JP2568506B2 - Semiconductor light receiving device - Google Patents

Semiconductor light receiving device

Info

Publication number
JP2568506B2
JP2568506B2 JP61111008A JP11100886A JP2568506B2 JP 2568506 B2 JP2568506 B2 JP 2568506B2 JP 61111008 A JP61111008 A JP 61111008A JP 11100886 A JP11100886 A JP 11100886A JP 2568506 B2 JP2568506 B2 JP 2568506B2
Authority
JP
Japan
Prior art keywords
light receiving
receiving element
microlens
optical axis
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61111008A
Other languages
Japanese (ja)
Other versions
JPS62266878A (en
Inventor
茂 長尾
進 古池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61111008A priority Critical patent/JP2568506B2/en
Publication of JPS62266878A publication Critical patent/JPS62266878A/en
Application granted granted Critical
Publication of JP2568506B2 publication Critical patent/JP2568506B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02325Optical elements or arrangements associated with the device the optical elements not being integrated nor being directly associated with the device

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体受光装置に、特に、光通信用受光素
子の光ファイバー結合受光部パッケージ構造に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light receiving device, and more particularly to an optical fiber coupled light receiving portion package structure of a light receiving element for optical communication.

従来の技術 光LANなどに代表されるニューメディア分野の急激な
展開期を迎え、光通信分野が大きな注目をあびている。
この光通信システムにとって重要な点は、次の2点に集
約される。その一つは、伝送損失の少ない高性能な光フ
ァイバーの開発であり、他の一つは、システムを構成す
る光部品と受発光素子の高性能化と高信頼化である。
2. Description of the Related Art With the rapid development of the new media field represented by optical LAN and the like, the optical communication field has received great attention.
Important points for this optical communication system are summarized in the following two points. One is the development of a high-performance optical fiber with a small transmission loss, and the other is the high-performance and high-reliability of the optical components and the light-receiving / emitting elements constituting the system.

光通信用受光素子にとって重要な特性とは、第一に、
光ファイバーとの結合が高く、受光感度が高いこと、第
二に、パルス信号の応答性にかかる処断周波数が高いこ
との二つである。これらの特性を満たすため、デバイス
構造としては、PINフォトダイオードやアバランシェフ
ォトダイオード(APD)が使用され、これによって、1GH
z程度のパルス信号に応答可能な高速化を達成してい
る。しかしながら、上記第一の点を解決できる決定的な
有効なパッケージ構造は、今のところ見出されていな
い。
The important characteristics for light receiving elements for optical communication are, first,
The second is that the coupling with the optical fiber is high and the light receiving sensitivity is high, and the second is that the processing frequency related to the response of the pulse signal is high. In order to satisfy these characteristics, PIN photodiodes and avalanche photodiodes (APDs) are used as device structures.
Achieving high-speed response to pulse signals of about z is achieved. However, no definitive and effective package structure that can solve the first point has been found so far.

通常、使用される光ファイバーは、コア直径が50μm
のG150/125タイプの光ファイバーであり、開口角(NA)
は、約0.2である。このGI50/125タイプの光ファイバー
を伝搬した光伝送信号を受光素子の受光部に有効に入射
させるには、第2図に示されるように、光ファイバー1
と受光素子3との間をできる限り近づけて、パッケージ
に組み込まれたガラスのフラットレンズ6の外面に、最
接近のところまで、持ってくる結合方式がもっぱら用い
られている。第2図の構造により、長波長帯PINフォト
ダイオードの場合、受光径:80μmで、最大受光感度0.7
〜0.8A/W、量子効率70〜80%が実現されている。
Usually, the optical fiber used has a core diameter of 50 μm
G150 / 125 type optical fiber, aperture angle (NA)
Is about 0.2. In order for the optical transmission signal propagated through the GI50 / 125 type optical fiber to be effectively incident on the light receiving portion of the light receiving element, as shown in FIG.
And the light receiving element 3 are brought as close as possible, and a coupling method for bringing the outermost surface of the glass flat lens 6 incorporated in the package to the closest position is used exclusively. According to the structure shown in Fig. 2, in the case of a long wavelength band PIN photodiode, the light receiving diameter is 80 µm,
0.8 A / W and a quantum efficiency of 70-80% have been realized.

発明が解決しようとする問題点 しかしながら、第2図に示されるような従来の構造の
光通信用受光素子のパッケージには、以下に述べるよう
な問題点を有している。まず、受光素子3とフラットレ
ンズ6との間隔dをできる限り小さくすることが、感度
の向上を計るうえで、必須条件である。ところが、間隔
dの大きさは、ステム5の高さ、受光素子3のチップの
厚み、フラットレンズ6のサブマウント4の高さの大小
で、±100μm程度のばらつきを有する。
Problems to be Solved by the Invention However, the package of the light receiving element for optical communication having the conventional structure as shown in FIG. 2 has the following problems. First, it is an essential condition to reduce the distance d between the light receiving element 3 and the flat lens 6 as much as possible in order to improve the sensitivity. However, the size of the interval d has a variation of about ± 100 μm depending on the height of the stem 5, the thickness of the chip of the light receiving element 3, and the height of the submount 4 of the flat lens 6.

一方、光ファイバー1を出た光信号のビームは、開口
角NA=0.2の大きさで広がるため、光ファイバー1の先
端と受光素子3との間の距離が最大200μm程度変動す
ると、受光感度は、1/2以下に低下してしまう。したが
って、パッケージの寸法公差の範囲内で、受光感度は大
きくばらつくことになる。また、受光素子3のチップ上
に設けた内部結線用の金細線が、盛り上がると、これが
フラットレンズ6の内面と衝突し内部結線お損傷を発生
することがある。
On the other hand, since the beam of the optical signal that has exited the optical fiber 1 spreads with a size of the aperture angle NA = 0.2, if the distance between the tip of the optical fiber 1 and the light receiving element 3 fluctuates by a maximum of about 200 μm, the light receiving sensitivity becomes 1 / 2 or less. Therefore, the light receiving sensitivity greatly varies within the range of the dimensional tolerance of the package. In addition, when the gold wire for internal connection provided on the chip of the light receiving element 3 swells, it collides with the inner surface of the flat lens 6 and may cause damage to the internal connection.

さらに、フラットレンズ6のガラス厚が薄いほど、光
ファイバー1と受光素子3との間隔を小さくすることが
できるが、機械的な強度を保つ必要性から、板厚は0.3m
m以上必要となり、この面からも、感度向上を実現する
のは困難である。一般に、ガラス面での入射光の反射を
防ぐため、受光波長の1/4波長の無反射コーティング(A
Rコート)を施し、受光感度の向上を計っているが、こ
のことは、フラットレンズ6のコスト高にもつながって
いる。
Further, as the glass thickness of the flat lens 6 is smaller, the distance between the optical fiber 1 and the light receiving element 3 can be reduced, but the thickness is 0.3 m because of the need to maintain mechanical strength.
m or more, and it is difficult to improve the sensitivity in this respect as well. In general, to prevent reflection of incident light on the glass surface, antireflection coating (A
R coat) is applied to improve the light receiving sensitivity, but this also leads to an increase in the cost of the flat lens 6.

なお光ファイバーとの結合性を高めるために、例え
ば、実開昭61−41213号の明細書に記載のように、受光
素子に球状レンズを結合させた受光モジュールも知られ
ているが、かかる受光モジュールでは、光ファイバーの
寸法選択の自由度が小さい。
In order to enhance the coupling with the optical fiber, for example, as described in Japanese Utility Model Application Laid-Open No. 41213/1986, a light receiving module in which a spherical lens is connected to a light receiving element is also known. In this case, the degree of freedom in selecting the dimensions of the optical fiber is small.

本発明は、以上述べた光通信用受光素子の課題となる
問題点を解決する方策を提案するものである。
The present invention proposes a measure for solving the above-mentioned problem of the light receiving element for optical communication.

問題点を解決するための手段 今まで述べたような問題点を解決するため、本発明
は、入射光ビーム径を100μm以下に絞り得ることがで
き、受光素子への入射光軸上に曲率半径がr1、r2で、か
つ、r1>r2の両面凸形状のマイクロレンズを設け、前記
マイクロレンズに前記入射光軸に対して直角面と前記入
射光軸に対して平行で前記入射光軸からの距離が前記r1
よりも小さい平行面とで構成される切り欠き部を前記曲
率半径r2曲面側に設け、前記受光素子を載置したステム
と共に前記受光素子をキャッピングするキャップに前記
入射光軸に沿って前記平行面と対応する穴を設けて前記
マイクロレンズが前記穴に前記キャップの外側から前記
受光素子に対して前記曲率半径r2曲面後を向けて挿入さ
れており、前記切り欠き部が前記穴の周囲に当接されと
ことを特徴とする半導体受光装置である。
Means for Solving the Problems In order to solve the problems described above, the present invention can reduce the diameter of the incident light beam to 100 μm or less, and has a radius of curvature on the incident optical axis to the light receiving element. Are r1, r2, and provided a microlens with a double-sided convex shape of r1> r2, and the microlens is perpendicular to the incident optical axis and parallel to the incident optical axis and is parallel to the incident optical axis from the incident optical axis. Distance is r1
A notch formed by a smaller parallel surface is provided on the curved surface with the radius of curvature r2, and the parallel surface along the incident optical axis is provided on a cap for capping the light receiving element together with the stem on which the light receiving element is mounted. The microlens is inserted into the hole from the outside of the cap toward the light receiving element with the radius of curvature r2 facing the rear of the light receiving element, and the cutout portion is provided around the hole. A semiconductor light receiving device characterized by being in contact with.

作用 本発明によると、受光素子への入射光軸上に、曲率半
径がr1、r2で、かつ、r1>r2の両面凸形状のマイクロレ
ンズを、前記マイクロレンズの所定の切り欠き部を用い
てキャップに設けることができるので、光ファイバーが
出力した光信号のビームは、前述のようにNA=0.2の開
口角で広がるが、このビームを両面凸形状のマイクロレ
ンズの曲率半径r1曲面側で集光し、曲率半径r2曲面側で
受光素子が受け得て、光ファイバーとの結合性が高く、
受光感度の優れたパッケージ構造の受光デバイスを容易
に実現することができる。
According to the present invention, on the incident optical axis to the light receiving element, the radius of curvature is r1, r2, and a double-sided convex microlens with r1> r2 is formed by using a predetermined notch of the microlens. Since the beam of the optical signal output from the optical fiber can be provided on the cap, the beam spreads at an aperture angle of NA = 0.2 as described above, but this beam is focused on the curved surface side of the curvature radius r1 of the microlens having a double-sided convex shape. And the light receiving element can receive on the curved surface side with the radius of curvature r2, and the coupling with the optical fiber is high,
A light receiving device having a package structure with excellent light receiving sensitivity can be easily realized.

実施例 第1図は本発明実施例の半導体受光装置の概要側断面
図であり、光ファイバー1、両面の曲率が互いに異なる
凸形状のマイクロレンズ系2、受光素子(チップ)3、
サブマウント4、ステム5をそなえている。つぎに、こ
の受光素子3に、角度αの光ビームが入射する場合を述
べる。
FIG. 1 is a schematic side sectional view of a semiconductor light receiving device according to an embodiment of the present invention. The semiconductor device includes an optical fiber 1, a convex microlens system 2 having different curvatures on both surfaces, a light receiving element (chip) 3,
Submount 4 and stem 5 are provided. Next, a case where a light beam having an angle α is incident on the light receiving element 3 will be described.

マイクロレンズ2は、一面の曲率半径がr1で、他面の
曲率半径がr2であり、かつ、r1>r2の関係にあり、単体
レンズとしての集点距離をf、前側焦点位置をfF、後側
焦点位置をfBとする。物点すなわち、光ファイバー1の
先端からの距離Sは、マイクロレンズ先端からファイバ
ー端距離をVとして、S=V+f−fF、像点の位置まで
の距離S′は、同図よりS′=b+f−fBである。1/S
+1/S=1/f(レンズの公式)の像倍率 が成り立ち、全てのパラメータを決定できる。
Microlenses 2 is a curvature of one surface radius r 1, a r 2 is the other surface of the radius of curvature, and have a relationship of r 1> r 2, a collecting point distance as a single lens f, the front focal position As f F and the rear focal position as f B. Object point In other words, the distance S from the tip of the optical fiber 1, the fiber end distance from the microlens tip as V, S = V + f- f F, the distance to the position of the image point S 'is S from FIG' = b + f −f B. 1 / S
+ 1 / S = 1 / f (lens formula) image magnification Holds, and all parameters can be determined.

通常、ステム5の形状が決まれば、距離b−Xが決ま
り、受光径φDも既知であるから、受光径φDの大きさ
に入射ビームが絞れるファイバー1とマイクロレンズ2
間距離Vを求めればよい。
Usually, if the shape of the stem 5 is determined, the distance bX is determined and the light receiving diameter φD is also known, so that the fiber 1 and the micro lens 2 that can narrow the incident beam to the size of the light receiving diameter φD
The distance V may be obtained.

このように使用するファイバーの開口角と受光素子の
受光径φDによって、最適な受光感度が得られる距離V
を実験的に求めればよい。ただし、このような光学系
が、有効に作用するのは、受光径が、100μm以下の場
合に特に顕著な効果がある。なお、受光径が300μm程
度では、第2図に示すフラットレンズ6で間隔dを相当
大きくしても、十分な結合効率が得られるため、実用
上、マイクロレンズ系の集光効果を必要としない。
The distance V at which the optimum light receiving sensitivity is obtained depends on the aperture angle of the fiber used and the light receiving diameter φD of the light receiving element.
May be obtained experimentally. However, such an optical system effectively works particularly when the light receiving diameter is 100 μm or less. When the light receiving diameter is about 300 μm, a sufficient coupling efficiency can be obtained even if the distance d is considerably increased in the flat lens 6 shown in FIG. 2, so that the light collecting effect of the micro lens system is not practically required. .

本発明の実施例について述べる。ここでは、InGaAsを
用いた長波長PINフォトダイオードへの適応例について
説明する。
An embodiment of the present invention will be described. Here, an example of application to a long-wavelength PIN photodiode using InGaAs will be described.

SドープのN型InP基板上に、液相成長法により低不
純物濃度のN型InP層とN型InGaAs層をそれぞれ2μm
ずつ成長させた。キャリア濃度は、5×1015cm-3であ
る。
On an S-doped N-type InP substrate, a low-impurity-concentration N-type InP layer and an N-type InGaAs layer each having a thickness of 2 μm were formed by a liquid phase growth method.
It grew at a time. The carrier concentration is 5 × 10 15 cm −3 .

この成長基板にZn拡散を行ないN型InGaAs層の一部分
をP+領域に反転させ、電極を形成し、PINフォトダイオ
ードとした。チップ表面にARコート膜を形成し、厚さ20
0μmのチップを作成した。受光径φDは、80μmであ
る。暗電流は、VR=10Vで1nAである。
Zn was diffused into this growth substrate, a part of the N-type InGaAs layer was inverted to a P + region, and an electrode was formed to form a PIN photodiode. AR coating film is formed on the chip surface, thickness 20
A 0 μm chip was made. The light receiving diameter φD is 80 μm. The dark current is 1 nA at V R = 10V.

このチップをTO−18ステムにダイスボンドした後、ワ
イヤーボンドを行なった。この後、外半径r1=0.8mm、
内半径r2=0.5mm、厚さ1mm、屈折率n=1.5の両面凸形
状のマイクロレンズ2のついたキャップをチップが搭載
されたTO−18ステムにキャッピングすることで両凸マイ
クロレンズ付のパッケージによる光通信用受光装置を得
た。
After die-bonding this chip to the TO-18 stem, wire bonding was performed. After this, the outer radius r 1 = 0.8 mm,
A cap with a biconvex microlens 2 having an inner radius r 2 = 0.5 mm, a thickness of 1 mm, and a refractive index n = 1.5 is attached to a TO-18 stem on which a chip is mounted, thereby providing a biconvex microlens. A light receiving device for optical communication using a package was obtained.

本実施例による受光感度特性を、下表に従来例と対比
して示す。
The light receiving sensitivity characteristics according to this embodiment are shown in the following table in comparison with the conventional example.

発明の効果 本発明により、両面凸形状のマイクロレンズの付いた
パッケージの場合には、最小0.6A/W、最大0.76A/W、平
均0.68A/Wの受光感度Sが得られた。結果として、従来
のARコート付フラットレンズパッケージと同等の受光感
度SをARコートなしで達成することができた。また、感
度のばらつきも光ファイバーの位置を調節することによ
って、相対的に小さくなり、組立てロットによる変動も
少なくなった。
Effects of the Invention According to the present invention, in the case of a package having a microlens having a biconvex shape, a light receiving sensitivity S of 0.6 A / W at the minimum, 0.76 A / W at the maximum, and 0.68 A / W on average was obtained. As a result, the light receiving sensitivity S equivalent to that of the conventional AR-coated flat lens package could be achieved without the AR coating. Also, by adjusting the position of the optical fiber, the variation in sensitivity was relatively reduced, and the variation among assembly lots was reduced.

さらに、光ファイバーを受光素子に最接近する必要も
なく、ファイバー端面の損傷の心配が全くなくなり、信
頼性の高いデバイスを実現することができた。
Further, there is no need to bring the optical fiber closest to the light receiving element, and there is no fear of damage to the fiber end face, and a highly reliable device can be realized.

前述したように、本発明によると、両面凸形状の各面
の曲率を、光ファイバー側で大とし、受光素子側で小と
なしたマイクロレンズを、マイクロレンズに設けた切り
欠き部でパッケージのキャップに付けて、チップが搭載
されたステムにキャッピングすることで、両凸マイクロ
レンズ付のパッケージ構造を得ることができ、それによ
り光ファイバーとの結合性が高く、受光感度の優れた光
通信用受光装置を得た。特に受光径100μm以下の場合
に、顕著な集光機能を呈する。
As described above, according to the present invention, the curvature of each surface of the double-sided convex shape is increased on the optical fiber side, and the microlens reduced on the light receiving element side is replaced with a notch provided in the microlens to form a package cap. In addition, by capping the stem on which the chip is mounted, a package structure with a biconvex microlens can be obtained, thereby having a high coupling with an optical fiber and an excellent light receiving sensitivity. I got Particularly, when the light receiving diameter is 100 μm or less, a remarkable light collecting function is exhibited.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の両面凸形状マイクロレンズ付パッケー
ジの概要側断面図、第2図は従来のフラットレンズパッ
ケージの断面図である。 1……光ファイバー、2……両面凸形状マイクロレンズ
系、3……受光素子、4……サブマウント、5……ステ
ム、6……フラットレンズ。
FIG. 1 is a schematic side sectional view of a package with a double-sided convex microlens of the present invention, and FIG. 2 is a sectional view of a conventional flat lens package. DESCRIPTION OF SYMBOLS 1 ... Optical fiber, 2 ... Double-sided convex micro lens system, 3 ... Light receiving element, 4 ... Submount, 5 ... Stem, 6 ... Flat lens.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】受光素子への入射光軸上に曲率半径がr1、
r2で、かつ、r1>r2の両面凸形状のマイクロレンズを設
け、前記マイクロレンズに前記入射光軸に対して直角面
と前記入射光軸に対して平行で前記入射光軸からの距離
が前記r1よりも小さい平行面とで構成される切り欠き部
を前記曲率半径r2曲面側に設け、前記受光素子を載置し
たステムと共に前記受光素子をキャッピングするキャッ
プに前記入射光軸に沿って前記平行面と対応する穴を設
けて前記マイクロレンズが前記穴に前記キャップの外側
から前記受光素子に対して前記曲率半径r2曲面側を向け
て挿入されており、前記切り欠き部が前記穴の周囲に当
接されとことを特徴とする半導体受光装置。
1. A method according to claim 1, wherein a radius of curvature is r1 on an optical axis incident on the light receiving element.
r2, and provided a microlens with a double-sided convex shape of r1> r2, the microlens is perpendicular to the incident optical axis and parallel to the incident optical axis and the distance from the incident optical axis is A notch composed of a parallel surface smaller than r1 is provided on the curved surface with the radius of curvature r2, and the parallel with the stem on which the light receiving element is mounted is provided along the incident optical axis on a cap that caps the light receiving element. A hole corresponding to the surface is provided, and the microlens is inserted into the hole from outside the cap with the curvature radius r2 facing the light receiving element toward the light receiving element, and the notch is provided around the hole. A semiconductor light receiving device characterized by being abutted.
JP61111008A 1986-05-15 1986-05-15 Semiconductor light receiving device Expired - Lifetime JP2568506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61111008A JP2568506B2 (en) 1986-05-15 1986-05-15 Semiconductor light receiving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61111008A JP2568506B2 (en) 1986-05-15 1986-05-15 Semiconductor light receiving device

Publications (2)

Publication Number Publication Date
JPS62266878A JPS62266878A (en) 1987-11-19
JP2568506B2 true JP2568506B2 (en) 1997-01-08

Family

ID=14550062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61111008A Expired - Lifetime JP2568506B2 (en) 1986-05-15 1986-05-15 Semiconductor light receiving device

Country Status (1)

Country Link
JP (1) JP2568506B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04111761U (en) * 1991-03-14 1992-09-29 ホーヤ株式会社 Light receiving element
JP3324286B2 (en) * 1994-06-29 2002-09-17 住友電気工業株式会社 Analog PD module and method of manufacturing the same
JP2012098756A (en) * 2012-02-07 2012-05-24 Kyocera Corp Optical path converting body and packaging structure thereof, and optical module with the same
CN115220162A (en) * 2022-08-10 2022-10-21 苏州天孚光通信股份有限公司 Optical detector, packaging device and packaging method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6141213U (en) * 1984-08-17 1986-03-15 富士通株式会社 Light receiving module for optical communication

Also Published As

Publication number Publication date
JPS62266878A (en) 1987-11-19

Similar Documents

Publication Publication Date Title
US4625333A (en) Duplex optical communication device
US7128477B2 (en) Optical transmitter and receiver module
JP3758526B2 (en) Bidirectional optical communication device, bidirectional optical communication device, and bidirectional optical communication device assembling method
US7057158B2 (en) Optical subassembly for high speed optoelectronic devices
US20030010904A1 (en) High speed fiber to photodetector interface
JP2000019357A (en) Optical array module and reflection mirror array
JP2568506B2 (en) Semiconductor light receiving device
JPH1039162A (en) Optical semiconductor device, semiconductor photodetector, and formation of optical fiber
JPH04246868A (en) P-i-n photodiode and method of improving efficiency thereof
JP2002156563A (en) Receptacle type optical module
JPH02118607A (en) Photocoupling circuit
JP3689644B2 (en) Bidirectional optical communication device and bidirectional optical communication device
JPH07168061A (en) Light transmitting receiving module
JP3356017B2 (en) Optical transmission / reception module
KR102176477B1 (en) Backside illuminated photodetector
JPH09269440A (en) Light transmitting and receiving module
JP3100418B2 (en) Light receiving device
JP2006344681A (en) Light receiving element and module thereof
KR100858217B1 (en) Optical modulator package for bi-directional data communication
CN109378349B (en) Integrated photoelectric detector and manufacturing method thereof
KR100326048B1 (en) Optical module for receving light signal
CN217561783U (en) Integrated optical engine structure
CN112817099B (en) Silicon photon packaging structure
CN212255789U (en) High return loss photoelectric detector and light receiving device
US6657272B2 (en) Off-axis silicon substrate for optimized optical coupling

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term