JPS62266715A - Magnetic head - Google Patents

Magnetic head

Info

Publication number
JPS62266715A
JPS62266715A JP10850786A JP10850786A JPS62266715A JP S62266715 A JPS62266715 A JP S62266715A JP 10850786 A JP10850786 A JP 10850786A JP 10850786 A JP10850786 A JP 10850786A JP S62266715 A JPS62266715 A JP S62266715A
Authority
JP
Japan
Prior art keywords
working gap
groove
blocks
winding groove
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10850786A
Other languages
Japanese (ja)
Inventor
Takashi Onishi
隆 大西
Tetsuo Ishikawa
石川 鉄雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10850786A priority Critical patent/JPS62266715A/en
Publication of JPS62266715A publication Critical patent/JPS62266715A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/133Structure or manufacture of heads, e.g. inductive with cores composed of particles, e.g. with dust cores, with ferrite cores with cores composed of isolated magnetic particles
    • G11B5/1335Assembling or shaping of elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/187Structure or manufacture of the surface of the head in physical contact with, or immediately adjacent to the recording medium; Pole pieces; Gap features
    • G11B5/23Gap features
    • G11B5/232Manufacture of gap

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To increase recording density and to improve the manufacture yield of products by forming a stress relief groove in the slanting wall surface of a winding groove on the side of an operating gap. CONSTITUTION:The winding groove 5 of L1=700mum, L2=500mum, and theta=55 deg. is formed in a core block 1b between core blocks 1a and 1b made of MnZn ferrite, and the rectangular stress relied groove 6 of L6=100mum and L7=200mum is formed at a position of L3=600mum by an outer periphery blade type slicer. Then when the core blocks 1a and 1b and coupled in abutting state, a spacer l=1 1m which is made of titanium foil is interposed between both blocks 1a and 1b and a glass rod 3 is set between both blocks 1a and 1b; and they are set on a jig 7 in said state and heated and cooled gradually to form the operating gap 4. At the same time, the blocks 1a and 1b are joined with fused glass 3' and then cut by an inner periphery blade type slicer to obtain a head chip 1, whose cross sections are both polished into planes and lapped, thus finishing the surface.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気ヘッドの改良に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to improvements in magnetic heads.

〔従来の技術〕[Conventional technology]

従来、磁気ヘッドは、第9図に示すごとく、フェライト
等からなるコアブロック1aと1bとを、スペーサー2
を介した状態で所定の間隔旦だけ離して突き合わせた後
、ガラス棒3を、コアブロックla、lb間にセットし
た状態で加熱し、その後、11やかに冷却して、第11
図に示すごとく、合するようにしている。すなわち、従
来、前記した磁気ヘッドの製作に際しては、作動ギャッ
プ4の間隔Qを保持すべく、コアブロック1aと1bと
を、第10図に示すごとく、スペーサー2を介した状態
で治具7にセットし、ネジ8で加圧締結1bとを、外周
刃式あるいは内周刃式スライサーで切断して、第12図
に符号1で示すヘッドチップを得るようにしている。
Conventionally, a magnetic head, as shown in FIG.
The glass rod 3 is heated while being set between the core blocks la and lb, and then cooled rapidly to form a
As shown in the figure, it is made to match. That is, conventionally, when manufacturing the magnetic head described above, in order to maintain the distance Q of the working gap 4, the core blocks 1a and 1b are placed in a jig 7 with a spacer 2 in between, as shown in FIG. The head chip is set, and the pressurized fastening 1b is cut with a screw 8 using an outer peripheral blade type or inner peripheral blade type slicer to obtain a head chip shown by reference numeral 1 in FIG. 12.

しかして、従来、第12図に符号1で示すヘッドチップ
をブロックコアから切り出すに際しては、当該ヘッドチ
ップ1の強度を増してその破損を防止すべく、巻線溝5
の作動ギャップ側壁面を、作動ギャップ面に対して傾斜
(すなわち、第13図のθ;15〜758)させる構成
を採用するようにしている。
Conventionally, when cutting out a head chip indicated by reference numeral 1 in FIG. 12 from a block core, winding grooves are
A configuration is adopted in which the side wall surface of the working gap is inclined with respect to the working gap surface (that is, θ in FIG. 13: 15 to 758).

なお、磁気ヘッドの作動ギャップに関連する先行技術と
しては、特開昭58−64618号公報を挙げることが
できる。
Incidentally, as a prior art related to the working gap of a magnetic head, Japanese Patent Laid-Open No. 58-64618 can be mentioned.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、従来形磁気ヘッドにあっては、既述のごとく
1巻IIA溝5の作動ギャップ側壁面を1作動ギャップ
面に対して傾斜させる構成を採用することにより、ブロ
ックコアからヘッドチップ1を切り出すに際し、当該ヘ
ッドチップ1の強度を増して、その破損を防止すること
ができるが、反面。
By the way, in the conventional magnetic head, as described above, the head chip 1 is cut out from the block core by adopting a configuration in which the working gap side wall surface of the 1-turn IIA groove 5 is inclined with respect to the 1-working gap surface. At this time, it is possible to increase the strength of the head chip 1 and prevent its damage, but on the other hand.

コアブロック1aと1bとを治具7にセットし、ネジ8
で加圧締結するに際し、ネジ8による加圧力がブロック
コアの作動ギャップ面全体に均一に作用せず、これが原
因となって、作動ギャップ長は、ギャップ深さ方向に対
して所定間隔Ωを保持することかて゛きないという問題
があった。これをさらに詳述すると、第14図は第12
図に示す従来形へラドチップ1のギャップ長測定図であ
る。
Set the core blocks 1a and 1b on the jig 7, and tighten the screws 8.
When fastening with pressure, the pressurizing force by the screw 8 does not act uniformly on the entire working gap surface of the block core, and as a result, the working gap length is maintained at a predetermined interval Ω in the gap depth direction. The problem was that there was nothing to do. To explain this in more detail, Figure 14 shows the 12th
It is a gap length measurement diagram of the conventional Herad tip 1 shown in the figure.

第14図に示すギャップ長測定の結果、第13図の距離
A部B間(ギャップ深さ方向の距MA−B間)において
、′X符号Bでへ示す位置の作動ギャップ長は、所定の
間隔aを保持しているものの、符号Aで示す位置の作動
ギャップ長は間隔αを保持していない。
As a result of the gap length measurement shown in FIG. 14, the working gap length at the position indicated by 'X symbol B between distances A and B in FIG. Although the distance a is maintained, the working gap length at the position indicated by the symbol A does not maintain the distance α.

本発明者等は、従来形へラドチップ1に生じる作動ギャ
ップ長のバラツキについて1種々検討をおこなったとこ
ろ、その原因は、巻線溝5の作動ギャップ側の壁面が作
動ギャップ面に対して傾斜しているため、すなわち、コ
アブロック1aと1bとを治具7にセットし、ネジ8で
加圧締結するに際し、巻線溝5の近傍に加わる力は、当
該巻線溝5の作動ギャップ側傾斜壁面端部であるA部に
集中するためであることを見い出した。第15図は従来
形ブロックコア製作時における作動ギャップ面各部の応
力分布測定図である。すなわち、本発明者等は、第13
1!Iの距離A部B間の加圧分布につき、有限要素法に
より応力解析をおこなったところ、第15図に示すごと
く1作動ギヤツブ深さ方向に対する加圧分布は不均一と
なり、第13図Aに示す部分の加圧が極端に大きくなる
ことを見い出した。
The inventors of the present invention have conducted various studies on the variation in working gap length that occurs in the conventional Herad tip 1, and have found that the cause is that the wall surface on the working gap side of the winding groove 5 is inclined with respect to the working gap surface. That is, when the core blocks 1a and 1b are set in the jig 7 and fastened together using the screws 8, the force applied near the winding groove 5 is applied to the working gap side slope of the winding groove 5. It has been found that this is because the particles are concentrated in section A, which is the edge of the wall surface. FIG. 15 is a stress distribution measurement diagram of various parts of the working gap surface during production of a conventional block core. That is, the present inventors
1! When stress analysis was performed using the finite element method for the pressure distribution between distance A and part B of distance I, the pressure distribution in the depth direction of one working gear was uneven, as shown in Figure 15, and as shown in Figure 13A. It was discovered that the pressure in the area shown becomes extremely large.

ところで、近年のように、記録密度の高密化をはかるべ
く1作動ギャップ4を狭くした磁気ヘッドにあって1作
動ギャップ長の寸法精度を高精度化することは非常に重
要であり1作動ギャップ長の寸法精度が低下すると、1
1品の製造歩留りが悪くなる。
By the way, in recent years, it is very important to improve the dimensional accuracy of the 1 working gap length in magnetic heads where the 1 working gap 4 is narrowed in order to increase the recording density. When the dimensional accuracy of
The manufacturing yield of one item becomes poor.

本発明は、前記した従来技術の問題点を解決すべく検討
の結果なされたものであって、その目的とするところは
、作動ギャップ長の寸法精度を従来よりも高精度化して
、記録密度の高密度化と製品の製造歩留向上化とを同時
に達成することのできる、改良された磁気ヘッドを提供
しようとするものである。
The present invention was made as a result of studies to solve the problems of the prior art described above, and its purpose is to improve the dimensional accuracy of the working gap length than before, and to increase the recording density. The present invention aims to provide an improved magnetic head that can simultaneously achieve higher density and improved product manufacturing yield.

〔問題点を解決するための手段〕[Means for solving problems]

前記目的を達成するため1本発明は0作動ギャップ形成
のために突合せ結合される2個のコアブロックのうち、
少なくともその一方のコアブロックに巻線溝を有し、か
つ前記巻線溝の作動ギャップ側壁面が作動ギャップ面に
対し傾斜している構造の磁気ヘッドにおいて、前記巻線
溝の作動ギャップ側傾斜壁面に応力逃げ溝を設けたこと
を特徴とするものである。
To achieve the above object, the present invention provides two core blocks that are butt-coupled to form a zero working gap.
In a magnetic head having a structure in which at least one of the core blocks has a winding groove, and the working gap side wall surface of the winding groove is inclined with respect to the working gap surface, the working gap side inclined wall surface of the winding groove. It is characterized by having a stress relief groove provided in the.

〔作用〕[Effect]

しかして1本発明は、既述のごとく、巻線溝の作動ギャ
ップ側傾斜壁面に応力逃げ溝を形成したことにより、作
動ギャップ形成のために2個のコアブロックを治具にセ
ットした場合、巻線溝の近傍において、加圧ネジによる
圧力は、前記応力逃げ溝に吸収され、巻線溝の作動ギャ
ップ側傾斜壁面端部における加圧集中を防止することが
できる。
As described above, the present invention has a stress relief groove formed in the inclined wall surface on the working gap side of the winding groove, so that when two core blocks are set in a jig for forming the working gap, In the vicinity of the winding groove, the pressure exerted by the pressure screw is absorbed by the stress relief groove, thereby preventing concentration of pressure at the end of the inclined wall surface of the winding groove on the operating gap side.

〔実施例〕〔Example〕

以下、本発明を、第1図〜第6図の一実施例にもとづい
て説明すると、第1図はブロックコアの傾斜図、第2図
および第3図はブロックコアの寸法関係を説明する正面
図、第4図はブロックコアを治具にセットした状態の正
面図、第51!lはブロックコアからヘッドチップを切
り出した状態の斜視図、第6図は第5図に示すヘッドチ
ップの作動ギャップ長測定図である。
Hereinafter, the present invention will be explained based on an embodiment shown in FIGS. 1 to 6. FIG. 1 is an inclined view of the block core, and FIGS. 2 and 3 are front views explaining the dimensional relationship of the block core. Figure 4 is a front view of the block core set in the jig, Figure 51! 1 is a perspective view of the head chip cut out from the block core, and FIG. 6 is a measurement diagram of the working gap length of the head chip shown in FIG. 5.

ブロックコアの寸法関係を示す第2図において。In FIG. 2 showing the dimensional relationship of the block cores.

M n Z nフェライトからなるコアブロック1aお
よび1bのうち、コアブロック1bには、Lx =70
0μm、Lz=500μm、θ=55@の巻線溝5が形
成されており、さらにコアブロック1bには、外周刃式
スライサーにより、La=600pmの位置に、Ls=
100μm、L7==200μmの方形々状を有する応
力逃げ溝6が形成されている。しかして、前記コアブロ
ック1aと1bとを突合せ結合するに際しては、コアブ
ロック1aと1bとの間に、チタン箔からなるfl=1
μmのスペーサー2を差し込み、第4図に示すように、
コアブロック1aと1bとの間にガラス捧3をセットし
た状態で加熱炉で加熱し、その後。
Of the core blocks 1a and 1b made of M n Z n ferrite, core block 1b has Lx = 70
A winding groove 5 of 0 μm, Lz = 500 μm, θ = 55@ is formed in the core block 1b, and a peripheral blade slicer is used to form a winding groove 5 at a position of La = 600 pm, Ls =
A stress relief groove 6 having a rectangular shape of 100 μm and L7=200 μm is formed. Therefore, when the core blocks 1a and 1b are butt-bonded, fl=1 made of titanium foil is placed between the core blocks 1a and 1b.
Insert the μm spacer 2, as shown in Figure 4.
The glass slab 3 is set between the core blocks 1a and 1b and then heated in a heating furnace.

緩やかに冷却して、第2図に符号Qで示す間隔の作動ギ
ャップ4を形成すると同時に、コアブロック1aと1b
とを溶融ガラス3′で接合する。そして、その後、溶融
ガラス3′で接合されたコアブロック1aと1bとを、
内周刃式スライサーで切断して、第5図に符号1で示す
ヘッドチップを得るようにしており、前記のごとくして
得られたヘッドチップ1は、その両切断面を平面研削な
らびにラッピング(微細な砥粒で研摩)等の方法によっ
て表面仕上げされる。
At the same time, the core blocks 1a and 1b are slowly cooled to form a working gap 4 having a spacing shown by reference numeral Q in FIG.
and are joined with molten glass 3'. Then, the core blocks 1a and 1b joined with the molten glass 3' are
The head chip shown by reference numeral 1 in FIG. 5 is obtained by cutting with an internal blade type slicer. Both cut surfaces of the head chip 1 obtained as described above are subjected to surface grinding and lapping ( The surface is finished by methods such as polishing with fine abrasive grains.

第6図は第5図に示すヘッドチップ1の作動ギャップ長
測定図である。第6図に示すギャップ長測定の結果、第
5図に符号A−Bで示す距離間の作動ギャップ長は、ギ
ャップ深さ方向全域にわたつて、はぼ所定の間隔A=1
μmを保持しており。
FIG. 6 is a measurement diagram of the working gap length of the head chip 1 shown in FIG. As a result of the gap length measurement shown in FIG. 6, the working gap length between the distances indicated by symbols A-B in FIG.
It holds μm.

本発明によれば、作動ギャップ長の寸法精度を従来より
も高精度化することができる。
According to the present invention, the dimensional accuracy of the working gap length can be made higher than ever before.

第7図および第8図はそれぞれ本発明の他の実施例を示
し、第7図の実施例においては1巻線溝5の作動ギャッ
プ側傾斜壁面に設けた応力逃げ溝6の形状を半弧状とし
た場合を示した。また、第8図の実施例においては、巻
線溝5の作動ギャップ傾斜壁面に設けた応力逃げ溝6の
形状を、山形に尖らせた多角形々状とした場合を例示し
た6なお1本発明において、応力逃げ溝6は、巻線溝5
の作動ギャップ側傾斜壁に設けられるものであるが、こ
の応力逃げ溝6の形成位置は1図示実施例に示すごとく
作動ギャップ側傾斜壁面の中央に対し1作動ギャップ4
の反対側に設けられていることが望ましい、その理由は
、応力逃げ溝6の形成位置が1作動ギャップ側傾斜壁面
の中央に対して作動ギャップ側に設けられていると1巻
線溝5の作動ギャップ側傾斜壁面端部であるA部の加圧
集中防止効果が小さくなる傾向を示すためである。
7 and 8 respectively show other embodiments of the present invention, and in the embodiment shown in FIG. The case is shown below. In addition, in the embodiment shown in FIG. 8, the shape of the stress relief groove 6 provided on the inclined wall surface of the working gap of the winding groove 5 is a polygonal shape with a pointed chevron. In the invention, the stress relief groove 6 is the same as the winding groove 5.
The stress relief groove 6 is provided on the inclined wall on the working gap side, and the stress relief groove 6 is formed at a position 1 working gap 4 relative to the center of the working gap side inclined wall surface as shown in the illustrated embodiment.
The reason for this is that if the stress relief groove 6 is formed on the working gap side with respect to the center of the inclined wall surface on the first working gap side, the stress relief groove 6 is formed on the opposite side of the first winding groove 5 This is because the effect of preventing pressure concentration at the section A, which is the end of the inclined wall surface on the side of the working gap, tends to be reduced.

また、本発明においては、巻線溝5の作動ギャップ側傾
斜壁面に形成される応力逃げ溝6が1図示実施例に示す
ごとき方形その他の多角形々状、あるいは円弧状、さら
にはこれらに代わる他の形状であっても、第3図に示す
ごとく、応力逃げ溝6の最大溝深さL6が1作動ギャッ
プ4の内端Aから作動ギャップ面に直交する仮想面と巻
線溝底面部の作動ギャップ側傾斜壁面端部Cとを結ぶ距
fiL+の1/4から1/2であることが望ましい。
Further, in the present invention, the stress relief groove 6 formed on the inclined wall surface on the working gap side of the winding groove 5 may have a rectangular or other polygonal shape as shown in the embodiment shown in FIG. Even with other shapes, as shown in FIG. 3, the maximum groove depth L6 of the stress relief groove 6 is between the inner end A of the working gap 4 and the imaginary plane perpendicular to the working gap surface and the bottom surface of the winding groove. It is desirable that the distance fiL+ is between 1/4 and 1/2 of the distance fiL+ connecting the working gap side inclined wall surface end C.

その理由は前記寸法LISがL4の1/4以下であると
、巻線7f!t5の作動ギャップ側傾斜壁面端部である
A部の加圧集中防止効果が小さくなる傾向を示し、他方
、前記寸法りもがL4の1/2以上の場合は、コアブロ
ック1bの機械的強度が低下する傾向を示すためである
6 さらに1図示実施例においては、2片のフェライトコア
ブロックla、lbの接合にガラス捧3を使用する場合
について例示したが、ガラス捧3に代えて、他の接着剤
を用いるようにしてもよい。
The reason is that when the dimension LIS is less than 1/4 of L4, the winding 7f! The effect of preventing pressure concentration at part A, which is the end of the inclined wall on the operating gap side at t5, tends to decrease. On the other hand, if the dimension is 1/2 or more of L4, the mechanical strength of the core block 1b decreases. 6 Furthermore, in the illustrated embodiment, a case where a glass slab 3 is used to join two pieces of ferrite core blocks la and lb is illustrated, but instead of the glass slab 3, other Alternatively, an adhesive may be used.

〔発明の効果〕〔Effect of the invention〕

本発明は以上のごときであり、図示実施例の説明からも
明らかなように1本発明によれば1作動ギヤツブ畏の寸
法精度を従来よりも高精度化して。
The present invention is as described above, and as is clear from the description of the illustrated embodiments, according to the present invention, the dimensional accuracy of the first operating gear is made higher than that of the conventional one.

記録密度の高密度化と製品の製造歩留向上化とを同時に
達成することのできる。改良された磁気ヘッドを得るこ
とができる。
It is possible to simultaneously achieve higher recording density and improved product manufacturing yield. An improved magnetic head can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図、第4図、第5図、第6図は本
発明に係る磁気ヘッドの一実施例を示し、第1図はブロ
ックコアの斜視図、第2図および第3@はブロックコア
の寸法関係を説明する正面図。 第4図はブロックコアを治具にセットした状態の正面図
、第5図はブロックコアからヘッドチップを切り出した
状態の斜視図、第6図は第5図に示すヘッドチップの作
動ギャップ長測定図、第7図および第8図はそれぞれ本
発明の他の実施例を示すブロックコアの正面図、第9図
、第10図、第11Wi、第12図は従来形ブロックコ
アを製作している状態を順を追って示す斜視図ならびに
正面図、第13図は従来形ブロックコアの寸法関係を説
明する正面図、第14図は第12図に示すヘッドチップ
の作動ギャップ長測定図、第15図は従来形ブロックコ
ア製作時における作動ギャップ面各部の応力分布測定図
である。 la、lb・・・コアブロック、4・・・作動ギャップ
、(□ヵ、2名)′し 慧1図 1老 ¥2Z 基3図 i4−図 f)5図 譜6図 1″¥ ′v)sマ アブ面うイi1 不′1区    亭8図 摺q図    1日 高目図 高IS図 11動Nヤ・アブ面。イif
1, 2, 3, 4, 5, and 6 show an embodiment of the magnetic head according to the present invention, and FIG. 1 is a perspective view of a block core, and FIG. 2 is a perspective view of a block core. and 3rd @ is a front view explaining the dimensional relationship of the block core. Figure 4 is a front view of the block core set in the jig, Figure 5 is a perspective view of the head chip cut out from the block core, and Figure 6 is the measurement of the working gap length of the head chip shown in Figure 5. 7 and 8 are front views of block cores showing other embodiments of the present invention, and FIGS. 9, 10, 11Wi, and 12 show conventional block cores manufactured. A perspective view and a front view showing the state in order, FIG. 13 is a front view explaining the dimensional relationship of the conventional block core, FIG. 14 is a measurement diagram of the working gap length of the head chip shown in FIG. 12, and FIG. 15 1 is a stress distribution measurement diagram of various parts of the working gap surface when manufacturing a conventional block core. la, lb...core block, 4...operating gap, (□ka, 2 people)' Shikei 1 Figure 1 Old ¥2Z Base 3 Figure i4-Figure f) 5 Figure 6 Figure 1''\'v) If

Claims (1)

【特許請求の範囲】 1、作動ギャップ形成のために突合せ結合される2個の
コアブロックのうち、少なくともその一方のコアブロッ
クに巻線溝を有し、かつ前記巻線溝の作動ギャップ側壁
面が作動ギャップ面に対し傾斜している構造の磁気ヘッ
ドにおいて、前記巻線溝の作動ギャップ側傾斜壁面に応
力逃げ溝を設けたことを特徴とする磁気ヘッド。 2、特許請求の範囲第1項記載の発明において、巻線溝
の作動ギャップ側傾斜壁面に設けられた応力逃げ溝が、
当該壁面の中央に対し作動ギャップの反対側に位置して
いる磁気ヘッド。 3、特許請求の範囲第1項または第2項記載の発明にお
いて、巻線溝の作動ギャップ側傾斜壁面に設けられた応
力逃げ溝の最大溝深さが、作動ギャップの内端から作動
ギャップ面に直交する仮想面と巻線溝底面部の作動ギャ
ップ側傾斜壁面端部とを結ぶ距離の1/4〜1/2であ
る磁気ヘッド。
[Scope of Claims] 1. Of two core blocks butt-joined to form an operating gap, at least one of the core blocks has a winding groove, and a side wall surface of the operating gap of the winding groove. What is claimed is: 1. A magnetic head having a structure in which the winding groove is inclined with respect to a working gap surface, wherein a stress relief groove is provided in an inclined wall surface of the winding groove on the working gap side. 2. In the invention described in claim 1, the stress relief groove provided on the inclined wall surface on the working gap side of the winding groove,
A magnetic head located on the opposite side of the working gap with respect to the center of the wall. 3. In the invention described in claim 1 or 2, the maximum groove depth of the stress relief groove provided on the inclined wall surface on the working gap side of the winding groove is from the inner end of the working gap to the working gap surface. The magnetic head has a distance of 1/4 to 1/2 of the distance connecting the imaginary plane orthogonal to the imaginary plane and the end of the inclined wall surface on the operating gap side of the bottom surface of the winding groove.
JP10850786A 1986-05-14 1986-05-14 Magnetic head Pending JPS62266715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10850786A JPS62266715A (en) 1986-05-14 1986-05-14 Magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10850786A JPS62266715A (en) 1986-05-14 1986-05-14 Magnetic head

Publications (1)

Publication Number Publication Date
JPS62266715A true JPS62266715A (en) 1987-11-19

Family

ID=14486532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10850786A Pending JPS62266715A (en) 1986-05-14 1986-05-14 Magnetic head

Country Status (1)

Country Link
JP (1) JPS62266715A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471616A (en) * 1977-11-18 1979-06-08 Fujitsu Ltd Production of magnetic head

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471616A (en) * 1977-11-18 1979-06-08 Fujitsu Ltd Production of magnetic head

Similar Documents

Publication Publication Date Title
US3922776A (en) Method for making narrow track ferrite core flying pads
JPS62266715A (en) Magnetic head
JPH05234014A (en) Production of core for magnetic head
JPS6151335B2 (en)
JP2615557B2 (en) Composite magnetic head and method of manufacturing the same
JPS63112813A (en) Composite magnetic head and its manufacture
JPH0467681B2 (en)
JPH02143902A (en) Manufacture of magnetic head chip
JPS6216207A (en) Manufacturing method for magnetic head
JPS61199218A (en) Production of magnetic head
JPS62266718A (en) Manufacture of composite magnetic head
JPH02143904A (en) Composite magnetic head and its manufacture
JPH0490107A (en) Production of magnetic head
JPH06119737A (en) Floating magnetic head and manufacture thereof
JPH01227205A (en) Manufacture of magnetic head
JPH05325124A (en) Magnetic head
JPH043302A (en) Core for magnetic head and its production
JPS6313109A (en) Composite magnetic head and its manufacture
JPS61126613A (en) Production for magnetic head
JPS63209016A (en) Production of composite type head chip
JPH04257405A (en) Cutting method with cutting blade
JPH02177008A (en) Manufacture of ferrite core for magnetic head
JPH0423207A (en) Magnetic head and its manufacture
JPS61222011A (en) Composite material for producing magnetic head
JPS6282504A (en) Production of magnetic head