送損失の少ない高性能な
光ファイバーの開発であり、他の一つは、システムを構
成する光部品と受発光素子の高性能化と高信頼化である
The optical communications field is attracting a lot of attention as the new media field, represented by conventional technology optical LAN, is entering a period of rapid development. The important points for this optical communication system can be summarized into the following two points. One of these is the development of high-performance optical fibers with low transmission loss, and the other is to improve the performance and reliability of the optical components and light-receiving elements that make up the system.

光通信用受光素子にとって重要な特性とは、第一に、光
ファイバーとの結合性が高く、受光感度が高いこと、第
二に、遮断周波数が高いことの二つである。これらの特
性を満たすため、デバイス構造としては、PINフォト
ダイオードやアバランシェフォトダイオード(APD)
が使用され、これによって、IGHz程度の高速化を達
成している。しかしながら、上記第一の点を解決できる
決定的な有効なパッケージ構造は、今のところ見出され
ていない。
The two important characteristics for a light-receiving element for optical communication are, firstly, high coupling with optical fibers and high light-receiving sensitivity, and secondly, high cut-off frequency. In order to meet these characteristics, device structures such as PIN photodiodes and avalanche photodiodes (APD) are used.
is used, thereby achieving high speeds on the order of IGHz. However, no definitive and effective package structure that can solve the above first point has been found so far.

通常、使用される光ファイバーは、コア直径が50μm
  のGI50/125タイプの光7フイバーであり、
開口角(NA)は、約0.2である。このGT50/1
25タイプの光ファイバーを伝搬した光伝送信号を受光
素子の受光部に有効に入射させるには、第2図に示され
るように、光ファイバー1と受光素子3との間をできる
限り近づけて、パッケージのガラスレンズ6の外面に、
最接近のところまで、持ってくる結合方式がもっばら用
いられている。第2図の構造により、長波長帯PINフ
ォトダイオードの場合、受光径:80μmで、最大受光
感度0.7〜0.8/、、量子効率70〜80%が実現
されている。
Usually, the optical fiber used has a core diameter of 50 μm.
It is a GI50/125 type optical 7 fiber,
The aperture angle (NA) is approximately 0.2. This GT50/1
In order to effectively make the optical transmission signal propagated through the 25 type optical fiber enter the light receiving part of the light receiving element, as shown in FIG. On the outer surface of the glass lens 6,
The coupling method that brings the objects to the closest point is often used. With the structure shown in FIG. 2, in the case of a long wavelength band PIN photodiode, a maximum light receiving sensitivity of 0.7 to 0.8/, and a quantum efficiency of 70 to 80% is achieved at a light receiving diameter of 80 μm.

発明が解決しようとする問題点 しかしながら、従来の構造の光通信用受光素子のパッケ
ージには、以下に述べるような問題点を有している。ま
ず、受光素子3とフラットレンズ6との間隔dをできる
限り小さくすることが、感度の向上を計るうえで、必須
条件である。ところが、間隔dの大きさは、ステムヘッ
ダーの高さ、受光素子3のチップの厚み、フラットレン
ズ6の支持台の高さの大小で、±100μm程度のばら
つきを有する。
Problems to be Solved by the Invention However, the conventional structure of a package for a light-receiving element for optical communication has the following problems. First, in order to improve sensitivity, it is essential to make the distance d between the light receiving element 3 and the flat lens 6 as small as possible. However, the size of the distance d varies by about ±100 μm depending on the height of the stem header, the thickness of the chip of the light receiving element 3, and the height of the support base of the flat lens 6.

一方、光ファイバーを出た光信号のビームは、開口角N
A=0.2の大きさで広がるため、光ファイバー1の先
端と受光素子3と間の距離が最大200μm程度速くな
ると、受光感度は、4以下に低下してしまう。したがっ
て、パッケージの寸法公差の範囲内で、受光感度は大き
くばらつくことになる。また、受光素子チップ上に設け
た内部結線用の全細線が、盛り上がると、これがレンズ
6の内面と衝突し内部結線の損傷を発生することがある
On the other hand, the beam of the optical signal exiting the optical fiber has an aperture angle N
Since it spreads with a magnitude of A=0.2, when the distance between the tip of the optical fiber 1 and the light receiving element 3 increases by about 200 μm at most, the light receiving sensitivity decreases to 4 or less. Therefore, the light receiving sensitivity will vary widely within the range of the dimensional tolerance of the package. Furthermore, if all the thin wires for internal connections provided on the light receiving element chip swell up, they may collide with the inner surface of the lens 6, causing damage to the internal connections.

さらに、フラットレンズキャップのガラス厚が薄いほど
、光ファイバーとチップとの間隔を小さくすることがで
きるが、機械的な強度を保つ必要性から、板厚は0.3
M以上必要となり、この面からも、感度向上を実現する
のは困難である。一般に、ガラス面での入射光の反射を
防ぐため、受光波長の署波長の無反射コーティング(A
Rコート)を施し、受光感度の向上を計っているが、こ
のことは、フラットキャップのコスト高にもつながって
いる。
Furthermore, the thinner the glass thickness of the flat lens cap, the smaller the distance between the optical fiber and the chip, but due to the need to maintain mechanical strength, the plate thickness is 0.3
M or more is required, and from this point of view as well, it is difficult to improve sensitivity. Generally, in order to prevent reflection of incident light on the glass surface, anti-reflection coating (A
R coating) is applied to improve light-receiving sensitivity, but this also increases the cost of the flat cap.

本発明は、以上述べた光通信用受光素子の課頭となる問
題点を解決する方策を提案するものである。
The present invention proposes a method for solving the above-mentioned problems of light receiving elements for optical communication.

問題点を解決するための手段 今まで述べたような問題点を解決するため、本発明は、
入射光ビーム径を100μm以下に絞り得る両面凸形状
のマイクロレンズ系を、受光前面に配設したことを特徴
とする半導体受光装置である。
Means for Solving the Problems In order to solve the problems as described above, the present invention provides the following:
This semiconductor light receiving device is characterized in that a microlens system having a convex shape on both sides that can narrow down the incident light beam diameter to 100 μm or less is disposed on the front surface of the light receiving surface.

作用 本発明によると、光信号のビームは、前途のようにNA
=0.2の開口角で広がるが、このビームを両面凸形状
のマイクロレンズで集光し、受光部全体で受ける光学系
を用いることによって、フラットレンズパッケージを用
いることなしに、光ファイバーとの結合性が高く、受光
感度の優れた受光デバイスを容易に実現することができ
る。
According to the present invention, the beam of optical signals has a NA of
= 0.2, but by using an optical system that focuses this beam with a microlens with a convex shape on both sides and receives it in the entire light receiving section, it is possible to couple it to an optical fiber without using a flat lens package. A light-receiving device with high sensitivity and excellent light-receiving sensitivity can be easily realized.

実施例 第1図は本発明実施例の受光装置の概要側断面図であり
、光フアイバー12両面凸形状レンズ系2、受光素子(
チップ)3.サブマウント4.システム5をそなえてい
る。つぎに、この受光素子に、角度αの光ビームが入射
する場合を述べる。
Embodiment FIG. 1 is a schematic side sectional view of a light receiving device according to an embodiment of the present invention, which includes an optical fiber 12, a double-sided convex lens system 2, a light receiving element (
Chip) 3. Submount 4. Equipped with System 5. Next, a case will be described in which a light beam at an angle α is incident on this light receiving element.

マイクロレンズの焦点距離をf、前側焦点位置をfF、
後側焦点位置をfBとする。物点すなわち、光ファイバ
ー1の先端からの距*Sは、マイクロレンズ先端からフ
ァイバ端距離をVとして、S=V+f−fr、像点の位
置S′は、同図よすS’=b+ f−fBである。−+
−・=’y、<レンズの公式)と像倍率m=%=冊(s
ina=NA=0.2)であり、tanβ=T#D、/
xが成り立ち全てのパラメータを決定できる。
The focal length of the microlens is f, the front focal position is fF,
Let the back focal position be fB. The object point, that is, the distance *S from the tip of the optical fiber 1, is S=V+f-fr, where the distance from the microlens tip to the fiber end is V, and the position S' of the image point is S'=b+f- fB. −+
−・='y, <lens formula) and image magnification m=%=book (s
ina=NA=0.2), tanβ=T#D, /
x holds true and all parameters can be determined.

通常、ステム5の形状が決まれば、距1b−xが決まり
、受光径φDも既知であるから、受光径φDの大きさに
入射ビームが絞れるファイバーレンズ間圧wIVを求め
ればよい。
Normally, once the shape of the stem 5 is determined, the distance 1b-x is determined and the light receiving diameter φD is also known, so it is sufficient to find the pressure wIV between the fiber lenses that allows the incident beam to be focused to the size of the light receiving diameter φD.

このように使用するファイバの開口角と受光素子の受光
径φDによって、最適な受光感度が得られる距mVを実
験的に求めればよい。ただし、このような光学系が、有
効に作用するのは、受光径が、以下に述べるように、1
00μm以下の場合に特に顕著な効果があり、受光径が
300μm程度では、第2図に示すフラットレンズで間
隔αを相当大きくしても、十分な結合効率が得られるた
め、両凸の集光効果を必要としない。
The distance mV at which the optimum light-receiving sensitivity can be obtained can be determined experimentally based on the aperture angle of the fiber used and the light-receiving diameter φD of the light-receiving element. However, such an optical system works effectively only when the receiving diameter is 1 as described below.
The effect is particularly remarkable when the receiving diameter is 00 μm or less, and when the receiving diameter is about 300 μm, sufficient coupling efficiency can be obtained even if the distance α is considerably increased using a flat lens shown in Figure 2. Does not require effect.

本発明のパッケージを用いた実施例について述べる。こ
こでは、InGaAsを用いた長波長PINフォトダイ
オードへの適応例について説明する。
An example using the package of the present invention will be described. Here, an example of application to a long wavelength PIN photodiode using InGaAs will be described.

SドープのN−InP基板上に、液相成長法により低不
純物濃度のn−1nP層とn−1nGaAs層をそれぞ
れ2μmブフ成長した。キャリア濃度は、5 X 10
15.am−3である。
On an S-doped N-InP substrate, an n-1nP layer and an n-1nGaAs layer with a low impurity concentration were each grown to a thickness of 2 μm by liquid phase growth. The carrier concentration is 5 x 10
15. am-3.

この成長基板にZn拡散を行ないn−1nGaAs層の
一部分をP+領域に反転させ、電極を形成し、PINフ
ォトダイオードとした。チップ表面にARコート膜を形
成し、厚さ200μmのチップを作成した。受光径は、
80μmである。暗電流は、VR= 10yで1nAで
ある。
This growth substrate was subjected to Zn diffusion, a portion of the n-1nGaAs layer was inverted to a P+ region, and an electrode was formed to form a PIN photodiode. An AR coating film was formed on the surface of the chip to create a chip with a thickness of 200 μm. The receiving diameter is
It is 80 μm. The dark current is 1 nA at VR=10y.

このチップをTO−18ステムにダイスボンドした後、
ワイヤーポンドを行なった。この後、外半径z=0.8
mm、内半径r2=0.5m+m、厚さ1m、屈折率n
=1.5の両凸のマイクロレンズのついたパッケージで
キャッピングを行なった。
After die bonding this chip to the TO-18 stem,
We did wire pounding. After this, the outer radius z=0.8
mm, inner radius r2=0.5m+m, thickness 1m, refractive index n
Capping was performed using a package with a biconvex microlens of =1.5.

本実施例による受光感度特性を、下表に従来例と対比し
て示す。
The light receiving sensitivity characteristics of this example are shown in the table below in comparison with the conventional example.

〈以  下  余  白〉 発明の効果 本発明により、両凸形状のマイクロレンズの付いたパッ
ケージの場合には、最小0.64、最大0.76A//
、平均0.68への受光感度Sが得られた。結果として
、従来のARコート付ラフラットレンズパッケージ同等
の受光感度SをA R,コートなしで達成することがで
きた。また、感度のばらつきも光ファイバーの位置を調
整することによって、相対的に小さくなり、組立ロット
による変動も少なくなった。
<Margin below> Effects of the invention According to the present invention, in the case of a package with a biconvex microlens, the minimum power is 0.64 and the maximum is 0.76 A//
, an average light receiving sensitivity S of 0.68 was obtained. As a result, we were able to achieve the same light-receiving sensitivity S as a conventional AR coated flat lens package without AR coating. In addition, by adjusting the position of the optical fiber, variations in sensitivity have become relatively small, and variations due to assembly lots have also been reduced.

さらに、光ファイバーを受光素子に最接近する必要もな
く、ファイバ端面の損傷の心配が全くなくなり、信頼性
の窩いデバイスを実現することができた。
Furthermore, there is no need to bring the optical fiber closest to the light-receiving element, and there is no need to worry about damage to the end face of the fiber, making it possible to realize a reliable optical device.

前述したように、両凸マイクロレンズ集光径は、受光径
100μ−以下の場合に受光感度を上げる方法として特
に有効である。
As described above, the condensing diameter of the biconvex microlens is particularly effective as a method of increasing the light receiving sensitivity when the light receiving diameter is 100 μm or less.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の両凸マイクロレンズ付パッケージの
概要個所両面、第2図は、従来のフラットレンズパッケ
ージの断面図である。 1・・・・・・光ファイバ、2・・・・・・両凸形状マ
イクロレンズ系、3・・・・・・受光素子、4・・・・
・・サブマウント、5・・・・・・ステム、6・・・・
・・フラットレンズ。
FIG. 1 is a schematic view of both sides of a package with a double-convex microlens according to the present invention, and FIG. 2 is a sectional view of a conventional flat lens package. 1... Optical fiber, 2... Biconvex microlens system, 3... Light receiving element, 4...
...Submount, 5...Stem, 6...
・Flat lens.

Claims (1)

【特許請求の範囲】[Claims] 入射光ビーム径を100μm以下に絞り得る両面凸形状
のマイクロレンズ系を、受光前面に配設したことを特徴
とする半導体受光装置。
A semiconductor light-receiving device characterized in that a microlens system having convex surfaces on both sides and capable of narrowing the diameter of an incident light beam to 100 μm or less is disposed on the front surface of the light-receiving surface.
JP61111008A 1986-05-15 1986-05-15 Semiconductor light receiving device Expired - Lifetime JP2568506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61111008A JP2568506B2 (en) 1986-05-15 1986-05-15 Semiconductor light receiving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61111008A JP2568506B2 (en) 1986-05-15 1986-05-15 Semiconductor light receiving device

Publications (2)

Publication Number Publication Date
JPS62266878A true JPS62266878A (en) 1987-11-19
JP2568506B2 JP2568506B2 (en) 1997-01-08

Family

ID=14550062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61111008A Expired - Lifetime JP2568506B2 (en) 1986-05-15 1986-05-15 Semiconductor light receiving device

Country Status (1)

Country Link
JP (1) JP2568506B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04111761U (en) * 1991-03-14 1992-09-29 ホーヤ株式会社 Light receiving element
EP0690323A3 (en) * 1994-06-29 1996-12-27 Sumitomo Electric Industries Analog photodiode module
JP2012098756A (en) * 2012-02-07 2012-05-24 Kyocera Corp Optical path converting body and packaging structure thereof, and optical module with the same
CN114883420A (en) * 2022-04-25 2022-08-09 Nano科技(北京)有限公司 Packaging structure and packaging method for improving high-power working characteristics of photoelectric detector
CN115220162A (en) * 2022-08-10 2022-10-21 苏州天孚光通信股份有限公司 Optical detector, packaging device and packaging method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6141213U (en) * 1984-08-17 1986-03-15 富士通株式会社 Light receiving module for optical communication

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6141213U (en) * 1984-08-17 1986-03-15 富士通株式会社 Light receiving module for optical communication

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04111761U (en) * 1991-03-14 1992-09-29 ホーヤ株式会社 Light receiving element
EP0690323A3 (en) * 1994-06-29 1996-12-27 Sumitomo Electric Industries Analog photodiode module
JP2012098756A (en) * 2012-02-07 2012-05-24 Kyocera Corp Optical path converting body and packaging structure thereof, and optical module with the same
CN114883420A (en) * 2022-04-25 2022-08-09 Nano科技(北京)有限公司 Packaging structure and packaging method for improving high-power working characteristics of photoelectric detector
CN115220162A (en) * 2022-08-10 2022-10-21 苏州天孚光通信股份有限公司 Optical detector, packaging device and packaging method

Also Published As

Publication number Publication date
JP2568506B2 (en) 1997-01-08

Similar Documents

Publication Publication Date Title
WO2015039394A1 (en) Coupling device of optical waveguide chip and pd array lens
US7057158B2 (en) Optical subassembly for high speed optoelectronic devices
US20030010904A1 (en) High speed fiber to photodetector interface
JP6530871B1 (en) Edge-incident light receiving element
JPS62266878A (en) Semiconductor photodetector
KR100464333B1 (en) Photo detector and method for fabricating thereof
JPH1039162A (en) Optical semiconductor device, semiconductor photodetector, and formation of optical fiber
JPH04246868A (en) P-i-n photodiode and method of improving efficiency thereof
JP3417200B2 (en) Optical transmission / reception module
WO2022054188A1 (en) Surface incidence-type semiconductor light-receiving element
JPH09269440A (en) Light transmitting and receiving module
CN209199952U (en) Integrated photodetector
JPS63269580A (en) Light detector
JP3689644B2 (en) Bidirectional optical communication device and bidirectional optical communication device
JPH1152199A (en) Optical signal transmission and reception module
JP3100418B2 (en) Light receiving device
KR970005215B1 (en) Semiconductor light detecting device
CN109378349B (en) Integrated photoelectric detector and manufacturing method thereof
JPH05136446A (en) Semiconductor photodetector
CN217561783U (en) Integrated optical engine structure
JPH0562472B2 (en)
JPH0497574A (en) Semiconductor light receiving device
KR100326048B1 (en) Optical module for receving light signal
JPH0290685A (en) Semiconductor photodetecting element
JPH04291210A (en) Manufacture of photocoupler

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term